
Bull. Nov. Comp.Center, Num.Anal., 13 (2005), 13–20
c© 2005 NCC Publisher

Numerical solution of 3D Navier–Stokes equations
on staggered grids∗

Y.L. Gurieva

Abstract. One algorithm to solve the 3D mixed boundary value problem for the
Navier–Stokes system of equations is presented in this paper. The 3D mixed finite
volume exponential type approximations on staggered grids are used. To solve the
resulting system, an algorithm based on a three-level iterative method is proposed.
Results of some numerical experiments demonstrating a numerical convergence are
given.

1. Problem statement

The paper deals with an algorithm of numerical solution to the stationary
nonlinear system of the Navier–Stokes equations:

L(~u)u+
∂p

∂x
= fx, L(~u)v +

∂p

∂y
= fy, L(~u)w +

∂p

∂z
= fz, div ~u = 0, (1)

L(~u) = Lc(~u)−
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, Lc(~u)s =

∂(us)
∂x

+
∂(vs)
∂y

+
∂(ws)

∂z
.

Here the unknowns are components of the velocity vector ~u = (u, v, w), and
p is pressure. The right-hand side functions fx, fy, fz are considered to be
known.

A boundary value problem for these equations is considered. The solu-
tion is sought for in a bounded domain Ω composed of parallelepipedoidal
blocks. The Dirichlet boundary conditions are set on the outer boundary
∂Ω of the domain. No boundary conditions are set for the pressure as those
for the velocities are sufficient for defining the pressure to within a constant.

2. Numerical approaches

The exponential type finite volume approach is applied for an approximation
of the equations of motion (for details, see [1]). Such an approximation is
performed on a parallelepipedoidal non-uniform grid with the grid nodes
(xi, yj , zk). In the sequel, the node will be referred to by its grid indices
(i, j, k). The coordinates of the nodes are defined via the values of given
mesh steps hx

i , hy
j , h

z
k by the following formulas:
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xi+1 = xi + hx
i , yj+1 = yj + hy

j , zk+1 = zk + hz
k,

i = 1, . . . , L− 1, j = 1, . . . ,M − 1, k = 1, . . . ,K − 1.

A difference in the used approximation as compared to that in [1] is in
the staggered grids. This approach is a way of rising the approximation
order. This means that four unknowns (the velocity components and the
pressure) are related to different geometrical points of the original paral-
lelepipedoidal non-uniform grid. The nodes with the coordinates (xi, yj , zk)

Unknowns and finite volumes
on staggered grids

correspond to p unknowns, and the mid-
edges (xi+1/2, yj , zk), (xi, yj+1/2, zk), and
(xi, yj , zk+1/2) correspond to u-, v-,
and w-velocity components, respectively.
In the figure, u-nodes are shown by
crosses, v-nodes –– by empty circles, and
p-nodes–– by the black circles.

These mid-edge points are middle
points of the corresponding finite vol-
umes (the Dirichlet–Voronoi cells) used
in the approximation. For example, for
a pressure node with the grid indices
(i, j, k), the Dirichlet–Voronoi cell is de-
fined by the relations

V p
i,j,k =

{
xi−1/2 < x < xi+1/2, yj−1/2 < y < yj+1/2, zk−1/2 < z < zk+1/2

}
.

As the four types of the grid nodes are considered, the four types of
the Dirichlet–Voronoi cells are built for the approximation. So, to addition
to a cell for the pressure, the cells V u

i+1/2,j,k, V v
i,j+1/2,k, V w

i,j,k+1/2 are used
for the finite volume approximation of the equations of motion. Two finite
volumes–– for u- and v-unknowns–– are shown in the figure.

In the case of non-staggered grids, the boundary ∂Ω of the domain Ω
coincides with the boundary of the discrete computational domain Ωh. In
the case of the staggered grids, only velocity unknowns lie on different parts
of the boundary ∂Ω. We define the computational domain Ωh in such a
way that ∂Ωh is situated away from ∂Ω, and a distance between them is
hx/2, hy/2, and hz/2 for the boundary parts parallel to x-, y-, and z-axes,
respectively. To illustrate this, the boundary ∂Ωh is shown in the figure (for
simplicity, this is a two-dimensional example) by the solid line as well as the
pressure grid lines, and the boundary ∂Ω is shown by the dashed line.

