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The timed barbed bisimulation is decidable for
timed transition systems with invariants∗

N. S. Gribovskaya

Abstract. Timed transition systems are a widely studied model for real-time
systems. In this work we deal with an extension of this model, timed transition
systems with invariants. The intention of the paper is to show applicability of
the general categorical framework of open maps in order to treat the decidability
question of the timed barbed bisimulation in the setting of the model being studied.

In particular, we define a category of timed transition systems with invariants,
whose morphisms are to be considered as simulations of the behavior of one system
by the other with an accuracy of τ -actions, and an accompanying (sub)category of
path objects, for which the corresponding notions of open maps are developed. We
then use the open maps framework to obtain the abstract bisimilarity and the path
bisimilarity which are established to coincide with the timed barbed bisimulation.
Finally, we consider the decidability question of the bisimulation studied in the
setting of finite timed transition systems with invariants.

1. Introduction

Timed automata are a useful tool for modeling real-time systems. A theory
of timed automata and timed languages has emerged in the past 15 years,
leading to generalizations of the classical results for non-timed automata on
regular expressions, algebraic characterizations and logics. The paper [3]
accounts for an interesting discussion on challenges that remain in order to
provide good generalizations of some important results from the classical
automata theory. The central component of the theory of timed automata
is timed versions of equivalences on concurrent real-time processes. Loosely
speaking, for two processes to be timed equivalent they should agree not
only on what actions they can perform, but on when these actions are per-
formable.

In an attempt to explain and unify apparent differences within the ex-
tensive amount of research in the field of untimed behavioural equivalences,
several category-theoretic approaches to the matter appeared. One of them
was initiated by Joyal, Nielsen, and Winskel in [15] where they have pro-
posed abstract ways of capturing the notion of bisimulation through open
maps based bisimilarity and its logical counterpart — path bisimilarity. As
shown in [15, 19, 20], bisimilarity induced by open maps makes possible a
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uniform definition of the numerous suggested behavioural equivalences (e.g.,
trace and testing equivalences, bisimulation, barbed and weak bisimulation,
etc.) across a wide range of models of concurrency (e.g., transition sys-
tems, event structures, Petri nets, higher dimensional automata, etc.). This
approach was successfully generalized to timed automata (see [13], [24]),
represented by the most popular and well-studied model — the timed tran-
sition systems. In the paper, we deal with an extension of this model, timed
transition systems with invariants on the states, and try to extended the ex-
isting category-theoretic results to a timed variant of Milner and Sangiorgi’s
barbed bisimulation. The goal of the paper is to provide open maps and
logical characterizations of bisimulation studied and to use them in order
to treat the decidability question of this bisimilarity in the setting of finite
timed transition systems with invariants.

Milner and Sangiorgi’s barbed bisimilarity [18] is a widely used concur-
rency semantics for process algebras that include the silent step τ . It differs
from Milner’s (strong) bisimulation in the following: ‘visible’ and ‘invisi-
ble’ actions are distinguished; transitions labelled by ‘invisible’ actions are
required to be bisimulated; only the existence of a transition labelled by
a ‘visible’ action has to be matched. An important feature of the barbed
bisimulation is that it can be successfully employed when the operational
semantics of a process algebra is defined by a reduction relation (i.e., no
labels over transitions). It allows one to recover from such a formulation
the well-known bisimulation-based equivalences which are defined on the
labelled transition system. Another advantage of the barbed bisimulation
semantics is that it can be defined uniformally in different processes calculi
(e.g., CCS, π-calculus, higher order π-calculus). See [18] for a clear account
on all strong points of the barbed bisimilarity. In [6] several timed variants
of the barbed bisimulation have been introduced and their distinguishing
power over processes have been studied in the context of π-calculus with
locations, types and timers.

The rest of the paper is organized as follows. The basic notions and
notations related to timed transition systems with invariants and their be-
haviour are introduced in Section 2. A definition of the timed version of
Milner and Sangiorgi’s barbed bisimulation is given in Section 3. In Sec-
tion 4, we give the basic elements of the category theory and provide the
category-theoretic characterization for the studied bisimulation. In the next
section, we show how the bisimulation under consideration can be captured
by another category-theoretic bisimilarity — path-bisimilarity. The decid-
ability question of the timed barbed bisimulation in the setting of finite
transition systems with invariants is treated in Section 6. Section 7 contains
conclusion and some remarks on future work.
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2. Timed transition systems with invariants

In this section, we define some basic notions concerning the structure and
behaviour of timed transition systems with invariants [13].

Before doing so, it will be convenient to introduce some auxiliary notions
and notations. Let R be the set of non-negative reals. Also, let Σ be a finite
alphabet of actions without the silent action τ , and Στ = Σ ∪ {τ}. A timed
word over Στ is a finite sequence of pairs α = (σ1, d1) . . . (σn, dn) such that
σi ∈ Στ , di ∈ R, for all 1 ≤ i ≤ n, and di < di+1 for all 1 ≤ i < n.
A pair (σi, di) represents an occurrence of an action σi at time di relative
to the starting time (0) of the execution. Let ε denote the empty timed
word. We consider a finite set V of clock variables. A clock valuation
over V is a mapping ν : V → R which assigns time values to the clock
variables of a system. Define (ν + c)(x) := ν(x) + c for all clock variables
x ∈ V and constants c ∈ R. For a subset λ of clock variables, we shall
write ν[λ → 0](x) := 0, if x ∈ λ, and ν[λ → 0](x) := ν(x), otherwise.
Given a set V , we define the set ∆(V ) of clock constraints by the following
grammar: δ ::= c # x | x + c # y | δ ∧ δ, where # ∈ {≤, <,≥, >,=}, c
is a real valued constant and x, y are clock variables from V . We shall say
that a clock constraint δ is satisfied by a clock valuation ν if the expression
δ[ν(x)/x]1 evaluates to true. A clock constraint δ defines a subset of Rm

(m is the number of clock variables in V ), which is called the meaning of δ
and denoted by ‖δ‖V . A clock valuation ν defines a point in Rm (denoted
by ‖ν‖V ). So, the clock constraint δ is satisfied by the clock valuation ν iff
‖ν‖V ∈ ‖δ‖V .

We are now prepared to consider the definition of timed transition sys-
tems.

Definition 1. A timed transition system with invariants T over an alphabet
Στ is a sextuple (S, s0, Στ , V, T, I), where

• S is a set of states with the initial state s0,

• V is a set of clock variables,

• T ⊆ S × Στ ×∆(V )× 2V × S is a set of transitions,

• I ∈ ∆(V )S assigns to each state an invariant given by the same syntax
as that of a clock constraint.

