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On second order finite-volume
approximations for 3D mixed
‘boundary value problems

Y.L. Gurieva and V.P. I'in *

The main topic of the paper is to present a way of constructing the second
order finite-voluime approximations on nonuniform grids to solve 3D mixed bound-
" ary value problems for diffusion equation with piecewise constant coefficients. For
obtaining the difference equations, a linear combination of the balance relations for
the normal flow densities over two boxes is approximated. A set of 19- and 27-point
schemes is described and investigated. Representation of the entries of the local bal-
ance matrix and assembling of the global balance matrix are given. Monotonicity
conditions are obtained in the form of inequalities for meshsteps. The numerical
solution error is estimated in the uniform and weighted Eucledian norms. The
theoretical approach is confirmed by the results of computational experiments.

1. Introduction

There are several approaches to obtain the finite difference equations. One
way to do this is to approximate the integral balance relations. The well-
known methods of such a kind include the integral identities by G.I. Marchuk
[1] and the integro-interpolated method by A.A. Samarski [2]. These meth-
ods were further developed by V.K. Sauliev [3] and 1.V. Fryazinov [4]. In
recent years a new type of similar approximations is under investigation: it
is-the so-called finite-volume (or “box”) method (see [5], for example).

The finite-volume technology including the-construction of high accu-
racy order finite-volume approximations has not been thoroughly investi-
gated yet. The results concerning such approximations are obtained for
two-dimensional Dirichlet boundary value problem on a nonuniform rectan-
gular grid [6]. The basic constructing principle is in the following: to raise up
the order of approximation of integro-balanced conservative law, one should
use a linear combination of the integral relations over two cells of different
size around the node under consideration. Optimization of the weight pa-
rameters of the combination and. application of special quadrature formulas
provide the second and even the third accuracy order on a nonuniform grid
for the diffusion equation with piecewise constant coefficients.

The aim of this paper is to obtain and generalize 2D results [7] for three-
dimensional mixed boundary value problems with piecewise constant coeffi-

*This work was supported by RFBR grant Ne96-01-01770
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cients of the differential equation: to obtain the second order approximations
for different grid stencils and variable grid steps, to investigate algebraic
properties of the resulting linear system and to estimate the truncation er-
rors. The construction of 19- and 27-point approximations providing the
symmetricity of the matrix of the final system of linear equations and the
truncation error O(h?) on a nonuniform grid is described in Section 2. In
particular, for the uniform grid and constant coefficients one of the suggested
19-point approximations coincides with the well-known Mikeladze scheme of
the order O(h*). Definition of the local balance matrices, presentation of
their elements, assembling of the global balance matrix and analysis of the
algebraic properties such as monotonicity conditions and eigenvalue bounds
of the final linear system are given in Section 3. In the next section error
estimates of the finite-volume solution in the uniform and weighted Eu-
clidean norms are presented. The numerical results for the model problems, * -
confirming the theoretical estimates, are given in Section 5.

2. Approximations on nonuniform grids

The following differential equation is under consideration: '

~V(AVa) = —(%(,\gg) - %(Ag—:—) - %(«\g—:) = flz,,2), (1)
(z,y,2) € Q, ' o

where {2 is a bounded three-dimensional computational domain with a piece-
wise constant medium function A.
The boundary conditions are given on the external surface ' = ryyre
in the form
du

ull‘l = g(:i:,y,z), 2eu + % I, =Y . (2)

where g, z, v are some known functions and 7 is an outerward normal to
"the boundary T.

On the surfaces of discontinuity of A (“internal boundaries”) the conju-
gate conditions hold: ‘ '

ou du
u[r+ = ull"_’ /\+~3—nlr+ = —E;I[‘_., (3)

where the signs “+, =" mean one-sided values of the function and its normal
derivative on the different sides of I

The external and internal boundaries are considered to be multi-connec-
ted, all their parts being parallel to the coordinate axes and planes,

It is assumed that the input data provide such a smoothness of solution
which is required in the following.
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Let a nonuniform mesh

Titt =Tithi, Yy =yi+hY, g = 2+ A
t=0,...,L+1, 7J=0,...,M+1, k=0,...,N+1,

be given in Q such that the boundary crosses the grid lines in the nodes
only. Later we omit the upper indexes for the meshsteps and will use the
notations h¥ = h;, hi = hj, hi = k.

Further considerations will be carried out for the elementary volumes
around one grid node. We introduce two kinds (“small” and “big ") of
elementary volumes (boxes) around the node (4,4, k):

Vik = {&i = hic1/2 < w <24 /2, y; - hi—1/2 <y < y; + h;/2,
Zk = hi1/2 < 2 < 2 4 by /2),

Viik = {zisy <2 < Titly Yj-1 SY S Yitty 2ko1 €2 < 2y )

Let us denote by Sijr and §ijk the surfaces of the small and big volumes.
Each of the volumes Vijk and V¢ is divided by the coordinate planes into
eight subvolumes V7, and Vigs n = 1,...,8. We denote the medium
constants in these subvolumes by ), and call the mutual boundaries of
the subvolumes around the node (4,J,k) the “inner” boundaries. Then the
union of all outer boundaries of the small subvolume gives the surface Sijk
and that of the big subvolume gives Sijk-

Later indices (3, j, k) are omitted for the sake of brevity.

