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On the finite volume solution of the 1D parabolic
nonlinear equation∗

V.P. Il’in, I.A. Shmakov

Abstract. The mixed finite volume approach is described for solving the one-
dimensional nonlinear parabolic equation on the non-uniform grid. The estimates
of the truncation errors for the approximate solution as well as for the flux are
investigated. The results of numerical experiments for the two model problems are
presented.

1. Introduction

In this paper, we consider the finite volume approach for the numerical
solution of the mixed boundary value problem (BVP) for the 1D nonlinear
parabolic equation

∂u

∂t
=

1
xα

∂

∂x

(
xαa

∂u

∂x
+ bu

)
+ cu+ f, (1)

0 ≤ L0 < x < L1, 0 < t ≤ T <∞,

where the coefficients a > 0, c ≤ 0, b and the function f depend on the
variables x, t and, possibly, on the unknown function u, also. In (1), the
values α = 0 and α = 1 correspond to the Cartesian and the cylindrical
spatial coordinates.

The initial value u(x, t = 0) = u0(x) is supposed to be given, and the
boundary conditions are written down formally as(

α0u+ β0
∂u

∂x

)∣∣∣
x=L0

= γ0,
(
α1u+ β1

∂u

∂x

)∣∣∣
x=L1

= γ1,

α0β0 ≤ 0, α1β1 ≥ 0, |α0|+ |β0| 6= 0, |α1|+ |β1| 6= 0.
(2)

So, different kinds of the BVPs (Dirichlet, Neumann, Robin, and mixed
type) are included into the statement. Let us remark that in the physical
sense, a more natural boundary condition presents the given flux

v(x) =
(
−xαa

∂u

∂x
− b u

)∣∣∣
Lk

= γk, k = 0, 1,
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and, in this case if α > 0 and L0 = 0, the condition of boundedness of the
solution is lim

x→0
v(x) = 0 [1].

Investigations of similar problems by the finite element and other meth-
ods were carried out, especially, for the linear case, by many authors (see
e.g., [1–3] and the references therein). Application of the mixed FVM for a
similar stationary diffusion problem was considered in [4]. The aim of this
paper is to extend the results considered in [4] to a nonstationary nonlinear
problem with an additional convection term.

In Section 2, we analyze the features of the mixed FVM for problems
(1), (2), under the assumption that the desired solution is piecewise smooth.
In Section 3, the results of numerical experiments for the Burger equation
[5] and the linearized filtration problem [6] are discussed.

2. The mixed finite volume algorithms

Let us rewrite equations (1) in the following mixed formulation:

∂v

∂x
= xα

(
cu− ∂u

∂t
+ f

)
, (3)

v = −xαa
∂u

∂x
− bu. (4)

Here, the flux function v can be represented as

v = −x
αa

µ

∂µu

∂x
, µ = eη, η =

x∫
0

b dζ

ζαa
. (5)

For approximation of system (3), (4), we introduce a non-uniform grid

xi+1 = xi + hi, x0 = L0, xI+1 = L1, i = 0, 1, . . . , I,
tn+1 = tn + τn, n = 0, 1, . . .

After integrating equations (3) and (5) over the intervals [xi−1/2, xi+1/2],
xi±1/2 = (xi + xi±1)/2, and [xi, xi+1], respectively, we obtain the exact
relations

vi+1/2 − vi−1/2 =

xi+1/2∫
xi−1/2

g dx, g = xα
(
cu− ∂u

∂t
+ f

)
, (6)

(µu)i − (µu)i+1 =

xi+1∫
xi

vµ

xαa
dx. (7)

Using the piecewise linear interpolation of the function g in (6), we have

vi+1/2 − vi−1/2 = ĝi +O(h3), h = max
i
{hi},

ĝi = [3(hi + hi−1)gi + hi−1gi−1 + higi+1]/8.
(8)
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Approximation of the integral in (7) provides the relation

(µu)i − (µu)i+1 = vi+1/2

xi+1∫
xi

µdx

xαa
+O(h3)

= vi+1/2

xi+1∫
xi

eχi+1/2+(x−xi+1/2)(χi+1−χi)/hidx+O(h3)

= vi+1/2e
χi+1/2

hi

χi+1 − χi

(
e

χi+1−χi
2 − e−

χi+1−χi
2

)
+O(h3),

where the function χ and its differences are defined as

χ = η − ξ, ξ = ln(xαa)
χi+1 − χi = ηi+1 − ηi − ξi+1 + ξi

= hi
bi + bi+1

xα
i+1/2(ai + ai+1)

+ ln
xα

i ai

xα
i+1ai+1

+O(h3).