We shall write s
σ→

δ, λ
s′ to denote a transition (s, σ, δ, λ, s′).

Define the behaviour of timed transition systems with invariants.

1δ[y/x] is the substitution of y for x in δ.
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Definition 2. Let T be a timed transition system with invariants over an
alphabet Στ .

A configuration of T is a pair 〈s, ν〉, where s is a state and ν is a clock
valuation. A configuration 〈s, ν〉 of T is called initial iff s is the initial state
and ν is the constant 0 function.

A run of T is a sequence γ = 〈s0, ν0〉 σ1→
d1

〈s1, ν1〉 . . . 〈sn−1, νn−1〉 σn→
dn

〈sn, νn〉
such that 〈s0, ν0〉 is the initial configuration, ‖νn‖V ∈ ‖I(sn)‖V and for all
0 < i ≤ n and 0 ≤ d ≤ (di − di−1) it holds that ‖νi−1 + d‖V ∈ ‖I(si−1)‖V

and there is a transition si−1
σi→

δi, λi

si such that ‖νi−1+(di−di−1)‖V ∈ ‖δi‖V

and νi = (νi−1 + (di − di−1))[λi → 0]. Here, d0 is defined to be 0. We will
use Runs(T ) to denote the set of runs of T . A run γ as above is said to
generate the timed word α = (σ1, d1) . . . (σn, dn).

A configuration 〈s, ν〉 of T is called reachable iff T has a run with an
occurrence of 〈s, ν〉. The set of reachable configurations of T is denoted as
Conf(T ).

A state s ∈ S is called τ -accessible iff s0
τ→

δ1,λ1

s1 . . . sn−1
τ→

δn,λn

sn = s

(n ≥ 0). Define the set Sτ (T ) = {s ∈ S | s is a τ -accessible state}.
A configuration 〈s, ν〉 of T is called τ -reachable if there is a run 〈s0, ν0〉 τ→

d1

〈s1, ν1〉 . . . 〈sn−1, νn−1〉 τ→
dn

〈sn, νn〉 = 〈s, ν〉 generating the timed word (τ, d1)

. . . (τ, dn). We shall use Confτ (T ) to denote the set of τ -reachable config-
urations.

A τ -reachable configuration 〈s, ν〉 of T is called final iff there is no run
ends in 〈s, ν〉 that can be extended by some τ -timed transition.

From now on, for a configuration 〈s, ν〉 ∈ Confτ (T ), we shall write
〈s, ν〉 σ−→

d
iff there is a configuration 〈s′, ν′〉 ∈ Conf(T ) such that

〈s, ν〉 σ−→
d
〈s′, ν ′〉,

for some σ ∈ Σ and d ∈ R.

Example 1. To illustrate the concepts, consider the timed transition sys-
tem T over Στ (see Fig. 1) which has three states s0 (the initial state), s1

and s2, with invariants x ≤ 6∧y ≤ 4, 3 ≤ x ≤ 8 and x ≤ 6, respectively, two
actions a and τ , and two clock variables x and y. Three transitions depicted
between the states are labeled by actions, clock constraints and subsets of
clocks. For instance, one of the transitions between s0 and s1 is labelled by
an action τ , a clock constraint x = 3 and a subset {y} of clock variables.
The timed transition system T has the only τ -accessible state s1. Consider
the run 〈s0, ν0〉 τ→

3
〈s1, ν1〉 a→

6
〈s0, ν2〉 with ν1(x) = 3, ν1(y) = 0, ν2(x) = 0
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Figure 1

and ν2(y) = 0. The run generates the timed word (τ, 3) (a, 6). Moreover,
〈s1, ν1〉 is a τ -reachable configuration, but 〈s0, ν2〉 is not.

3. Timed barbed bisimulation

In this section, we define a timed extension of Milner and Sangiorgi’s barbed
bisimulation [18].

Definition 3. Timed transition systems T and T ′ over an alphabet Στ

are timed barbed bisimilar iff there is a relation B ⊆ Confτ (T )×Confτ (T ′)
such that (〈s0, ν0〉, 〈s′0, ν ′0〉) ∈ B and for all (〈s, ν〉, 〈s′, ν ′〉) ∈ B it holds:

• if 〈s, ν〉 τ−→
d
〈s1, ν1〉 in T , then 〈s′, ν ′〉 τ−→

d
〈s′1, ν′1〉 in T ′ and (〈s1, ν1〉, 〈s′1, ν ′1〉) ∈

B, for some 〈s′1, ν ′1〉,
• if 〈s′, ν ′〉 τ−→

d
〈s′1, ν ′1〉 in T ′, then 〈s, ν〉 τ−→

d
〈s1, ν1〉 in T and (〈s1, ν1〉, 〈s′1, ν ′1〉) ∈

B, for some 〈s1, ν1〉,
• if 〈s, ν〉 σ−→

d
(σ ∈ Σ) in T , then 〈s′, ν ′〉 σ′−→

d
(σ′ ∈ Σ) in T ′,

• if 〈s′, ν′〉 σ′−→
d

(σ′ ∈ Σ) in T ′, then 〈s, ν〉 σ−→
d

(σ ∈ Σ) in T .

Example 2. We illustrate the notions and notations related to the def-
inition of the timed barbed bisimulation. Consider the timed transition
systems in Fig. 2. It is easy to see that the timed transition systems T and
T̃ are timed barbed bisimilar, while the timed transition systems T̃ and T̆
are not, because, for example, after the occurrence of an action τ at time
1, the occurrence of an action τ at time 5 is possible in T̆ but it is not the
case in T̃ . ♦
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4. Open maps bisimulation

4.1. A basic elements of category theory

In this section, we briefly recall the basic definitions from the category the-
ory.

The category theory is a generalized mathematical theory of structures.
One of its goals is to reveal the universal properties of structures of a given
kind (objects of a category) via their mutual relationships (morphisms of
a category). From the 1980s to this day, the category-theoretic methods
found many applications in theoretical computer science.