To construct the difference equations, we approximate a linear combi-
nation over small and big boxes with a weight parameter p of two balance
relations which give the link between the surface integral of the normal flow
density and the volume integral of the source function:

Jspffws+u—¢{[fws=p/fdv+u-qn/fdm (4)
5 7 i v

where J" is a density flow in the direction of the outer normal with the
projections onto different coordinate axes given as J* = —Au®, J¥ = — \u¥,
J* = —Au? and f can be regarded as a source function. Each surface integral
in (4) can be presented as the sum of eight integrals corresponding to eight

subvolumes: .
=3 Jk
k=1

Here Jj. is a full flow through the surface of the k-th subvolume including the
integrals over the inner and outer parts of its boundary: J, = Jinn 4 JRu
Let us note that the integrals over the inner parts of all eight subvolumes
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mutually annulate because of the conjugate conditions (3). Particularly, for
the integrals over big and small subvolumes in the upper-north-east octant
of V and V (we call this octant number 3)

Vs = {z:i<z <21, 4 SY<Yigrn 2 <2< 2l
Vs ={z; <z <zi+hi/2,y; Sy<yj+hj/2 z <2< 2 + by )2},

one can write

Js=pla+(1-p)J;=

Viy1/2 Zk41/2 Tit1/2 Zk41/2
w)l3{p( f f uz_(ml'-{-'%’y’z) dydz + / j uy(zayj-f.%vz) dzdz +
Y5 Zk . z; Zk
Tit1/2¥i+1/2 Yi+12k+1
/"z(ﬂ'f',y, Zey 1) dzdy)'l'(l—P)(_/ f“w(-’”ﬁlay,z) dydz +
Ty : T
Tit) Tkl Tigl Vi41
‘/uy(mayj+1v7’) dl‘dz+f /ﬂz(-’ﬂ,y, 2k+1)d~”»dy)}- (5)
TP oz T Y

To get the difference relation we need two stages of approximation: approx-
imation of the integrals and that of the derivatives. The implementation of
" these procedures is done with the help of the central rectangular and the
trapezoidal quadrature formulas:

Zk+1

Aluije — tijker) = f J*(is Yjs 2)dz = e kg1 ja + Vi ka2
ZE

hy -
= 5 (i + Tiae) + ka2 (6)

Here the remainder terms 12 are given by the relations

h3 h3
"f’.'l,j,k+1[_2 = 2—;Jf,(x,-, yj:‘f’)n ¢¢2,j,k+1/2 = ~ﬁJ§g(¢nw,€”).

&,€" € [zk, 241

For the sake of brevity, we present the formulas only for the z-projection
of relation (5). We will show in detail the approximations of integrals and
‘derivatives to give the expression of the main remainder terms. _

* Below- the approximate values of the integrals with the main remainder
terms are given:
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Yi41/2 Zk41/2 .
u"(a:,-“/z,y,z)dydz
y; Zk
hkh_,' 1 3 3
=7z “f+1/2,1+1/4.k+1/4+@(hkhi”fﬁ/z.ﬂllfi.&+h‘=hj uf+y!{/2.52.k+1/4)’
& € [zk, 2k41/2), &2 € (Y5, Y172,

Yi+1 Zk+1
u*(ziy1,y, 2)dydz

yi  zk
1,3 3
= hehjufyrjyijapense + g (BRI /o g + ARRTUEL ¢ ki 2)»
E3 € [zkazk-l'l]! 64 € [y.?1 yj+1]’

i.e., the value of the integral is approximately equal to function value in the
middle of the face multiplied by the face area.

10 14
6 9
k+1
b+ |
4 ; 8
k 37 i+i
0 i+t i+l

Local node numbering

We use different approximations of the derivatives in the middle of the
faces which lead to 19- or 27-point schemes correspondingly. There are three
possibilities for approximate representation of the value u7,, .., J2,k+1/2 (see
Figure):

(u5 +uig)/2, (ug+ug)/2, (u5+uiy+ug+us)/4,

and seven possibilities for uf /.., /4 41/4 tO represent them through the

values of 4 in different vertices of subvolume V3, i.e., there are 21 difference
schemes for z-projection of (5). But several schemes give the same approxi-
mation, so there are a family of 16 different schemes approximating relation
(5) for one fixed parameter p. Only one of them is 19-point one. The order
of approximation for all of them is O(h?) - we shall show it on the examples
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below. Let us note that an arbitrary linear combination of these schemes
with sixteen coefficients also belongs to the family.