From the latter, we can find the flux

vi+1/2 =
(
eηi−ηi+1/2ui − eηi+1−ηi+1/2ui+1

) (χi+1 − χi)xα
i+1/2ai+1/2

hi(e
χi+1−χi

2 − e−
χi+1−χi

2 )
+O(h3).

(9)
If we write a similar relation for vi−1/2 and substitute it into (8), we will

obtain the following equations:

(Âu)i ≡ âi,i−1ui−1 + âi,iui + âi,i+1ui+1 = ĝi +O(h3), i = 1, 2, . . . , I, (10)

where the values g̃i depend on u and ∂u

∂t
, and the entries of the matrix Ã

are defined as

âi,i−1 = −āi,i−1µi−1, âi,i+1 = −āi,i+1µi+1, âi,i = (āi,i−1 + āi,i+1)µi. (11)

Here we use the notations

āi,i+1 = āi+1,i = −
(χi+1 − χi)xα

i+1/2ai+1/2µi+1/2

hi(e
χi+1−χi

2 − e−
χi+1−χi

2 )
.

If we use the definition of g̃i and the time discretization of (10) at the
moment tn+θ = tn + θτn, 0 ≤ θ ≤ 1, the following relations are obtained:

1
τn
Bh(un+1 − un) + (Ahu)n+θ = fn+θ

h + ψn+θ
u , Ah = Âh + Ǎh, (12)
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where
un = {u(xi, tn)}, un+θ = θun+1 + (1− θ)un,

ψn+θ
u = O(h3 + hτ2 + h(1− 2θ)τ), fn+θ

h = {f̃n+θ
i = (Bhf)n+θ

i };

Bh = {bi,j} and Ǎh = {ǎi,j} are tridiagonal matrices with the entries

bi,i−1 = hi−1x
α
i−1, bi,i+1 = hix

α
i+1, bi,i = (hi−1 + hi)xα

i ,

ǎi,i−1 = bi,i−1ci−1, ǎi,i+1 = bi,i+1ci+1, ǎi,i = (hi−1ci−1 + hici)xα
i .

If the matrix elements in (12) depend on time, the matrix-vector product
is defined as

(Ahu)n+θ = θAh
n+1u

n+1 + (1− θ)Ah
nu

n,

and the entries of Ah
n are used at n-th time step. Due to the properties of

the coefficients a, c from (1) and those of the matrix entries from (10), (11),
it follows that A = {ai,j} is M-matrix (see [1, 2]), i.e., A−1 ≥ 0 because
of the column diagonal dominance and non-positiveness of the off-diagonal
entries:

ai,i±1 ≤ 0, ai,i + ai,i−1 + ai,i+1 ≥ 0, (13)

with, at least, one strong inequality in the last relation. The only exclusion
is a pure Neumann BVP with α0 = α1 = c = 0 in (1), (2).

The boundary conditions (2) are taken into account without any addi-
tional error. If β0 = 0 and/or β1 = 0, then the equations

u0 = γ0/α0, uI+1 = γ1/α1, (14)

present an “exact approximation” of the Dirichlet conditions. And if β0 6= 0,
for example, then, in addition to equations (6) for i = 1, 2, . . . , the boundary
equation

v1/2 − v0 =

x1/2∫
x0

g dx (15)

is introduced. The term v1/2 in (14) is approximated according to (9), as
usual, but v0 is defined, with the help of (4), as

v0 =
(α0

β0
xα

0a0 − b0

)
u0 −

γ0

β0
xα

0a0. (16)