As the grid lines are referred to by the grid indices i = 1, . . . , L, j =
1, . . . ,M , k = 1, . . . ,K, the grid indexes for the unknowns (including the
unknowns on the boundary ∂Ω) will be the following:
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u : i = 1, . . . , L− 1, j = 2, . . . ,M − 1, k = 2, . . . ,K − 1,

v : i = 2, . . . , L− 1, j = 1, . . . ,M − 1, k = 2, . . . ,K − 1,

w : i = 1, . . . , L− 1, j = 1, . . . ,M − 1, k = 2, . . . ,K − 1,

p : i = 2, . . . , L− 1, j = 2, . . . ,M − 1, k = 2, . . . ,K − 1.

Taking the integral of any of the equations of motion (1) for different
functions s = u, s = v or s = w over the corresponding cell Vi,j,k, we obtain
the balance relation ∫

Si,j,k

Jnds =
∫

Vi,j,k

gs dV,

where Si,j,k is the surface of Vi,j,k, gs dependent on one of the right-hand
side functions and one of the pressure gradient components, and ~un, Jn =
∂s

∂n
+ ~uns are the velocity component and the flux density in the direction

of the outer normal to Si,j,k.
For example, the left-hand side of the balance relation for the flux, say,

over the cell surface perpendicular to x-axis after the approximation by
simple quadrature formulas has the following form: Ix,h

0,3 = SxJx,h
0,3 = ax

0,0s0−
a0,3s3. Here the indices 0 and 3 correspond to the points with x = xi and
x = xi+1, respectively, Sx = hy

jh
z
k/4, and the entries of the local balance

matrix are introduced as

ax
0,0 =

Sxu 0+3
2

1− c−1
0,3

= a0,3c0,3, ax
0,3 =

Sxu 0+3
2

c0,3 − 1
,

u 0+3
2

=
u0 + u3

2
, c0,3 = exp

(
hx

i u 0+3
2

)
with the element-by-element approach for obtaining the global matrix. In
the same manner the rest entries of the local balance matrix are defined.

The approximation is done with the help of an element-by-element ap-
proach when the local balance matrices and the local additives to the right-
hand side are computed for the grid elements. According to the staggered
grids, there are four types of the grid elements corresponding to the four
groups of unknowns. Note that u finite volume is simultaneously v grid
element and vice versa.

For the fixed velocity components which are the coefficients of (1), the
assembling procedure gives the global non-symmetric balance matrix and
the global right-hand side vector of the final system of linear equations.
The velocity global balance matrix is a 3 × 3 block-diagonal matrix. Each
block is a seven-diagonal matrix and corresponds to the unknowns of one
velocity component.

Some words should be said about taking into account the Dirichlet
boundary conditions.
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The Dirichlet boundary condition for the first velocity component u = C
can be easily implemented on the left x = x1+1/2 and the right x = xL−1/2

sides of the domain Ω as these boundaries run through the corresponding
nodes for unknowns (dash lines of ∂Ω run via crosses on the left and on the
right, see Figure 1). If this condition is given on the other outer boundaries,
e.g., on the boundary y = y1+1/2, then we have

ui,1+1/2,k ≡ (ui,1,k + ui,2,k)/2 = C,

and hence, ui,1,k = 2C − ui,2,k. Then by substituting this into the resulting
algebraic equation for the unknown ui,2,k of the form

a0
i,j,kui,j,k − a1

i,j,kui−1,j,k − a2
i,j,kui,j−1,k − a3

i,j,kui+1,j,k−
a4

i,j,kui,j+1,k − a5
i,j,kui,j,k−1 − a6

i,j,kui,j,k+1 = gi,j,k (2)

with j = 2, we arrive at

(a0
i,j,k + a2

i,j,k)ui,j,k − a1
i,j,kui−1,j,k − a3

i,j,kui+1,j,k − . . . = gi,j,k + 2Ca2
i,j,k

and as we have excluded the link with the unknown ui,1,k ≡ ui,j−1,k, set
a2

i,j,k = 0 after the presented modification of the diagonal coefficient and the
corresponding right-hand side of the unknown ui,j,k.