We will pay attention firstly to the 19-point approximation. To get it,
one should not use in the quadratures the corner nodes of V which have the
grid indices (1 £ 1,7 1,k £ 1).

To approximate z-projections of the flow at the middle points of the
faces we use their representation in the following form:

r
“f+1/2.j,k U i/2,541/2,k41)2
hih;
_ T ), TYz
= Uiy gejaker/a T T Uik, 4 /0 T
2
_Jd Ty Tyy
32 \Uik1/2660 T Ui1/2,60k4172) T

h’i 2 xrzz
39 (W1 2541748 T WiK1/2541/46)

xr xr
Uib1/2,+1k T Yit1/2,5,k41

hih;
—_ T kg wyz
= a4 /2k41/2 T T b1 2041 260 T
2
5o Ty zyy
g Wiz T U260 00 F
2

k¢, T2z Tzz
5 Wi /2,541/260 t U1 /2,541/260))

x &
Uit 41,k T Uik Gk

hih;
— 9, J, Tyz
= /2412 T T Y26 T
2
1 Iyy 2 TYY
_é—(ui'i'l,&s.k + uf+1.€17.k+l) +

2
3 (U /28 T Ui+ 1/2.00):
6,67 € (U5, Yir1/2)s  €5.88: 80 € [2ky 2ktr2)s
162,616,617 € (Y5, ¥i41)s 10,613,614, €15, 628, Eo € 2k, 2k41]-

So, z-projection of relation (5) with omitted remainder terms in the
brackets can be written as:

__ﬁ ~ P (u; _— uix+1/2,j+l,k + "f+1/2.j.k+1 ) hihy
X3 2 \Mi+1/2,5.k 2 1

1-p
T(“fﬂ.jﬂ,k + Uiy k1 ) b : (7)
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To improve the error estimate when approximating, we do two special”
tricks: firstly, we approximate also the integrals over the inner surfaces of
the small box (i.e., approximate the full flow over the small box bound-
ary) and include the remainder terms in the full error whereas annulate the
quadrature terms due to the conjugate conditions. Secondly, we change the
sign of the integrals over the inner boundary parts of the big box and it does
not influence equation (4) because their sum is equal to zero also due to the
conjugate conditions, but we use the corresponding remainder terms from
the neighbouring box (they have the opposite sign) to improve the error.

The truncation error in (7) is O(h*): the second order of the remainder
terms in the brackets is multiplied by the factor hjhj. To get the coefficients
in the corresponding grid equation of order O(h=?), what is conventional for
difference schemes, one should multiply the coefficients by the factor 1/h%
and have the error order O(h) here. To obtain here the desired order O(h?),
which is O(h®) when no scaling is applied, one should recall the remark
above: when dealing with the integrals over the inner surfaces of the boxes,
the remainder terms will have the same values of the multipliers but with
the opposite 31gns and the values of different derivatives of the third order
will have index i instead of i 4+ 1/2 or ¢ + 1.

To approximate the derwatwes, we add to the big box part the terms
from the inner boundary uf,, , , and u;;k+1 and approximate the whole
sum with the help of the trapezium formula (6) (we use £ in relevant the
sence like above):

r r xr xr
~ (U141 F U1 k1 + U 41k F U5 kg1
— oUiitlk = Uit1,j+1k + Ui jk+1 — Yigl,jk+1
= h

+

2
1 TII‘

6 (5% 1k + U 5k41)- (7.1)

To approximate the derivatives for the small box, we use the central rect-
angular formula for all three derivatives. Doing so, one can write

T T
—(waag + Yir1/2541k T ui+1/2,j.k+1)
t'+1/'2,_7,k . 9
1 1
= TJ(“"’f"""’*’+1J-k+'2'(’“f-i+1.k-“i+1-.j+1.k+ua',j.k+1-ua+1,j.k+1)) -
t

h12 :L‘.'L‘.'L 1 T T
o (V5 + 5 (s + U )). (7.2)

Now we need to attain one higher order of accuracy. Writing out the
sum of the coefficients for different derivatives of the remainder terms after
their substituting into (7) and setting the sum equal to zero to annulate
these terms, one can get the following equation for the weight parameter p:
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~p/96+ (1 -p)/6 =0.