Therefore, using the spatial and time approximation of the right-hand
side in (15) and substituting v0 from (16) and v1/2 from (9) into (15), we
obtain the equation for i = 0, similar to (12). Also, if β1 6= 0, we define an
additional flux equation
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vI+1 − vI+1/2 =

xI+1∫
xI+1/2

g dx

and the exact boundary condition

vI+1 =
(α1

β1
xα

I+1aI+1 − bI+1

)
uI+1 −

γ1

β1
xα

I+1aI+1, (17)

which provides the (I + 1)-th grid equation, similar to (12).
For a more natural Robin type boundary condition, we have a given flux,

for example, at the left boundary

−
(
xαa

∂u

∂x
+ bu

)∣∣∣
x=L0

= γ0.

In this case, equation (16) is reduced to a simpler form v0 = γ0.
After exclusion of the fluxes in the near boundary points, the dimension

of the vector un is N = I + 2 in a general case of equation (12), and N = I
or N = I + 1 if we have the Dirichlet or a mixed boundary value problem,
respectively.

If we delete the approximation term ψn+θ in (12), we will obtain the
equation for the grid solution un

h = {uh,n
i }:

1
τn
Bh(un+1

h − un
h) + θAh

n+1u
n+1
h + (1− θ)Ah

nu
n
h = fn+θ

h . (18)

In a similar way, from (9), we define the grid flux

vi+1/2 =
(
eηi−ηi+1/2un

i − eηi+1−ηi+1/2un
i+1

) (χi+1 − χi)xα
i+1/2ai+1/2

hi(e
χi+1−χi

2 − e−
χi+1−χi

2 )
.

It is important to remark that the finite volume scheme obtained is fully
conservative, in the sense, that the following exact grid balance holds:

τn[θ(vn+1
i′′+1/2 − vn+1

i′−1/2) + (1− θ)(vn
i′′+1/2 − vn

i′−1/2)] =

i′′∑
i=i′

{
Bh(un+1

h − un
h)i + τnθ[g̃n+1

i + (Ǎun+1
h )i]+ τn(1− θ)[g̃n

i + (Ǎun
h)i]

}
,

for any pair of the indices i′, i′′. It is evident that each side of this equation
presents the approximation of the corresponding term of the conservative
law, or the balance equation:
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tn+1∫
tn

(vi′′+1/2−vi′−1/2) dt =

xi′′+1/2∫
xi′−1/2

xα(un+1−un) dx+

tn+1∫
tn

dt

xi′′+1/2∫
xi′−1/2

(cu−f)xα dx.

It can be mentioned, that in [1], a similar exponential type scheme was
considered on the uniform grid, but it was a nonconservative one.

Now, by means of the term-by-term subtraction of equations (12) and
(18) we obtain the following linearized equation for the grid solution error
vectors zn

h = {u(xi, tn)− uh,n
i }:

1
τn
Bh(zn+1

h −zn
h)+θ(Ah

n+1 +Ch
n+1)z

n+1
h +(1−θ)(Ah

n +Ch
n)zn

h = ψn+θ
u . (19)

Here Ch
n = {ci,j} is a tridiagonal matrix, nonsymmetric and indefinite, in

general, whose entries consist of derivatives of the matrix elements ai,j and
can be understood from the following example:

ai,i(ui, ui−1, ui+1)ui − ai,i(uh
i , u

h
i−1, u

h
i+1)u

h
i +

ai,i(ui, ui−1, ui+1)uh
i − ai,i(ui, ui−1, ui+1)uh

i

= ai,i(ui, ui−1, ui+1)zh
i +

∂ai,i

∂ui
(u∗i )u

h
i z

h
i +

∂ai,i

∂ui−1
(u∗i−1)u

h
i z

h
i−1 +

∂ai,i

∂ui+1
(u∗i+1)u

h
i z

h
i+1

= ai,iz
h
i + ci,iz

h
i + ci,i−1z

h
i−1 + ci,i+1z

h
i+1,

where the values of derivatives are defined for some arguments u∗i±1 ∈
[ui±1, u

h
i±1]. In other words, the matrix Ch

n is defined from the vector-matrix
relation

Ah(un)un −Ah(uh,n)uh,n = (Ah(un) + Ch(u∗))zn
h .

