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A strongly S-stable method
for solving stiff systems
of ordinary differential equations

S.A. Gusev

A strongly S-stable (by A. Prothero and A. Robinson) one-step noniterated
method is presented. Results of numerical calculation showing the advantage of
the proposed method in comparison with a similar L-stable method are given.

1. Introduction

It is known that in the using of A-stable methods for the solution to very
stiff systems of ordinary differential equations (ODE)

y= f(y$ t)! y(ﬂ) =y, t20 (1)

the stable numerical solutions are not always obtained. Sometimes the ac-
curacy of an obtained numerical solution is less than that is supposed.from
consistency equations. It make A. Prothero and A. Robinson to enter other
concepts of stability of numerical methods such as S-stability and strong
S-stability [1]. In this connection they considered the following test equa-
tion:

g=4t)+Aly-9(®), y(0) =y, t20, (2)

where g is any defined sufficiently dlfferentlable functlon A — complex con-
stant with Re(\) < 0.

According to [1] the one-step numerical method is called S-stable, if in
applying it to equation (2) and for any positive constant Ag, there exists
ho > 0 such that (

Ynt1 — ¢ tn+l)
<1 3
Yn— ¢ ( l ( )
provided y, # ¢(f,), forall 0 < h < hg and all A € C such that Re( A) 2 Ao,
and t,, ty41 € [0,7T] (any 0 < T < 00).
An S-stable one-step method refers to as strongly S-stable, if

Yns1 — G(tns1)
- g(tn)

under Re(—\) — oo for all positive A such that ty, tn4y € [0,7T].

-0, | (4)
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The advantages of S-stable methods in comharison with methods, which
have not this property, were evidently demonstrated in the papers [1, 2].
Under the given initial condition y(0) = yo the function

y(t) = e*(y(0) - 9(0)) + 9(2) (5)
is the solution to equation (2). '
In [1] the equation for the error e, = yn — g(t») was also considered

. €ntl = o:(z)en + hﬁ(h? z,9), (6)
where z = (hA)~!

For one-step methods a(z) coincides with the stability function that
is obtained as a result of application of these methods to the scalar test
equation 7 ‘

g = Ay, y(0)=y0) t>0. (7)

As it is shown in [1] for S-stablility of an one-step method it is necessary and
sufficiently that it is A-stable and the function 8(2)/(1 - |a(2)|) is bounded
for all z with 0 < Re(~2) < Z (any Z > 0) and for all g with § defined and
bounded in [t,,tn41])-

An S-stable method is strongly S-stable if and only if [1]

Q(Z) =0, (8)
B(z) = 0. 9)

A method is called as stiffly accurate if condltlon (9) is realised.
Strongly S-stable methods are the implicit Euler method and the Rosen-
brock type method of the first order

Ynt1 = Un + [ = hfy Unta)] " F(Uns tasr)- (10)

As is shown in [1] strongly S-stable implicit methods are also some Runge-
Kutta methods based on the Radau and Lobatto quadrature formulas.

In this paper a strongly S-stable one-step noniterated method with two
calculations of right-hand side and one calculation of the Jacobi matrix at
one integration step is offered. This method belongs to so called class of
(m, k) methods proposed in [3] and it is a four stage (m, k) method of the
kind ' '

lim
Re(z)<0 |z|—+0

Re(z) <0 |z|=+0

4
Ynt1 = Yn +'Zpik£1 (11)

i=1
(I — ahfy)ki = f(Yn,tn +mh),
[I - a.hfy]kz = ki,
[I = ahfylka = f(yn + Barkr + Bazka, tr + 73h),
(I - ahf,)ks = k3 + cuzka,
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where I — unit matrix, f, — the Jacobi matrix at the point (y,,t,), a, p1,

P2y P3, P4y 71, 73, P31, P32, @42 are numerical parameters.