From it follows that the desired order O(h®) in the brackets of (7) is obtained
for p = 16/17.
So, relation (7) takes after the approximation the final difference form:

JE P 1 h 'hk
3\3; A ﬁ(ui.j,k"uﬁl,j,k‘l‘5('Ur:',j+l,k—“i+1,j+1.k+ui,j,k+1“Ui+l,j,k+1))—Ji'— +

1-p

(Wi k — Yirngnk Wik — UirLike )ik, (8)

1

and after the similar computations for y- and z-projections of the flow the
full left-hand side of the balance for the subvolume number 3 is given by the
relation

P
Js & 2(riki(wijh—tir1,ik) + rikg (k=i ge1k) + rije(Uiik—Uiske1)) +
8
15
(1 - fép) ("J'ki("i.jﬂ.k = Uigr b1k T Wightl = Vitnjke) +
riki (Uit1 ik — Wit 41k F Lkt = igrlks1) +

ik (Uigi gk — igd ka1 + Uij41k = ui.j+1,k+l))a (9)
1= .
nm 3 h;

After similar transformations with the balances for the rest subvolumes
of V and V and after gathering together the coefficients of the stencil points,
one can write the matrix form of the balance relation:

(Aun) = aouo — 3 @525 = fo, (10)
s€ES

where ug = ujx and S means the 19-point stencil (it is full 27-point stencil
without eight corner nodes) around the node (i, j,k). As for the approxi-
mation of the volume integrals in the right-hand side of (4), by applying the
necessary order of interpolation of the function f, the corresponding error
can be done arbitrarily small without any changes in the matrix of system
(10). Here we use the following notation for the approximate value of the
right-hand side integrals:

» f fdV +(1-p) / FAV = figh + ¥, (11)
Viik Vi
fise = fhwviie,  vigk = (hi + hic1)(hy + hj—1) (e + he—1)/8.
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We consider also one 27-point scheme, where the analogues of (7), (8)
and (9) are the following:

JE P . z z hjhi
N Z(“i+1/2.j.k+“i+1/2.j,k+l/2+ui+1/2,j+1/2.k+1/2+"‘i+1/2,j+1/2,k) i T
1-p
4 ("‘f+1,j,k + "-?+1.j+1.k + "f+1,j+1,k+1 + “f+1,j,k+1)hjhka (7a)

|
2

p : 1
by T (u.—,,-,k — Lk T o (Uigk = Uit,jk + Yigker — Uiy1,jk+1) +
3 4h; 2

Z(“i,j.k — Uig1,jk F Ui k41 — Uikl jk+1 F

Ui j41,k+1 = Uikl il k41 + Ui el k — Uit1,j4+1,k) T
hih,
4

§(u£.j+1,k = U141,k + Uijk — ‘ui+1.j,k)) +

1-p
o Wi = UikLik + ULk = Bkt
13

Ui j41k+1 = Wit1,j41,k+1 F Ui e+t — Uig1,jhs1)Rhj, (8a)

3 Tk (B(’ui,j.k = Uit1,5,k) + C(tije+1 — Uit jk41 +
Ui itk = Uit j+1,k) + D(%ijp1he1 = ui+l,j+l,k+1)) +
Tikj (B(U.',j,k — i j41,k) F C(Ui k41 = Uijd1,k41 +
Uig1,5k = Uit1,541,k) + D(Uig1,5,k+1 — ui+1,j+1,k+1)) +
rijk(B(ui,j,k = Ui jk41) + Cije1 ke — Uij+1,k+1 +
Uig1, ik = Yitl,jk+1) + D(Uir1 41k — u:‘+1,j+1.k+1))- (9a)
Here we use the following notations:

32 -23p 32 - 29p 32 -31p
B=——— = e——— = —
, 64 ' ¢ 64 ' D 64 (12)
The analogue of the matrix form of the difference equation differs from (10)
only in the set S: in this case S is full 27-point stencil around the node
(4,4, k). '
It follows from (12) that for p = 32/31 the constant D = 0, i.e., 27-point
scheme turns into 19-point one.
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3. Balance matrices

In this section we consider the procedure of computing the coefficients of
system (10) using the volume-by-volume approach. Let us define in the
subvolume V3 the local solution and the local flow vectors (see Figure for
the node numbering) :

uz = {u}, Ja={JP}, meM=1{0,34,68,9,10,14}.

Here J* is the flow around the m-th corner of the subvolume and JJ is
defined with the help of (5).
Each of J3* is a linear form of u3*:

' i
J3 = Z QU
leM

Then we can write down the vector equation for the volume in the following
form:
J3 = A3u31 (13)

where Aj is a square matrix of the eighth order

ap0 Go3 .-- Q10 Q0,14

| @30 @33 ... a3io0 043,14

A3 T [ T
aj0,0 €103 --- @jo,10 €10,14
a14,0 @143 ... Q14,10 0G14,14

with its entries given by the following formulas (with taking into account
the symmetricity of the matrix) in the case of the 27-point approximation:

ao,0 = B(rjki + rikj + rijx) = aii,
ao3 = Brjki — C(rikj + rijk) = 648 = 069 = 10,14,
a0 = Brikj — C(rjki + rijk) = 038 = @10 = 09,14,
age = Brijx — C(rjri + f‘;‘kj) = @39 = G4,10 = as,14;,
agg = —Drijp + C(rjki + rikj) = @34 = as,14 = ag,10,
ag9 = —Drigj + C(rjri + rijk) = aap = 08,10 = 4,14,
ao,10 = —Drjgi + C(rinj + 7ijk) = @314 = ag9 = a4,
ap14 = D("ijk + ki + Tikj) = @310 = @8 = aq,9,
where r,,,; is defined by (9) and the values of B, C, D ~ by (12). In the

case of the 19-point approximation the matrix entries are calculated via the
same formulas but with
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B=p/8, C=1-15p/16, D =0.