The error equation can be written down in the form (we omit here and
further the index “h” for matrices and vectors)

(B + τnθMn+1)zn+1 = [B − τn(1− θ)Mn]zn + τnψ
n+θ
u , (20)

where Mn+1 = An+1 + Cn+1 = {mn+1
i,j = an+1

i,j + cn+1
i,j }.

Let us now, for simplicity, suppose that nonlinearity of the function a,
c, and f in (1) is not too strong, so that B + τnθMn+1 is M-matrix and
conditions the similar to (13) are valid for all the rows:

bi,i±1 + τnθmi,i±1 ≤ 0,

bi,i + bi−1,i + bi+1,i + τnθ(mi,i +mi−1,i +mi+1,i) ≥ 0.
(21)

Moreover, we assume, that for some positive vector w = {wi > 0} with
the norm ‖w‖∞ = maxi |wi| = 1 the following inequality holds:
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(B + τnθMn+1)w ≥ (1 + τnκ0)−1[B − τn(1− θ)Mn]e, (22)

where e is the vector with unit entries. Here and below the constant κk,
k = 0, 1, . . . , means the value which does not depend on τ = maxn{τn}, h,
and ȟ = mini{hi}. Conditions (21), (22) provide the matrix norm inequality,
see [2]:

‖(B + τnθMn+1)−1[B − τn(1− θ)Mn]‖∞ ≤ 1 + τnκ0. (23)

One more matrix property is assumed: ‖(B + τnθMn+1)−1‖ ≤ κ1/ȟ, from
which, together with (23) and (20), we obtain the inequality

‖zn+1‖∞ ≤ (1 + τnκ0)‖zn‖∞ + τn‖ψn+θ‖∞/ȟ.

Now we can formulate the main result of the previous consideration.

Theorem 1. Let conditions (21), (22) be satisfied for all n = 0, 1, . . . Then
the grid solution error has the norm ‖zn‖∞ = O(τ2 + h2) for θ = 1/2 (the
Crank–Nicolson scheme) and ‖zn‖∞ = O(τ + h2) for 1/2 < θ ≤ 1.

We can remark that for θ = 1 (a pure implicit scheme) this means
an unconditionable convergence of the grid solution, but for θ < 1, the
convergence in the infinite norm demands the condition τ = O(h2).

Let us now consider the grid flux error vector

yn
h = {yh,n

i+1/2 = v(xi+1/2, tn)− vh,n
i+1/2},

where the grid flux vector vn
h = {vh,n

i+1/2} satisfies for θ > 0 the equations

vh,n+θ
i+1/2 − vh,n+θ

i−1/2 =
[ 1
τn
Bh(un+1

h − un
h) + θĀn+1u

n+1
h + (1− θ)Ānu

n
h

]
i
,

vh,n+θ = θvh,n+1 + (1− θ)vh,n.

(24)

After subtraction of equations (8) (after their approximation in the vari-
able t) and (24) we obtain

yh,n+θ
i+1/2 − yh,n+θ

i−1/2 =
[ 1
τn
Bh(zn+1

h − zn
h) + θĀn+1z

n+1
h + (1− θ)Ānz

n
h

]
i
+

O(h3 + hτ2 + h(1− 2θ)τ). (25)

If, for x = L0, β0 6= 0 and/or, for x = L1, β1 6= 0, then at any time step for
i = 0 and/or i = I + 1 the boundary grid fluxes are defined by equations
(16) and/or (17), and the corresponding flux errors are defined by similar
equations.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then the fol-
lowing estimates for the flux error are valid:

‖yh,n+θ‖∞ =
{
O(τ2 + h2), for θ = 1/2,
O(τ + h2), for 1/2 < θ ≤ 1.
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The proof of these results follows from the recurrent relation, obtained
from (25) and (19):

yh,n+θ
i+1/2 = yh,n+θ

i−1/2 − [θ(Ãn+1 + Cn+1)zn+1
h + (1− θ)(Ãn + Cn)zn

h ]i +

O(h3 + hτ2 + h(1− θ)τ).