2. Parameters and properties of the method

For determination of parameters of a method (11) we shall consider consis-
tency conditions of the third order and strong S-stability. The third order

_ concistency equations are

pLtp2+pat+patps =1,

. ' 1
pra+ 2pea + p3(a + P31 + Baz) + pa(2a + Ba1 + B32) + 3psa = 2,

1
(Pr+pe+ps)n+ (p3+pa)ys= 3
1

(pr + P2+ ps)vi + (ps + pa)va = 3

2

6pray1 + 12paay; + 18psayy + 6ps(ays + (Ba1 + Ba2)71) +

6(pa(2a73 + (831 + Baz)m) = 1,
6p1a” + 18pa’ + 36psa® + 6pa(a® + 28310 + 36520) +
6?4(302 + 38310 + 4[3320,) =1,

1

31
1
3

(3 + p4)(Bas + Baz)? =

¥3(pa + pa) (P31 + 332) =

(12)

(13)

(14)
(15)

(16)

(17)
(18)

- (19)

In equations (12)—(19) for convenience we denote ps = L2708
Next we consider equations for parameters providing strong S- stabtllty

By application of (11) to equation (2) we have

Ynt1l = Yn + ;ﬁTB_l (yn

| P 1 g(tn +71h)
__ | P2 __ |1 —r g(tn+'flh)
P T T gttt i)
P4 1 9(tn + 73h)
2;[!. 0 0
0 (=2 o
B=1 " _su By =

_ﬁ31-f-agz _@

1

0
0
0

g

9(
g(
g(
g(

tn + 71h)
tn +mh)
tn + 73h)
tn + 73h)

. . , 1 . _ B _
~9(ta))e+hp" B~'g'+ =p" B~ (g(tn)e - 9), (20)

1

Using equality (20) we obtain the expressions a(z B(z, h), specifying a

step error change (6) for our method
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a(z) =1+ %ﬁTB'lé, ' : (21)
B(z,h) = %(y(tn) = gltns1) + —lgﬁTB“(g(tn)é -9 +hp"B7'g). (22)

Limiting equalities (8), (9) for (21), (22) give equations on parameters
ensuring strong S-stability.

By equating to zero in (21) the limit o(2) at |z| — 0, we obtain the first
equation that is also a condition of L-stability

- a® + pra+ pa(a — Bz1) = 0. (23)
Similarly, by equating to zero the limit 8(z,h) in (22) at |z] = 0, we
obtain equality, ensuring the stiff accuracy
g(tn +h) — g(tn) - %(g(tn +71h) = g(tn)) - %’—(y(tn +73h) = g(tn)) +

pafa1
p

(9(tn + mh) — g(ta)) = 0. (24)

Equality (24) is possible, if in Taylor-series expansions g(tn + h), g(tn +
y;h), i=1,3 asum of factors at each degree of h is equal to zero. Thus we
have the infinite system of equations

k k ' :
Y P3f ok _ Baivry _ -
1- =0 a(73 s )-0, k=1,2,.... (25)

So that the method (11) had the third order and was strongly S-stable,
the fulfilment of conditions (12)-(19), (23), (25) is necessary. It is possible
to show that this system of equations is inconsistent. Indeed, it follows from
equations (18), (19) that

P31 + Bz = Y3, (26)
1
mtP= g (27)

From (27) and (15) we have (py + p2 + ps)yi = 0.

Assume p; + p2 + ps = 0, then from (12) it follows p3 + ps = 1. Having
substituted the latter equality in (18), (19) and having excluded f3; + f32
we obtain 73 = 1/v/3. But in division (15) on (14) it is obtained y3 = 2/3.

If assume v; = 0, then from equalities (14), (15) it follows that v3 = 2/3.
But at this condition the stiff accuracy (25) can be executed, if y3 = 1.

So, the system (12)-(19), (23), (25) is inconsistent, but it appears the
joint system of equations to be consistent that differs from this system by
only in the right-hand side of equation (19), corresponding to differential
fey f, precisely, instead of § is §
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W2 +p) o+ B =3 (19)

By solution of system (12)—(18), (19), (23), (25) the following signifi-
cances of parameters were obtained: c

(28)

gl o1 w0 g

—3: .Pl—3, P2—12: P3— ] P4—4: -
. ) 1- 22 C 4 ) 20
n=1, 1= 3 ﬁ.‘."l‘—.ﬁ; ﬂsz-—--'ﬁv =

Thus, the strongly S-stable numerical method “almost” of third order is
constructed. For nonautonomous ODE systems ‘having zero differential of
third order fi, f and for autonomous ODE systems the order of the method
is equal to three. L .