A category M consists of the following:

• a set |M | whose elements are called the objects,

• for every pair X and Y of objects, a set M(X, Y ) whose elements are
called the morphisms from X to Y ,

• for every triple X, Y and Z of objects, a composition law: ◦ :M(X, Y )×
M(Y, Z) −→ M(X, Z); the composition of f ∈ M(X,Y ) and g ∈
M(Y, Z) is written as g ◦ f ,

• for every object X, a morphism 1X ∈ M(X,X) is called the identity
on X,

Furthermore, morphisms have to satisfy two axioms:

1. Associativity: given the morphisms f ∈ M(X, Y ), g ∈ M(Y,Z) and
h ∈M(Z, V ), the following equality holds: h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

2. Identity: given the morphisms f ∈ M(X,Y ) and g ∈ M(Y, Z), the
following equalities hold: 1Y ◦ f = f and g ◦ 1Y = g.

It is sometimes useful if M has the following property. Consider two
morphisms X1

m1→ X and X2
m2→ X in a category M. A pullback of (m1,m2)
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is a triple (X ′,m′
1,m

′
2), where X ′ is an object in M and X ′ m′

1→ X1 and

X ′ m′
2→ X2 are morphisms in M such that:

• m1 ◦m′
1 = m2 ◦m′

2,

• for any other triple (X ′′,m′′
1,m

′′
2), where X ′′ is an object in M and

X ′′ m′′
1→ X1 and X ′′ m′′

2→ X2 are morphisms in M such that m1 ◦m′′
1 =

m2 ◦ m′′
2, there exists a unique morphism m̃ : X ′′ → X ′ such that

m′′
1 = m′

1 ◦ m̃ and m′′
2 = m′

2 ◦ m̃.

The concept of an open map (open morphism) appears in the paper by
Joyal and Moerdijk [14], where the concept of a subcategory of open maps of
a (pre)topos is defined. As reported in [15], the open map approach provides
general concepts of bisimilarity for any categorical model of computation.

First, a category M whose objects represent models of computations has
to be identified. A morphism m : X −→ Y in M should intuitively be
thought of as a simulation of the object X in the object Y . Then, inside the
category M, we choose a subcategory of ‘path objects’ and ‘path extension’
morphisms between these objects. The subcategory of path objects is denoted
by P. Given a path object P in P and a model object X in M, a path is a
morphism p : P −→ X in M. We think of p as representing a particular way
of realizing P in X.

Second, we identify morphisms m : X −→ Y which have the property
that, whenever a computation of X can be extended via m in Y , that exten-
sion can be matched by an extension of the computation in X. A morphism
m : X → Y in M is called P-open if, whenever f : P1 → P2 in P, p : P1 → X
and q : P2 → Y in M, and the diagram

P1
p //

f
²²

X

m

²²
P2 q

// Y

commutes, i.e. m ◦ p = q ◦ f , there exists a morphism h : P2 → X in M such
that the two triangles in the diagram

P1
p //

f
²²

X

m

²²
P2 q

//

h
>>~~~~~~~~
Y

commute, i.e. p = h ◦ f and q = m ◦ h.
Third, an abstract notion of bisimilarity is introduced. The definition

is given in terms of spans of open maps. Two objects X and Y in M are
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said to be P-bisimilar, if there exists a span X
m←− Z

m′−→ Y with a common
object Z of P-open morphisms.

Notice that if M has pullbacks, it can be shown that P-bisimilarity is
always an equivalence relation. The important observation is that pullbacks
of open maps are open maps themselves [15].

4.2. Open maps characterization

In this section, a category of timed transition systems with invariants is
introduced and an open maps based characterization of the timed barbed
bisimulation is given.

The morphisms of our category will represent some notions of simulation
of the behavior of one system by the other with an accuracy of τ -actions
and with account of only the existence of visible actions. This leads to the
following definition of a morphism consisting of two functions, one mapping
τ -accessible states of the simulated system to simulating τ -accessible states
of the other, and one mapping clocks of the simulating system to simulated
clocks of the other.

Definition 4. Let T = (S, s0, Στ , V, T, I) and T ′ = (S′, Στ , s
′
0, V

′, T ′, I ′)
be timed transition systems with invariants. A pair (µ, η) is called a mor-
phism between T and T ′ iff µ : Sτ (T ) → Sτ (T ′) is a mapping between
τ -accessible states and η : V ′ → V is a mapping between clock variables,
which should satisfy the following:

• µ(s0) = s′0,

• ‖I(s)‖V ⊆ ‖I ′(µ(s))[η(x)/x]‖V ,

• if there is a transition s
τ→

δ, λ
s1 in T , then there exists a transition

µ(s) τ→
δ′,λ′

µ(s1) in T ′, such that ‖δ‖V ⊆ ‖δ′[η(x)/x]‖V and λ′ = η−1(λ),

• if there is a transition s
σ→

δ, λ
s1 (σ ∈ Σ) in T , then there exists a transi-

tion µ(s) σ′→
δ′,λ′

s′1 in T ′ (σ′ ∈ Σ) such that ‖I(s1)‖V ⊆ ‖I ′(s′1)[η(x)/x]‖V ,

‖δ‖V ⊆ ‖δ′[η(x)/x]‖V and λ′ = η−1(λ).

Consider a useful property of a morphism. First, introduce an auxiliary
notation. For a function η : V ′ → V and a clock valuation ν : V → R, we
define η−1(ν) : V ′ → R as follows: η−1(ν)(x′) := ν(η(x′)).

Lemma 1. Let (µ, η) be a morphism between timed transition systems
with invariants T and T ′ over Στ . If 〈s0, ν0〉 τ→

d1

〈s1, ν1〉 . . . 〈sn−1, νn−1〉
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τ→
dn

〈sn, νn〉 is a run in T generating the timed word (τ, d1) . . . (τ, dn), then

〈µ(s0), η−1(ν0)〉 τ→
d1
〈µ(s1), η−1(ν1)〉 . . . 〈µ(sn−1), η−1(νn−1)〉 τ→

dn

〈µ(sn), η−1(νn)〉 is

a run in T ′ generating the same timed word. Moreover, if 〈sn, νn〉 σ→
d

(σ ∈ Σ)

in T , then 〈µ(sn), η−1(νn)〉 σ′→
d

(σ′ ∈ Σ) in T ′.

Timed transition systems with the alphabet Στ and morphisms between
them form a category of timed transition systems, T T SIbarbed, in which the
composition of two morphisms (µ, η) : T −→ T ′ and (µ′, η′) : T ′ −→ T ′′ is
defined as (µ′, η′) ◦ (µ, η) := (µ′ ◦µ, η ◦ η′), and the identity morphism is the
morphism where both µ and η are the identity functions. The next theorem
establishes an important property of the category T T SIbarbed.

Theorem 1. T T SIbarbed has pullbacks.