Similarly, such a condition for u-component is taken into account on
three other faces of the domain:

y = yM : a0
i,j,k = a0

i,j,k + a4
i,j,k, gi,j,k = gi,j,k + 2Ca4

i,j,k, a4
i,j,k = 0;

z = z1 : a0
i,j,k = a0

i,j,k + a5
i,j,k, gi,j,k = gi,j,k + 2Ca5

i,j,k, a5
i,j,k = 0;

z = zK : a0
i,j,k = a0

i,j,k + a6
i,j,k, gi,j,k = gi,j,k + 2Ca6

i,j,k, a6
i,j,k = 0.

So, the unknowns on the Dirichlet boundaries are excluded from the result-
ing algebraic system.

After the discretization, system (1) can be written down in a well-known
block form Ah(~u) B

Bt 0

 ~uh

ph

 =
fh

0

 , (3)

where B is a difference gradient operator and Bt is a difference divergence.
The difference divergence is defined at the pressure nodes via the known

values of the velocities and can be presented after integrating the corre-
sponding equation over the finite volume V p

i,j,k by the following formula:

divh ui,j,k =
(
sx(ui+1/2,j,k − ui−1/2,j,k) + sy(vi,j+1/2,k − vi,j−1/2,k) +

sz(wi,j,k+1/2 − wi,j,k−1/2)
)
/Vi,j,k.
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Here sx, sy, and sz are the areas of the cell surfaces perpendicular to x-, y-,
and z-directions, respectively, at the pressure nodes, and Vi,j,k is the volume
of the pressure cell.

Let us note that the dimension of the system is the following: Nu +Nv +
Nw unknowns for the velocities and Np for the pressure. In a general case,
Nu 6= Nv 6= Nw, each being defined by the number of the corresponding
mid-edges except those on the Dirichlet boundaries.

Several words about numeration and a storage scheme. Unknowns are
numerated as follows: firstly, Nu unknowns by natural ordering in x-, y-,
and z-directions, then Nv, Nw, and Np unknowns in the same order. As the
order of the final system is N×N , and every equation contains no more than
seven unknowns according to (2), the final matrix is a sparse one. To save
the storage space, the global matrix is stored in the form of a special row-
wise sparse format [4]. Only non-zero entries of the final matrix are stored.
Moreover, the representation Ah = D − L − U is used for storage, where
U is the upper triangular part of the matrix, and L is the lower triangular
part of the matrix. For each ith row of the matrix U , the number NE(i)
of the non-zero entries ai,j , j > i, is stored. For each non-zero entry, its
column number j and its value ai,j are stored in the arrays NEIB(NU) and
AU(NU), respectively, where NU is the total number of non-zero entries in
the matrix U . The matrix L is similarly stored.

Analysis of iterative algorithms to solve such a system is given in [2].
One of them is a widespread Uzawa method. This approach is used in the
presented algorithm and consists in the following two steps–– a velocity step
and a pressure step:

~u = (Ah)−1(f −Bp),

Ap ≡ Bt(Ah)−1Bp = Bt(Ah)−1f ≡ g.
(4)

The pressure step is solved (under fixed velocities) by a minimal residual
method ([5], p. 76–77). It has the following stages: given p0, compute
r0 = g−Ap0 = Bt(Ah)−1f −Bt(Ah)−1Bp0, then perform the computations

τn =
(Arn−1, rn−1)

(Arn−1, Arn−1)
,

pn = pn−1 + τnrn−1, rn = rn−1 − τnArn−1.

A system with the matrix Ah is a linearized system. The process to
compute the velocities is a low relaxation procedure with a parameter 0 <
ω < 1:

~um+1 = ω~̂um+1 + (1− ω)~um, m = 0, 1, . . .

Thus, A is Am = A(~um) in (4) and we have one more iterative level.
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A solution of the block linear non-symmetric system with the matrix
Ah is found by a preconditioned biconjugate (multi-step) residual method
(BiCR). In this algorithm, this procedure is applied three times–– two times
to compute r0, and one time inside the pressure minimal residual solver.