From here it follows that for p = 16/15 this scheme turns into 7-point one
since C' = 0.

Till now the boundary conditions have not been taken into account yet.
The example below will clear the situation with the third type boundary
conditions. Let the left face of the volume V'3 have the boundary conditions
of the third type (2) with 2 # 0. Then the integrals in (4) over this face do
not vanish and equation (5) has additional integrals

Yig41/2 Zk41/2 Vil Zk41
P f ] u*(2i,y, z) dydz + (1 - p) f j u* (21, y, 2) dydz.
Y5 Zk Y Zk

We approximate these integrals similarly to the approximation of the rest
integrals in (5) without increasing of the total truncation error. In doing so,
relation (7) will have the following additive:

P Uiittk t Uik \ hihe  1-p
'5("ﬁj.k+ TR T 77 Wit ikn)hihe,

and (7a) will have
P . hihyg
‘Z("ﬁj.k U kgs2 F Ui 2 k12 + “-‘x,j+1/2.k)_34_ -
1-p
T(“ﬁj,k F Uk U kg + U k) P

In order to get the sum of z-derivatives of u for the use of the trapez-
ium formula to approximate the big box derivatives here, we add the inner
boundary derivatives uf,, ., ; and Uit1,,k+1 and the terms which are equal
to zero due to the boundary conditions and have:

x xr xr x
Uitttk F Uy k1 — Yiprh = Ui jher T
2(u§‘j+1,k — &U; j+1.k + 71,J+1,k) + 2{“{J,k+1 = &Uji jk+1 + "J’:,J,k-f-l)-

After the approximations we have the difference equation (8) and its addi-
tion:

ph;h; 1
é (—aeui,j,k + Vi + 5(-39'Ui,j+l.k + Vij1k — BUG k41 +-'Yi,j,k+1))_+

(1~ Phjhe(=2ui ji1k + Yijb1,6 — 2Uijae1 + Yijasr),
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and in the 27-point case

phjhi

1
16 (“3~°u£,j.k + Yigk + o (=2 ik + Yijk — 2Uijk41 + Yigk+1) +

2
1
Z(—awi,j,k + ik — Ui jk+1 + Vigk+l —

2U; j41,k41 F Vil k+1 — 2Uij1kt 'Yi.j+l.k) +
1
5(-3%:.]'.&- + Yijk — 2Uij41k T+ 7i.j+1.k)) %

(1 = p)hjhi

2 (—w“i,j.k + Vi k — @Uij41k+1 T VigHLEHL T

Ui 41,k T Vi g+1,k — 2Uijk+1 + 'Yi,j,k+1)-

This gives the additions into the corresponding matrix entries in (13)
and the corresponding right-hand sides of equation (10).

Similarly, one can introduce for each subvolume Vj corresponding vectors
w = {u},Ji = {J/"} and write down the relation Ji = Ay, where the
matrix A; can be called a local balance matrix.

Just as in the finite element technology, the final matrix of the system
of linear equations (the global balance matrix) is assembled from eight local
matrices: .

A= ;E: ;P,“A,P,.

Each A; is a square 8 X 8-matrix, A/ is an “extended” local N x N-matrix
with the same nonzero entries as in A;, N is the total number of nodes
and P, is extending 8 x N-matrix with only eight nonzero unit entries. The
matrix P, is defined by the following transformation: u = P and is an
orthogonal one, i.e., P! = P}.

The final system of equations has the form

Au= f. (14)

The Dirichlet conditions are taken into account by the direct elimination
of the unknowns, corresponding to the Dirichlet nodes, from the equations
for the neighbours of such nodes.

The coefficients (an,)"* from system (10) for the node (i, j, k), i.e., the
entries of the global balance matrix A, are calculated via the entries an
of the eight local balance matrices A; of the subvolumes, which have the
node (%, j, k) as their vertex, in the case of 27-point scheme by the following
formulas:
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it = o+ a4
“"s E;u_”= +a§—11k ' +“ﬁfllok - + '141134 léj )
o = i e el
of* = agy + a3 1"k‘*'“:sﬂlcol*' g
af* = affs +ait +agi T + aa,g“'*, '
a!,’" - ag-‘llgk_*_al-lgk l,
ag* = afs+adts ',
ag* = ais +alis", | . )
oy = ﬂg'fo‘*'“a il B
ot = afe 7 + a0,
atljzk = .azjglk +a|8791j-1k’ |
azljsk = ag—slj—lk‘
"3‘1’14]’c = ag’;‘,
atljsk = a?s_lldak!
oy = aZ’S”‘-

Here i, 7, k are the mdnces of the low left node of the subvolume number 3,
i.e., the coefficients a‘«’q" are these of the local balance matrix Az. The rest
coefﬁments are calculated via the same formulas but with replacing )«3 = Aijk
by the medium constant from the corresponding subvolume.