Proof. Suppose that
T0 = (S0, Στ , s0

0, V 0, T 0, I0),
T1 = (S1, Στ , s1

0, V 1, T 1, I1),
T2 = (S2, Στ , s2

0, V 2, T 2, I2)

are timed transition systems with invariants. Also, assume T1
(µ1,η1)→ T0

(µ2,η2)←
T2 to be a construction of morphisms in the category T T SIbarbed. Con-
struct a timed transition system T = (S, s0,Στ , V, T, I) with two morphisms
(µ′i, η

′
i) : T → Ti (i = 1, 2) as follows:

• S = S′ ∪S′′, where S′ ⊆ Sτ (T1)×Sτ (T2) and S′′ ⊆ S1×S2 such that:

– s0 = (s1
0, s

2
0) ∈ S′,

– If (s1, s2) ∈ S′ and there are transitions s1
τ→

δ1, λ1

s′1 in T1 and

s2
τ→

δ2, λ2

s′2 in T2 such that µ1(s′1) = µ2(s′2), then (s′1, s
′
2) ∈ S′,

– If (s1, s2) ∈ S′ and there are transitions s1
σ1→

δ1, λ1

s′1 in T1 and

s2
σ2→

δ2, λ2

s′2 in T2 for some σ1, σ2 ∈ Σ, then (s′1, s
′
2)

? ∈ S′′.

Define mappings µ′i : S′ → Sτ (Ti) as follows: µ′i((s1, s2)) = si (i =
1, 2).

• V is a set of equivalence classes of the equivalence relation R over
V 1

⊎
V 2 (V 1

⊎
V 2 is the disjoint union of the sets V 1 and V 2) gen-

erated by the relation R0 = {(x1, x2) | ∃x ∈ V 0 ¦ η1(x) = x1 ∧
η2(x) = x2}. Let η′i : V i → V (i = 1, 2) send a clock variable from Ti

to the equivalence class to which it belongs.

• T = T ′ ∪ T ′′ such that:
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– ((s1, s2), τ, δ1[η′1(x)/x] ∧ δ2[η′2(x)/x], η′1(λ1) ∪ η′2(λ2), (s′1, s
′
2)) ∈

T ′ ⇐⇒ (s1, s2), (s′1, s
′
2) ∈ S′ and there are the transitions s1

τ→
δ1,λ1

s′1 in T1 and and s2
τ→

δ2,λ2

s′2 in T2,

– ((s1, s2), a, δ1[η′1(x)/x] ∧ δ2[η′2(x)/x], η′1(λ1) ∪ η′2(λ2), (s′1, s
′
2)

?) ∈
T ′′ ⇐⇒ (s1, s2) ∈ S′, (s′1, s

′
2)

? ∈ S′′ and there exist the transi-

tions s1
σ′→

δ1,λ1

s′1 in T1 and s2
σ′′→

δ2,λ2

s′2 in T2 for some σ′, σ′′ ∈ Σ.

• I((s1, s2)) = I1(s1)[η′1(x)/x] ∧ I2(s2)[η′2(x)/x] for all (s1, s2) ∈ S.

Obviously, T is indeed a timed transition system with invariants. It is
routine to show that (µ′1, η

′
1) and (µ′2, η

′
2) are morphisms. We now check that

(µ1, η1)◦(µ′1, η′1) = (µ2, η2)◦(µ′1, η′2). Let (s1, s2) ∈ Sτ (T ). This implies that
(s1, s2) ∈ S′. By the definition of the set S′, we have µ1(s1) = µ2(s2). Then,
by the definition of µ′1 and µ′2, we know: µ1◦µ′1((s1, s2)) = µ1(s1) = µ2(s2) =
µ2 ◦µ′2((s1, s2)). Next, take an arbitrary x ∈ V 0. From the definition of R0,
it follows that (η1(x), η2(x)) ∈ R0. This means that η1(x) and η2(x) belong
to the same class of the equivalence relation, i.e. η′1(η1(x)) = η′2(η2(x)).
Thus, η′1 ◦ η1 = η′2 ◦ η2.

Suppose T1
(φ1,ξ1)← T ′ (φ2,ξ2)→ T2 to be a construction of morphisms such

that (µ1, η1) ◦ (φ1, ξ1) = (µ2, η2) ◦ (φ2, ξ2). Define a mapping µ : Sτ (T ′) →
Sτ (T ) as follows: µ(s′) = (φ1(s′), φ2(s′)). Also, define a mapping η : V →
V ′ as follows: η(x) = ξ1(x) ∪ ξ2(x), where ξi(x) = {ξi(x′) | x′ ∈ x ∧
x′ ∈ Vi} (i = 1, 2). Due to the construction of the set V and the fact that
(µ1, η1)◦(φ1, ξ1) = (µ2, η2)◦(φ2, ξ2), it is easy to show that ξ1(x)∪ξ2(x) = {z}
for some z ∈ V ′. It is routine to check that (µ, η) is a morphism. The fact
that (µ, η) is a unique morphism such that (φ1, ξ1) = (µ′1, η

′
1) ◦ (µ, η) and

(φ2, ξ2) = (µ′2, η
′
2) ◦ (µ, η) follows from the definition of morphisms. ♦

Following the standards of timed transition systems and [15], we should
construct a subcategory of path objects.

Definition 5. Given a timed word α = (σ1, d1) . . . (σn, dn) over Στ , we
define a timed transition system with invariants T α = (Sα, 0,Στ , V

α, Tα, Iα)
corresponding to α as follows:

• the set of states, Sα, includes integers in the range from 0 to n, i.e.
Sα = {0, 1, . . . , (n− 1), n},

• 0 is the initial state,

• the set of clock variables, V α, consists of 2n subsets of states {1, 2, . . . , n}.
• the set of transitions, Tα, for all i = 0, . . . , n−1 contains the transition

i
σi→

δi,λi

i + 1, where λi = {x | i ∈ x} and δi = ∧
x∈V α

(x = di − dI(i,x))
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with I(i, x) := max{k ∈ x ∪ {0} | k < i}2 and d0 := 0.

• the invariants Iα is inductively defined as follows: the invariant on the
state 0, Iα(0), is

∧
x∈V α

(0 ≤ x ≤ d1); assume that the invariant on the

state i − 1 is
∧

x∈V α

(c(i − 1, x) ≤ x ≤ ĉ(i − 1, x)), then the invariant

on the state i, Iα(i), is
∧

x∈V α

(if i ∈ x then (0 ≤ x ≤ (di+1 − di)), else

(ĉ(i− 1, x) ≤ x ≤ ĉ(i− 1, x) + (di+1 − di))), where dn+1 = dn.

The class of timed transition systems with invariants of the form T α is
denoted as TW.

Definition 6. The full subcategory Pbarbed of the category T T SIbarbed

contains timed transition systems with invariants from TW, corresponding
to timed words over Στ of the forms (τ1, d1) . . . (τn, dn) and

(τ1, d1) . . . (τn, dn)(σ, dn+1)

with n ≥ 0, σ ∈ Σ and di ∈ R for all 1 ≤ i ≤ n+1, and morphisms between
them.