Remark. If for x = L0 and/or x = L1 the Dirichlet boundary condition is
given, then it can be stated from system (20) that zn

1 and/or zn
I has the order

O(h3 + h2τ2 + h2(1 − 2τ)τ) for all n, see [3]. In such a case, the estimates
yn
1/2 = O(h2 + hτ2 + h(1− 2τ)τ) and/or yn

I+1/2 = O(h2 + hτ2 + h(1− 2τ)τ)
can be obtained with the help of equation (9).

3. Numerical experiments

In this section, we consider the results of numerical experiments for the two
problems. The first one presents the nonlinear Burger equation

∂u

∂t
+ u

∂u

∂x
= δ

∂2u

∂x2
, δ = const > 0, 0 < x < 1,

which has an analytical solution

u(x, t) = δ
[
1− tanh

1
2
(x− δt)

]
. (26)

This problem was solved by the Crank–Nicolson scheme under the Dirich-
let boundary conditions and the initial value, defined by formula (26), at
the time interval 0 < t ≤ T = 1.28. In Tables 1, 2 we give the values of the
errors of solution

∆u = max
i
|u(xi, T )− uh(xi, T )|,

and the errors of the fluxes

∆v = max
i
|v(xi+1/2, T )− vh(xi+1/2, T )|,

obtained on different uniform grids with the meshsteps τ and h = 1/(I+1).
An analysis of these data demonstrates sufficiently well the second order

of accuracy in terms of h and τ both (it is evident for the small time steps
and small space steps, respectively). In this experiments about 5 nonlinear
iterations provide a high accuracy (≈ 10−9) at each time step.
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Table 1. Grid solution error for Burger equation

I τ = 0.04 τ = 0.02 τ = 0.01 τ = 0.005

8 4.76 · 10−5 4.57 · 10−5 4.52 · 10−5 4.51 · 10−5

16 1.37 · 10−5 1.18 · 10−5 1.13 · 10−5 1.12 · 10−5

32 5.29 · 10−6 3.43 · 10−6 2.96 · 10−6 2.80 · 10−6

64 3.19 · 10−6 1.32 · 10−6 8.57 · 10−7 7.40 · 10−7

128 2.66 · 10−6 7.98 · 10−7 3.31 · 10−7 2.14 · 10−7

256 2.53 · 10−6 6.67 · 10−7 2.00 · 10−7 8.28 · 10−8

512 2.51 · 10−6 6.35 · 10−7 1.67 · 10−7 5.00 · 10−8

1024 2.50 · 10−6 6.26 · 10−7 1.58 · 10−7 4.17 · 10−8

Table 2. Grid flux error for Burger equation

I τ = 0.04 τ = 0.02 τ = 0.01 τ = 0.005

8 3.46 · 10−4 3.37 · 10−4 3.34 · 10−4 3.34 · 10−4

16 9.80 · 10−5 8.80 · 10−5 8.55 · 10−5 8.49 · 10−5

32 3.51 · 10−5 2.47 · 10−5 2.21 · 10−5 2.15 · 10−5

64 1.93 · 10−5 8.86 · 10−6 6.23 · 10−6 5.56 · 10−6

128 1.54 · 10−5 4.88 · 10−6 2.22 · 10−6 1.56 · 10−6

256 1.45 · 10−5 3.89 · 10−6 1.22 · 10−6 5.57 · 10−7

512 1.43 · 10−5 3.64 · 10−6 9.75 · 10−7 3.07 · 10−7

1024 1.42 · 10−5 3.58 · 10−6 9.13 · 10−7 2.44 · 10−7

The second problem in question is a linearized filtration equation [4]:

∂u

∂t
=
∂2u

∂x2
− ∂u

∂x
+ f(x), 0 < t ≤ T <∞,

u|x=0 = u0, u|x=1 = uI+1,

where the initial data, boundary values, and the function f(x) are defined
from the chosen exact solution u(x, t) = t2ex.

For this model problem, the Crank–Nicolson scheme provides an exact
numerical solution (∆u = ∆v = 0) on any uniform grid. This phenomenon
can be simply explained: for given solution the flux v is constant and trun-
cation error is zero for the proposed approximations.
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