As for the 19-point scheme, the assembling formulas are the same except
of the last line: in this case 3‘114 = 0.

Let us remark that for the uniform gnd Aijg=1land p= 32/31 the co-
efficients of equation (14) are proportional to these of the famous Mikeladze
scheme [8] of the fourth order of accuracy. '

One can easily check that under the conditions

o < huheor (35 + ) K (5 - )Sﬁ "

h? h? hihi_1 h,_,‘h?'_l
1 1 ;1 1\ _ .
< hihi 1 l—= 4+ —= 2 <
@ < hihy .l(hi + hﬁ)’ e (hkhk-l * hjh'j—l) - [.3' : (16)
: , 1 1 ;01 1 '
<hihiail=+ = h?: - e
= Rl 1(h?+hi)’ 1\ h; ihioq hkhk—l) Sﬁ"

the matrix of Ly, in the 27-point scheme is a Stieltjes one, i.e., it is symmetric
and has the diagonal dominance and nonnegative vaiues of ai. Here the
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values of o and 3 are the following:

_32-31p 5= 32 -23p
T 32-29p’ T 32-29p°

As for such conditions in 19-point case, they can be written out from
the conditions that off-diagonal matrix entries are greater than zero, i.e.,
a3 > 0, ay > 0, ag > 0 but their form is too cumbersome to give it here. It
is easy to check that for the optimal parameter p = 16/17 there does not
exist any monotone scheme of the second order.

4. FError estimates

In this section the error of numerical solution
zn = {zijk = w(@i, Y5, 21) — uijn}

is investigated in the uniform and weighted Eucledian norms

1/2
llzhllm;“}ﬁf{ize,-kl}, lzulln = (Hzw, 20)"/? = (Zwmzuk) '
ik

Wijk = (h,‘ + h,‘_l)(hj + h_,;;)(hk +hr_1)/8, H= dia.g{ngk},'

where indexes (i, j, k) correspond to all the grid points in QT';, i.e.-, only
the Dirichlet boundary nodes are excluded.
The error vector satisfies the equation

Azp = iy, (17)

where A is a matrix representing the discrete approximation (10) of the orig-
inal operator of the boundary value problem (1), (2), (3) with its coefficients
given by (15). Total error of approximation ¥, consists of the errors of the
approximations of the flows (see (7.1) and (7.2)) and the approximation of
the right-hand side of (4) (see (11)).

To estimate the uniform norm ||z3{|.c, We suppose that there exists a
majorant function %(z,y, z) with the following properties [9]:

a) the relation
-V(AVa) = 7(31 y,2) 21 (18)

is satisfied in  except the points on the “inner boundary where the
conjugate condition for # is valid;
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b) the boundary conditions

_ - _, ou =
“|F1=9($,yaz)>01 m+%r2:720) (19)
are satisfied on the external boundary of the computational domain

Q; _ '
c) the function % is positive and bounded in 0 = QUT and has some

smoothness properties at the internal points of  which are sufficient
for validity of the following relation:

AT =Fa+ 0 Bp={P= O(hé),e > 0}. (20)

Remark. The latter condition means, firstly, that the function & can have
- weaker smoothness properties than u: (e.g., # < 2 in (20)) and, secondly,
that for a small enough meshsize h < ho) the following inequality is true:

Aptp > aep, ep={1}, a>0. (21)

Theorem 1. Let the solution u of the boundary value problem (1), (2),
(3) and the function f have bounded mized derivatives of the fourth and
the second order correspondingly at the internal points of the computational
domain Q. Let there ezist a bounded function @ with properties (18)-(21)
and entries of the matriz A, satisfy the monotonicity condition (16). Then
the error vector zy for p = 16/17 has the uniform norm

“Zh”oo < ||¢h[lm0!|fhl|w — O(h‘z)

The proof of this result can be easily established with the help of the
inequality [|24]joc < [|A™"[loo|9hlloo and the consequence of the inequality
(21) for the monotone matrices (see [10], for example): [|A™Y| < |[@hl]oo/ex.
This theorem is nontrivial, if a set of the majorant functions @ is not empty.

. Following the results for two-dimensional case presented in [9], we con-
struct below two examples of the majorant functions for 3D Dirichlet bound-
ary value problems.