Lemma 2. Let T be an object of TTSIbarbed and T α and T α(σ,d) with
α = (τ, d1) . . . (τ, dn) and σ ∈ Σ be objects of Pbarbed. Then,

(i) there is a bijection between the timed words β ∈ L(T α) and the runs
of β in T α. Moreover, the run of α ends in the only final τ -reachable
configuration of T α,

(ii) there is a bijection between the timed words β ∈ L(T α(σ,d)) and the
runs of β in T α(σ,d). Moreover, the run of α ends in the only final

τ -reachable configuration 〈s, ν〉 of T α(σ,d) and 〈s, ν〉 (σ,d)→ ,

(iii) there is a bijection between the morphisms (µ, η) : T α → T and the
runs of α in T , which are the (µ, η)-images of the run of α in T α,

(iv) there is a bijection between the morphisms (µ, η) : T α(σ,d) → T and the
runs of α in T , which are the (µ, η)-images of the run of α in T α(σ,d)

and ends in 〈s, ν〉, such that 〈s, ν〉 (σ′,d)→ for some σ′ ∈ Σ.

Consider the following characterization of Pbarbed-open maps.

2The index returned by I(i, x) is the index of the last state at which x was reset.
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Theorem 2. Let T = (S, s0, Στ , V, T, I) and T ′ = (S′, Στ , s
′
0, V

′, T ′, I ′) be
timed transition systems with invariants. A morphism (µ, η) : T → T ′ is
Pbarbed-open iff for any τ -reachable configuration 〈s, ν〉 of T and any clock
valuation ν ′ = ν +d such that ∀d′ : d′ < d ⇒ ‖η−1(ν +d′)‖V ′ ∈ ‖I ′(µ(s))‖V ′

the following conditions hold:

• whenever there is a transition µ(s) τ→
δ′,λ′

s′1 in T ′, such that ‖η−1(ν ′)‖V ′ ∈
‖δ′‖V ′ and ‖η−1(ν ′)[λ′ → 0]‖V ′ ∈ ‖I ′(s′1)‖V ′, there exists a transition
s

τ→
δ,λ

s1 in T , such that µ(s1) = s′1, ‖ν ′‖V ∈ ‖δ‖V , ‖ν ′[λ → 0]‖V ∈
‖I(s1)‖V , λ′ = η−1(λ) and ∀d′ : d′ < d ⇒ ‖ν + d′‖V ∈ ‖I(s)‖V .

• whenever there is a transition µ(s) σ→
δ′,λ′

s′1 in T ′ for some σ ∈ Σ,

such that ‖η−1(ν ′)‖V ′ ∈ ‖δ′‖V ′ and ‖η−1(ν ′)[λ′ → 0]‖V ′ ∈ ‖I ′(s′1)‖V ′,

there exists a transition s
σ′→
δ,λ

s1 in T for some σ′ ∈ Σ, such that

‖ν ′‖V ∈ ‖δ‖V , ‖ν ′[λ → 0]‖V ∈ ‖I(s1)‖V , λ′ = η−1(λ) and ∀d′ : d′ < d
‖ν + d′‖V ∈ ‖I(s)‖V .

Proof.

(⇒) Assume (µ, η) : T → T ′ to be a Pbarbed-open morphism. Take
an arbitrary τ -reachable configuration 〈s, ν〉 in T and an arbitrary clock
valuation ν ′ = ν +d such that ∀d′ : d′ < d ⇒ ‖η−1(ν +d′)‖V ′ ∈ ‖I ′(µ(s))‖V ′ .
Suppose that there exists a transition µ(s) σ→

δ′,λ′
s′1 in T ′ for some σ ∈ Στ ,

such that ‖η−1(ν ′)‖V ′ ∈ ‖δ′‖V ′ and ‖η−1(ν ′)[λ′ → 0]‖V ′ ∈ ‖I ′(s′1)‖V ′ .

We only consider the case with σ ∈ Σ (the case with σ = τ is simpler).

Since 〈s, ν〉 is τ -reachable, we have a run γ in T , generating some timed
word α = (τ, d1) . . . (τ, dn) and ending in 〈s, ν〉. From Lemma 2 (iii) for γ
we have a unique morphism (µγ , ηγ) : T α → T , defining γ.

Now, let γ′ be a (µ, η)-image of γ. Clearly, γ′ ends in 〈µ(s), η−1(ν)〉.
By Lemma 1, γ′ is a run in T ′, generating the same timed word α. Due
to the definition of the relation σ→

d′
, we may conclude that 〈µ(s), η−1(ν)〉

σ→
d
〈s′1, η−1(ν ′)[λ′ → 0]〉 in T ′. From Lemma 2 (iv), it follows that for γ′

there exists a unique morphism (µγ′ , ηγ′) : T α(σ,d) → T ′, such that γ′ is a
(µγ′ , ηγ′)-image of a run r of α in T α(σ,d). Due to the definition of T α and
T α(σ,d), we get that there exists only the morphism (µ0, η0) : T α → T α(σ,d)

in Pbarbed. Thus, we get a commuting diagram
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T α
(µγ , ηγ) //

(µ0, η0)
²²

T
(µ, η)

²²
T α(σ,d)

(µγ′ , ηγ′ )
// T ′

From the definition of openness, we get a mediating morphism (p, ηp) :
T α(σ,d) → T

T α
(µγ , ηγ) //

(µ0, η0)
²²

T
(µ, η)

²²
T α(σ,d)

(µγ′ , ηγ′ )
//

(p,ηp)

;;wwwwwwwww
T ′

such that (µ, η)◦ (p, ηp) = (µγ′ , ηγ′) and (p, ηp)◦ (µ0, η0) = (µγ , ηγ). Accord-
ing to Lemma 2 (ii), we have that r is a unique run of α in T α(σ,d) and r

ends in 〈sr, νr〉 such that 〈sr, νr〉 σ→
d

. Since (p, ηp) ◦ (µ0, η0) = (µγ , ηγ), we

have that γ is a (p, ηp)-image of r and 〈s, ν〉 = 〈p(sr), η−1
p (νr)〉. Hence, from

Lemma 1, it follows that 〈s, ν〉 σ′→
d

in T for some σ′ ∈ Σ.