In [1] the concept of stiff order of an one-step method was introduced.
The stiff order is a pair of integers (s, r), determining orders of asymptotic
behaviour of local truncation error I, at h — 0, Re(—hA) — 0o, when the
method is applied to equation (2). The one-step method has the stiff order
(s,r), if at at h — 0, Re(—hA) = 0o : ‘

Iy o R*HINT, (29)

Next we determine the stiff order of the method (11) with parameters
(28). Assuming in (6) e, = 0 we obtain its local truncation error

ln = hf(z, k) = g(ta) = gltns1) + %ﬁTB“(g(tn)é -9 +hp"B'g. (30)

From (30) expanding in Taylor-series 9(tns1), G, g’ it is possible to obtain
representation I, as series on h

l.= Zc,—h‘, S (31
i=1 : )

with 7
c1=¢'(ta)(-1+ "B 27! (22 - 7)), (32

where ¥= [711 11,73, 73}T' ) ’ oL
Substituting in (32) significances of factors (28) we obtain

_ 239"(tn)
T 812410828 + 5422 — 122+ 1

(5]

(33)°

Under |z| = 0, ¢; = O(z), and the stiff order of the proposed method is
equal (0, -1).
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3. Numerical results

The aim of this section is to demonstrate the advantage of a strongly S-
stable method in numerical solution” of stiff nonlinear ODE systems. For
comparison we consider the L-stable method of the third order (11) which
is not strongly S-stable. Following parameters of this method satisfying
equations (12)-(19) and (23) were obtained :
0 T T (R
a—'é'; Pl—§; p2"‘_4_1 pP3a= 1, p‘l——Zs
P O SR
71—0,_ =3 Par=1, faz=-3, on=-2
Let denote SST the method (11) with parameters (28) and LST the
method (11) with parameters (34). The local truncation errors lo of methods
SST and LST, when they apply to solving with h = 0.1 of the test problem
from [1] -

J=gt) +Ay-g®), pO=0, (35)
g(t) =10— (10 + t)e™", A€ R,

(34)

are demonstrated in Figure 1. One can see that the local truncation error
of the strongly S-stable method tends to zero for large —Ah, that is not so
for the L-stable method.

1g10(lo)

0..

.2 4

4 Figure 1. Local trunca-
tion errors Iy, when prob-

6 lem (35) solved by SST

' - lgo(—hA)  and LST methods: ——

3 2 -1 0 1 2 3 4 5 58T, — — LST

The comparison of these two methods was also made on the solution of
an ODE system, which is obtained by application of the Galerkin method
with piecewise linear basic functions to parabolic one-dimensional initial
boundary value problem with known exact solution [4]

CO\I!(T)%—T = I(OI%(W(T))% -a®(T), t>0, 0<z<L,
t=0:T =Ty, (36)
ar

6_.1::

z=0: I{'O'II(T)%- =Q(t), a=L:Ko¥(T) 0.
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In"probl_em (36) Q(t) is given in the form

Q) = Q—tiie“‘f""t%é(**'ft"; Qi>Q2>0, 0<t <ty @1

0

The functions ¥, I saii‘sfy t‘.he‘co,nditio‘n .
0<¥(0) =2'(0), ®(1)=1.
In this case ®(6) = In(6) + 1, () = 1/6.
o
300 J

200 A

Figure 2. Exact solution of a  100-
problem (36) at z = 0 and re-

sults of calculation by methods 0
SST, LLT: ---exact, SST,
——LST 010 015 020 025 030 ¢

The exact solution to problem (36), (37) is represented as series, which
complete expression is given in [4]. In calculations the infinite sum of series
is replaced by a final sum with a relative error 107, In problem (36) the
following significances of constants Co = 1, Ko = 1, L = 1, Q1 = 100,
Q; =1,t =1, ¢t = 8, To = 1 were taken. The exact solution to problem
(36) at the point = 0 (Exact) and corresponding numerical solutions
obtained by the SST and LST methods with the constant step b = 1072
are shown in Figure 2.

4. Conclusion

By using the test equation (2) the one-step strongly S-stable numerical
method is constructed. Numerical results show, the obtained method ex-
eeds in stability properties close to it in a structure L-stable method. It is
confirmation of the results of the papers [1], [2] about advantage of S-stable
and strongly S-stable methods in solution of stiff nonlinear problems in
comparison with methods which have not these stability properties.
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