Let a domain € consist of the strips

Qk=$k_1<$<$k, k=112#"'1m:

in which the coefficient A from the original equation (1) has the constant
value Ax. Let

D={z,y,2:a1 <z <b;, ay<y<hby, asz < z < b}

be a described around parallelepiped. Then a function is defined
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by — az\? by + a2
w(z,y,2) = [(-"—2—) ——_(y— —5_) + U(v’c)]‘
where v(z) is a piecewise linear functiofl which in the subdomain Qj has the
form '
v(z) = vk(ra:) =(z-cx)/My TED, k=1,....m

The values of ci are defined from the continuity conditions by the formulas
1 =Tg=0a1, Ckp=2DTh-1— {xk;l - ck—l)/\k/Ak—h- k= 2, veey M

which provide the conjugate conditions (3) for the function @.

The second example presents the boundary value problem with the self-
intersected inner plane boundaries £ = Zo, ¥ = Yo, 2 = zo which divide the
computational domain Q into its subdomains §2; with the constant values
of the coefficient A = A. Here (2o, Yo, 20) is some internal point of Q. In
this case the majorant function @ with necessary properties has the form

u= %[Rz(l+%) —(z-20)% - (y-w) - (z—20)*+

(z - z0)(y — %0) (2 - zo)/Ak], (2,9,2) € U,

where Ao = min A; and R is maximum distance between the point (o, yo, 20)

and the external boundary of .
The estimation of ||zp||z can be carried out by analysing the spectral
properties of the symmetrized matrix

A=HA,=A",

under tﬁe_ assumption that the monotone conditions hold. Since 4 is a
Stiltjies matrix in this case, it can be presented by the sum

Z=J""-l3'|"4h

where. A; is some symmetric positive semi-definite matrix and Ao corre-
sponds to the “usual” 7-point approximation of the original mixed boundary
value problem on the same nonuniform grid but for the constant coefficient
A=1: '

Ao = m{iln AMz,y,2), Ap= mu}l a3% xo Ao,

ijk€
meM

(Aow)ijk = —Gijkti-1,jk — Git1jkUit1,5k — OijkUij—1k — Dij41kUi 41k —

CijkUijk—1 — Cijk+1%i k41 + dijki gk,
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4hi-—l ’ ik = 4hj—l y  Cijk 4hk—l',
dijk = @ijk + @iprjk + bijk + bijpak + Cijk + Cijisr-

agk = hjhk b h;hy h,'h_,'

In this case the additional conditions .are imposed on the coefficients of the.
system to isolate them from zero: ‘ '

min a* > § > 0,
ijkeN .
meM

where, fonj example,
6= (1-9)B(h; + hj—1)(hx + he-1) /hiy, 0<y< 1,

i.e., conditions (16) turn into (16') by changing g to 87.
The estimations for the eigenvalues u of such a matrix are well-known
(see [9], for example), so we obtain the inequalities

h3
p(A) 2 p(Ao) > Cr=,

where k and & mean the maximal and minimal meshsizes correspondingiy,
and constant C does not depend on h. From equation (17) and by simple
transformations we get ‘

—-1

lznller = (H AR ¥n, A5 94) % < Aoz (A ") Amax(H) |94l 5«

Now the spectral properties of the matrices A, H permit us to establish the
following ' ' '

Theorem 2. Let a solution of the boundary value problem (1), (2), (3)
and function f have bounded mized derivatives at the internal points of the
compulational domain S of the fourth and the second order, correspondingly.
Let monotonicity conditions (16') be satisfied. Then the inequality '

o ol O
Ml <2 () Gy

where C does not depend on h, is valid.

Let us note that to establish the estimate of the weighted Euclidean norm
of the error, even the existence of any majorant function is not required.
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5. Numerical experiments ‘,
In order to demonstrate the validity of the given estimations and".‘ efficiency
of the constructed approximations, we present the results of numerical ex-
periments for two model problems. ‘

Solution of the algebraic systems was made by the iterative incomplete
factorization method [10] with conjugate gradient acceleration and stop cri-
terion

7" ll2/11°ll2 < € = 1078,

where n is the number of iteration.

Problem 1. The Laplace equation (1) with A = 1, f = 0 is solved in
the unit square with the Dirichlet boundary conditions which correspond to
two kinds of harmonic polynomials:

u(z,y,2) = 2> - 3zy?, u(z,y,2) = z* - 62%y? + 4.

The numerical solutions were obtained using 27-point stensil on two sets of
embedded grids: uniform and nonuniform. The uniform grids were cubic
ones with the number of nodes L = 11,21, 41 in each coordinate direction.
The second grid set has the same constant meshsteps in z-direction and
hf = hY = hog',i=1,..., L with ¢ = 0.95.

Tables 1, 2 give the mean square errors & = ||u — u"||3/L? of numerical
solutions for different weight parameters.