(⇐) Suppose that we have a commuting square

T α
(µ1, η1)//

(µ0, η0)
²²

T
(µ, η)

²²
T α′

(µ2, η2)
// T ′

i.e. (µ, η) ◦ (µ1, η1) = (µ2, η2) ◦ (µ0, η0). W.l.o.g. assume that α = (τ, d1)
. . . (τ, dn) and α′ = α(σ′, d′) (σ′ ∈ Στ ). Consider the case with σ′ = τ (the
proof of the case with σ′ ∈ Σ is similar). Due to Lemma 2 (i), we have a
unique run r in T α, generating α, and a unique run r′ in T α′ , generating α′.
According to Lemma 1, there are runs γ = 〈s0, ν0〉 τ→

d1

〈s1, ν1〉 . . . 〈sn−1, νn−1〉
τ→
dn

〈sn, νn〉 in T , generating α, and γ′ = 〈s′0, ν ′0〉 τ→
d1

〈s′1, ν ′1〉 . . . 〈s′n−1, ν
′
n−1〉

τ→
dn

〈s′n, ν ′n〉 τ→
d′
〈s′n+1, ν

′
n+1〉 in T ′, generating α′. Due to the commutative

properties, we have that 〈µ(si), η−1(νi)〉 = 〈s′i, ν ′i〉 for all 0 ≤ i ≤ n. This

implies that 〈µ(sn), η−1(νn)〉 σ′→
d′
〈s′n+1, ν

′
n+1〉 in T ′. This means that there

is a transition µ(sn) σ′→
δ′,λ′

s′n+1 in T ′ such that ‖η−1(νn + d′ − dn)‖V ′ ∈
‖δ′‖V ′ , ‖η−1(νn + d′ − dn)[λ′ → 0]‖V ′ ∈ ‖I ′(s′n+1)‖V ′ and for all d̄ such that
0 ≤ d̄ ≤ d′ − dn ‖η−1(νn + d̄)‖V ′ ∈ ‖I ′(µ(sn))‖V ′ . Due to the theorem
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assumptions, we have a transition sn
σ′→
δ,λ

sn+1 such that µ(sn+1) = s′n+1,

‖νn + d′ − dn‖V ∈ ‖δ‖V , ‖νn + d′ − dn[λ → 0]‖V ∈ ‖I(sn+1)‖V and for all d̄
such that 0 ≤ d̄ ≤ d′−dn the following holds: ‖νn + d̄‖V ∈ ‖I(sn)‖V . Hence,

we get that 〈sn, νn〉 σ′→
d′
〈sn+1, νn+1〉 in T , where νn+1 = (νn+d′−dn)[λ → 0],

i.e. γ can be extended by σ′→
d′

to run, say, γ1 in T .

According to Lemma 2 (iii), we have a morphism (µ̃, η̃) : T α′ → T ,
defining γ1. Moreover, it is easy to see that (µ, η) ◦ (µ̃, η̃) = (µ2, η2) and
(µ̃, η̃) ◦ (µ0, η0) = (µ1, η1). ♦

Now, the coincidence of Pbarbed-bisimilarity and the barbed bisimulation
is established.

Theorem 3. Timed transition systems are Pbarbed-bisimilar iff they are
timed barbed bisimilar.

Proof.
(⇒) Suppose that T1 and T2 are Pbarbed-bisimilar. This means that

there exists a span of Pbarbed-open morphisms: T1
(µ1,η1)←− T (µ2,η2)−→ T2. Define

B ⊆ Confτ (T1)× Confτ (T2) as follows:

(〈µ1(si), η−1
1 (νi)〉, 〈µ2(si), η−1

2 (νi)〉) ∈ B for 0 ≤ i ≤ n
def⇐⇒

there exists a run γ = 〈s0, ν0〉 τ→
d1

〈s1, ν1〉 . . . 〈sn−1, νn−1〉 τ→
dn

〈sn, νn〉 in T .

We have to show that B is a timed barbed bisimulation. Let 〈s0, ν0〉 be the
initial configuration of T . Since (µi, ηi) is a morphism, we have 〈µi(s0), η−1

i (ν0)〉 =
〈si

0, ν
i
0〉, for all i = 1, 2. Thus, it holds that (〈s1

0, ν
1
0〉, 〈s2

0, ν
2
0〉) ∈ B, by the

construction of B.
Take an arbitrary pair (〈s1, ν1〉, 〈s2, ν2〉) ∈ B. W.l.o.g. this implies that

there is a run γ = 〈s0, ν0〉 τ→
d1

〈s1, ν1〉 . . . 〈sn−1, νn−1〉 τ→
dn

〈sn, νn〉 in T , such

that 〈µi(sn), η−1
i (νn)〉 = 〈si, νi〉 for all i = 1, 2.

We further treat four cases:

– 〈s1, ν1〉 τ→
d
〈s′1, ν′1〉 in T1. This means that there is a transition µ1(sn)

τ→
δ1,λ1

s′1 in T1 such that ‖η−1
1 (νn + d− dn)‖V1 ∈ ‖δ1‖V1 , ‖η−1

1 (νn + d−
dn)[λ1 → 0]‖V1 ∈ ‖I1(s′1)‖V1 and for all d̄ such that 0 ≤ d̄ ≤ d − dn

‖η−1
1 (νn + d̄)‖V1 ∈ ‖I1(µ1(sn))‖V1 . Due to Theorem 2, we have a

transition sn
τ→

δ,λ
sn+1 in T such that µ1(sn+1) = s′1, λ1 = η1

1(λ),

‖νn + d − dn‖V ∈ ‖δ‖V , ‖(νn + d − dn)[λ → 0]‖V ∈ ‖I(sn+1)‖V and
for all d̄ such that 0 ≤ d̄ ≤ d − dn ‖νn + d̄‖V ∈ ‖I(sn)‖V , since
(µ1, η1) is a Pbarbed-open morphism. Hence, 〈sn, νn〉 τ→

d
〈sn+1, νn+1〉
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in T , where νn+1 = (νn + d − dn)[λ → 0]. Moreover, it is easy
to check that 〈µ1(sn+1), η−1

1 (νn+1)〉 = 〈s′1, ν ′1〉. From the construc-
tion of B, it follows that (〈s′1, ν′1〉, 〈s′2, ν ′2〉) ∈ B, where 〈s′2, ν ′2〉 =
〈µ2(sn+1), η−1

2 (νn+1)〉.
– 〈s2, ν2〉 τ→

d
〈s′2, ν ′2〉 in T2. The proof is symmetric to that of the previ-

ous case.