The pseudo-code for such an algorithm (4) is the following:

Set initial guesses ~u0, p0

~u = ~u0, p = p0

do while (evel > εvel)
compute Ah(~u), f
compute r0

do while (ep > εp)
solve p by (4)

end do
relaxation of ~u

end do

(5)

Here the values of εp, εvel are the given tolerances. The left sides of the
stopping criteria are some residual functions:

evel =
(∑

(~un − ~uexact)2∑
~u2

exact

)1/2

if the exact solution is known (the sum here means the sum of the vector
components), and

ep =
(

(rn, rn)
(BtL−1Bf, BtL−1Bf)

)1/2

,

where rn is a pressure residual on iteration number n.
So, this process is a three-level iterative procedure.

3. Numerical experiments

The aim of the experiments is to check the convergence of the algorithm pre-
sented and the truncation error for the tests with the given exact analytical
solution.

The results of the numerical experiments are presented in the tables
below. The values of the truncation errors δs = maxijk ‖s(xi, yj , zk)− sh

i,j,k‖
are given for different grid sizes.

The relaxation parameter ω = 1 was taken in all the experiments.

Test 1 has the following analytical velocity components with the property
div ~u = 0 under any constant pressure and zero volume force:



Numerical solution of 3D Navier–Stokes equations. . . 19

u = sin2 πx sinπy sin 2πz, v = sinπx sin2 πy sin 2πz,

w = −(sin 2πx sinπy + sin πx sin 2πy) sin2 πz.

The right-hand side functions fu, fv, fw are analytically calculated from
equations (1). The boundary conditions for the velocity components are
zero Dirichlet boundary conditions.

The boundary value problem is solved in a cube domain Ω = [0, 1]3 whose
computational domain has a size depending on the grid: Ωh = [−h/2, 1 +
h/2]3, where h = 1/N and N is a number of grid steps on the unit segment.
So, Ωh contains N + 1 steps.

The computational domain is discretized by the uniform grids with the
number of steps N = 5, 9, 17, 33.

The Stokes problem is considered, i.e., Lc(~u)s = 0 in (1). In this case, the
matrix Lh(~u) is symmetric and positive definite. No iterations on velocities
is done, and so the code gives a two-level iterative process.

The test has zero initial velocity guess. As for the pressure initial guess,
three its types were tested: p0 = 0, p0 = sinx, p0 = sinπx.

The tolerance for the minimal residual procedure is εp = 10−7. For the
BiMR procedure, the tolerance is 10−7, also.

In the tables below, the number of the minimal residual iterations nMR,
of the BiMR iterations nBiMR, and the values of the truncation errors for the
pressure and the velocities are given. In the second column, the first number
is for p0 = 0 and, in the parenthesis, there are the numbers of iterations for
p0 = sinx and p0 = sinπx.

In this test, δu = δv, so only δu is given in Table 1.

Table 1. The results of Test 1, zero pressure initial guess

N nMR nBiMR δp δu δw

5 8 (29, 17) 7 0.4858 0.2251 0.4502
8 11 (39, 27) 12 0.3387 0.08153 0.1382

16 16 (50, 39) 19 0.1234 0.02206 0.03425
32 21 (59, 51) 28 0.03756 0.005607 0.008738

Hence it follows that all the truncation errors of the velocities and the
pressure have order O(h2) on the uniform grids.

Test 2. Table 2 gives the results for the same exact solution as in Test 1
but for the Navier–Stokes problem. The test has zero initial guess for the
velocity components and the constant initial pressure guess: p0 = 10.

The number of non-linear velocity iterations equals five for all the runs.
As the number of nonlinear velocity iterations is greater than 1, the numbers
of the pressure iterations nMR on every nonlinear velocity step of the solution
process and the final truncation errors are given.
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Table 2. The results of Test 2

N δp δu δw nMR

4 0.5583 0.2266 0.4505 24, 23, 11, 4, 0
8 0.3899 0.08187 0.1386 34, 36, 21, 9, 2

16 0.1378 0.02215 0.03436 40, 47, 30, 16, 5
32 0.04104 0.005630 0.008769 45, 57, 38, 23, 10

It follows from this table that the truncation errors for the pressure and
velocity components have the errors of order O(h2) as in the previous test.

As one can see from the last table, the number of the pressure iterations
is the bottleneck of the presented approach. Its future development is in
some acceleration of the pressure solver.
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