In Table 1 we present the errors é for the problem with the exact solution
in the form of the fourth order polynomial for the uniform grid.

Table 1. Error é on the uniform grids

L 11 21 11
P
1 0.00044 0.00012 0.00030
16/17 0.00088 0.00023 0.000060
32/31 2.8.107° 1.5.107° 1.6-107°

It is easy to see that two approximations have the error O(h?). For this
test with the Mikeladze parameter p = 32/31 we get the exact solution,
i.e., § &~ e. And for the exact solution in the form of the cubic harmonic
polynomial all these schemes provide § = ¢ in accordance with theoretical
estimates. It is interesting to note that in this example the scheme with the
optimal parameter p = 16/17 (in the sense of the estimate on nonuniform
grid) is the worst scheme experimentally.

Table 2 presents the similar tests but on the nonuniform grids. The
upper error value in each cell of the table corresponds to the cubic and the
low value - to the fourth order polynomial.
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Table 2. Error 4 on the nonuniform grids

L
11 21 41
p
1 0.000057 | 0.000031 | 0.000017

0.00067 0.00025 0.00011

16/17 10~¢ 1078 107*
0.00091 0.00027 0.000092

32/31 0.00011 0.000061 | 0.000033
0.00044 0.00023 0.00012
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One can make several conclusions from these data.

The unique scheme of the second order on the nonuniform grid is that
corresponding to p = 16/17. Firstly, the errors for the test with the cubic
solution only in this case give § &~ ¢. Secondly, for harmonic polynomial of
the fourth order the error dependence on the meshsize is close to O(h?).

The error dependence on A both for p =1 and p = 32/31 is close to the
linear one. It is intertesting to mention that the best scheme on the uniform
grid — the scheme with p = 32/31 - is the worst in this case.

Problem 2. The Poisson equation (1) with A =1, and two right-hand
sides

f=0, f=3r*sin(rz)sin(ry)sin(rz)

is solved in the unit square on the uniforn grids with Dirichlet boundary
conditions which provide the exact solution in the form

u(z,y, z) = sin(rz) sin(ry)[sh(7v2z)/ sh(rv/2) + p},

where p = 0 for f =0 and p = sin(rz) for f # 0.
Table 3 presents the errors of the test results for 27-point scheme. The
upper value in each cell corresponds to f =0 and the low value - to f # 0.

Table 3. Error on the uniform grids

L 11° 21° 41°
p

1 0.00062 0.00016 0.000043
0.0016 0.60047 0.00013
16/17 0.0012 0.00033 0.000085
0.0035 0.00097 0.00025
32/31 L6101 1.0.107° 410"
14-1071 9.9.107° 6.2 1077

So, the error is O(h?) for the first two schemes and O(h?) for parameter
p=32/31.
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The experiments have shown that the monotonicity conditions (16) have
appeared to be a too strong restriction to use the incomplete factorization
method (e.g., for the mesh parameter ¢ = 0.9 the iterative process diverges),
and the question of solvability of the system in this case is still open.

References

[1] G.I. Marchuk, Methods of Computatmna!Mathemat;cs, Moscow, Nauka, 1980
(in Russian).

[2) A.A. Samarsky, Introduction into the Theory of Differenice Schemes, Moscow,
' Nauka, 1971 (in Russian).

[3] V.K. Sauliev, On one method of the autom:atization of solving of the boundary
value problems using the high speed calculating machines, DAN SSSR, 44,
No. 3, 1962, 497-500 (in Russian).

(4] 1.V. Fryazinov, L.A. Maslyankina, On diﬂ'erenoe'appmximation of elliptic and
parabolic equations on nonregular grid, Prepnnt AN SSSR, IPM, No. 49,
Moscow, 1977 (in Russian).

[5] A.F. Franz, G.A. Franz, S. Selberherr, C. nghofe, P. Markovich, Finite
boxes — a generalization of the finite-difference method suitable for semicon-
ductor device simulation, IEEE Trans. on El. Dev., 30, No. 9, 1983, 1070-1081.

(6] V.P. I'in, High accuracy balance difference schemes on nonuniform rectan-
gular grids, Preprint No. 1031, Comp. Center SD RAN, Novosibirsk, 1994 -
(in Russian).

[7] Y.L. Gurieva, V.P. I'in, On the finite volume technology for mixed boundary
value problems, AMCA-95 Proceedings, Novosibirsk, 1995, 650-655.

(8] V.P.1V’in, Numerical Methods of Electrophysics, Moscow, Nauka, 1985 (in Rus-
sian).

[9) V.P. I'in, Balance high order approximations for Poisson equation, Siberian
Mathematical Journal, Novosibirsk, 37, No. 1, 1996, 151-169 (in Russian).

[10] V.P. IV'in, Iterative Incomplete Factorization Methads; Singapore, World Sci-
entific Publishing Co., 1992.