– 〈s1, ν1〉 σ1→
d

in T1 for some σ1 ∈ Σ. This means that there is a transition

µ1(sn) σ1→
δ1,λ1

s′1 in T1 such that ‖η−1
1 (νn+d−dn)‖V1 ∈ ‖δ1‖V1 , ‖η−1

1 (νn+

d−dn)[λ1 → 0]‖V1 ∈ ‖I1(s′1)‖V1 and for all d̄ such that 0 ≤ d̄ ≤ d−dn

‖η−1
1 (νn + d̄)‖V1 ∈ ‖I1(µ1(sn))‖V1 . Due to Theorem 2, we have a

transition sn
σ→

δ,λ
sn+1 in T for some σ ∈ Σ such that λ1 = η1

1(λ),

‖νn + d− dn‖V ∈ ‖δ‖V , ‖(νn + d− dn)[λ → 0]‖V ∈ ‖I(sn+1)‖V and for
all d̄ such that 0 ≤ d̄ ≤ d− dn ‖νn + d̄‖V ∈ ‖I(sn)‖V , since (µ1, η1) is
a Pbarbed-open morphism. Next, due to (µ2, η2) being a morphism, we
get a transition µ2(sn) σ2→

δ2,λ2

s′2 in T2 for some σ2 ∈ Σ such that λ2 =

η−1
2 (λ), ‖η−1

2 (νn+d−dn)‖V2 ∈ ‖δ2‖V2 , ‖(η−1
2 (νn+d−dn))[λ2 → 0]‖V2 ∈

‖I2(s′2)‖V and for all d̄ such that 0 ≤ d̄ ≤ d − dn ‖η−1
2 (νn) + d̄‖V2 ∈

‖I2(µ2(sn))‖V2 . Hence, 〈s2, ν2〉 = 〈µ2(sn), η−1
2 (νn)〉 σ2→

d
〈s′2, ν ′2〉 in T2,

where ν ′2 = η−1
2 ((νn + d− dn)[λ → 0]) = (η2−1(νn) + d− dn)[λ2 → 0].

– 〈s2, ν2〉 σ2→
d

in T2 for some σ2 ∈ Σ. The proof is symmetric to that of

the previous case.

This means that B satisfies the required properties of Definition 3.
(⇐) Assume that T1 and T2 are timed barbed bisimilar. This implies that

there is a barbed bisimulation R ⊆ Confτ (T1) × Confτ (T2). We construct
a span of Pbarbed-open maps with a vertex T = (S, s0, Σ, V, T, I) defined as
follows:

– S = S′ ∪ S′′, where S′ = {(γ1
n, γ2

n) | γ1
n and γ2

n are R-related runs},
where

a run γ1
n = 〈s1

0, ν
1
0〉 τ→

d1

〈s1
1, ν

1
1〉 . . . 〈s1

n−1, ν
1
n−1〉 τ→

dn

〈s1
n, ν1

n〉 in T1

and
a run γ2

n = 〈s2
0, ν

2
0〉 τ→

d1

〈s2
1, ν

2
1〉 . . . 〈s2

n−1, ν
2
n−1〉 τ→

dn

〈s2
n, ν2

n〉 in T2,

both generating α = (τ, d1) . . . (τ, dn) (n ≥ 0), are R-related iff

(〈s1
j , ν

1
j 〉, 〈s2

j , ν
2
j 〉) ∈ R for 0 ≤ j ≤ n,

S′′ = {((s1, ν1)γ1
n
, (s2, ν2)γ2

n
) | γ1

n and γ2
n are R-related runs, ending

in 〈s1
n, ν1

n〉 and 〈s2
n, ν2

n〉, respectively, and for all i = 1, 2 〈si
n, νi

n〉 σi→
d
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〈si, νi〉 for some σi };
– s0 = (〈s1

0, ν
1
0〉, 〈s2

0, ν
2
0〉);

– V = V1
⊎

V2;

– T = T ′ ∪ T ′′, where
T ′ = {((γ1

n−1, γ
2
n−1)

τ→
δn,λn

(γ1
n, γ2

n)) | γ1
n and γ2

n are runs of the form

defined above, γ1
n−1 and γ2

n−1 are runs ending in 〈s1
n−1, ν

1
n−1〉 and

〈s2
n−1, ν

2
n−1〉, respectively, δn = ∧

x∈V1

(x = ν1
n−1(x) + (dn − dn−1))

∧

∧
x∈V2

(x = ν2
n−1(x) + (dn − dn−1)), λn = {x ∈ Vi | i = 1, 2, νi

n(x) = 0}},
and T ′′ = {((γ1

n, γ2
n) a→

δ,λ
((s1, ν1)γ1

n
, (s2, ν2)γ2

n
)) | γ1

n and γ2
n are runs of

the form defined above, 〈si
n, νi

n〉 σi→
d
〈si, νi〉 in Ti for all i = 1, 2 and some

σi ∈ Σ, δ = ∧
x∈V1

(x = ν1
n−1(x)+(d−dn))

∧ ∧
x∈V2

(x = ν2
n−1(x)+(d−dn))

λn = {x ∈ Vi | i = 1, 2, νi(x) = 0}};
• for all (γ1

n, γ2
n) ∈ S′, we define I((γ1

n, γ2
n)) = I1(s1

n)
∧

I2(s2
n)

and for all ((s1, ν1)γ1
n
, (s2, ν2)γ2

n
) ∈ S′′, we define

I(((s1, ν1)γ1
n
, (s2, ν2)γ2

n
)) = I1(s1)

∧
I2(s2).

It is clear that Sτ (T ) = S′.
For i = 1, 2, we define mappings µi : Sτ (T ) → Sτ (Ti) and ηi : Vi → V as

follows: µi((γ1
n, γ2

n)) = si
n and ηi is the injection function from Vi to V1

⊎
V2.

By the definition of T , (µ1, η1) and (µ2, η2) are morphisms.
Now, we have to show that (µi, ηi) is a Pbarbed-open morphism (i = 1, 2).

Take an arbitrary τ -reachable configuration 〈(γ1, γ2), ν〉 in T and a clock
valuation ν ′ = ν + d such that for all d′ < d we have ‖η−1

i (ν + d′)‖Vi ∈
‖Ii(µi((γ1, γ2)))‖Vi . Since (γ1, γ2) is a state of T , we get that γ1 and γ2

are R-related runs. W.l.o.g., suppose γj ends in 〈sj , νj〉 for all j = 1, 2. It
is obvious that 〈µi(γ1, γ2), η−1

i (ν)〉 = 〈si, νi〉. Assume that si
σ→

δi,λi

s′i in Ti

for some σ ∈ Στ , and that ‖η−1
i (ν ′)‖Vi ∈ ‖δi‖Vi and ‖η−1

i (ν ′)[λi → 0]‖Vi ∈
‖Ii(s′i)‖Vi . This implies 〈si, νi〉 σ→

d
〈s′i, ν ′i〉 in Ti, where ν ′i = (νi + d)[λi → 0].

We consider only the case with σ = τ (the proof of the case with σ ∈
Σ is similar). Due to R being a barbed bisimulation, we get that there
is a configuration 〈s′3−i, ν

′
3−i〉 in T3−i such that 〈s3−i, ν3−i〉 τ→

d
〈s′3−i, ν

′
3−i〉

and (〈s′1, ν ′1〉, 〈s′2, ν ′2〉) ∈ R. This implies that, in Tj , the run γj can be
extended by some τ -timed transition 〈sj , νj〉 τ→

d
〈s′j , ν′j〉 to a run, say, γ′j for

all j = 1, 2. Clearly, γ′1 and γ′2 are R-related runs. Furthermore, we may
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conclude that the exists a transition s3−i
σ→

δ3−i,λ3−i

s′3−i in T3−i, such that

‖η−1
3−i(ν

′)‖V3−i ∈ ‖δ3−i‖V3−i and ‖η−1
3−i(ν

′)[λ3−i → 0]‖V3−i ∈ ‖I3−i(s′3−i)‖V3−i .
From the construction of T , it follows that (γ1, γ2)

τ→
δ,λ

(γ′1, γ
′
2) in T , where

δ = ∧
x∈V1

(x = ν1(x) + (d− dn))
∧ ∧

x∈V2

(x = ν2(x) + (d− dn)), λ = {x ∈ Vi |
i = 1, 2, νi(x) = 0} and I((γ′i, γ

′
2)) = I1(s′1)

∧
I2(s′2). Moreover, it is easily

seen that µi(γ′1, γ
′
2) = s′i, ‖ν ′‖V ∈ ‖δ‖V , ‖ν ′[λ → 0]‖V ∈ ‖I((γ′1, γ

′
2))‖V ,

λi = η−1
i (λ) and for all d′ < d it holds ‖ν + d′‖V ∈ ‖I((γ1, γ2))‖V .

Thus, (µi, ηi) is a Pbarbed-open morphism by Theorem 2. ♦

5. Path-Bisimulation

To obtain a logic characteristic of the bisimulation induced by open maps,
Joyal, Nielsen, and Winskel [15] have proposed a second category-theoretic
characterization of bisimulation — path bisimulation which is a relation
based generalization of the open maps bisimulation.

Definition 7. Let M be a category of models, P be a small category of
path objects, where P is a subcategory of M, and I be a common initial
object3 of P and M. Then,

• Two objects X1 and X2 ofM are called path-P-bisimilar iff there is a set
R of pairs of paths (p1, p2) with a common domain P , so p1 : P → X1

is a path in X1 and p2 : P → X2 is a path in X2, such that

(o) (i1, i2) ∈ R, where i1 : I → X1 and i2 : I → X2 are the unique
paths starting in the initial object, and for all (p1, p2) ∈ R and
for all m : P → Q, where m is in P, it holds that

(i) if there exists q1 : Q → X1 with q1 ◦ m = p1, then there exists
q2 : Q → X2 with q2 ◦m = p2 and (q1, q2) ∈ R and

(ii) if there exists q2 : Q → X2 with q2 ◦ m = p2, then there exists
q1 : Q → X1 with q1 ◦m = p1 and (q1, q2) ∈ R.

• Two objects X1 and X2 are strong path-P-bisimilar iff they are path-
P-bisimilar and the set R further satisfies:

(iii) If (q1, q2) ∈ R, with q1 : Q → X1 and q2 : Q → X2 and m : P →
Q, where m is in P, then (q1 ◦m, q2 ◦m) ∈ R.

Theorem 4. Pbarbed-bisimilarity, path-Pbarbed-bisimilarity, and strong path-
Pbarbed-bisimilarity all coincide with the timed barbed bisimilarity.

3In the cases when P is Pbarbed and M is T T SIbarbed, the initial object Ibarbed is the
timed transition system E = ({s0}, s0, Στ , {x}, ∅, x = 0).
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Proof. The fact that Pbarbed-bisimilarity implies (strong) path-Pbarbed-
bisimilarity follows from Lemma 16 [15]. According to Theorem 3, it is
sufficient to show that if two timed transition systems are path-Pbarbed-
bisimilar, then they are timed barbed bisimilar.

Assume that R is a path-Pbarbed-bisimulation between timed transi-
tion systems with invariants T1 and T2 over Στ . Define a relation B ⊆
Conf τ (T1)× Conf τ (T2) as follows:

(〈s1, ν1〉, 〈s2, ν2〉) ∈ B def⇐⇒ there is ((µ1, η1), (µ2, η2)) ∈ R such that
for all i = 1, 2 (µi, ηi) : P → Ti and 〈si, νi〉 = 〈µi(s), η−1

i (ν)〉, where
〈s, ν〉 is the final τ -reachable configuration in P and P = T α for some

α = (τ, d1) . . . (τ, dn).

We have to show that B is a timed barbed bisimilarity. Due to R being a
path-Pbarbed-bisimilarity, we get ((µ0

1, η
0
1), (µ

0
2, η

0
2)) ∈ R such that (µ0

i , η
0
i ) :

Ibarbed → Ti for all i = 1, 2. Let 〈s0, ν0〉 be the initial configuration of Ibarbed.
By the construction of Ibarbed, 〈s0, ν0〉 is the final τ -reachable configuration
of Ibarbed and Ibarbed = T ε, where ε is an empty timed word. Since (µ0

i , η
0
i )

is a morphism, we have 〈µ0
i (s0), (η0

i )
−1(ν0)〉 = 〈si

0, ν
i
0〉, for all i = 1, 2. Thus,

it holds that (〈s1
0, ν

1
0〉, 〈s2

0, ν
2
0〉) ∈ B, by the construction of B.

Take an arbitrary pair (〈s1, ν1〉, 〈s2, ν2〉) ∈ B. Then, there is

((µ1, η1), (µ2, η2)) ∈ R

such that (µi, ηi) : P → Ti and 〈si, νi〉 = 〈µi(s), η−1
i (ν)〉, for all i = 1, 2,

where 〈s, ν〉 is the final τ -reachable configuration in P and P = T α for some
timed word α = (τ, d1) . . . (τ, dn). According to Lemma 2 (i), there is the
only run r in T α, generating α. Clearly, r ends in 〈s, ν〉. Using Lemma 2
(iii) for (µi, ηi), we can find a unique run γi in Ti, generating α. Clearly, γi

is a (µi, ηi)-image of r, for all i = 1, 2. This implies that γi ends in 〈si, νi〉,
for all i = 1, 2. We further treat four cases:

– 〈s1, ν1〉 τ→
d
〈s1

n+1, ν
1
n+1〉 in T1. This means that, in T1, the run γ1 can

be extended by some τ -timed transition 〈µ1(s), η−1
1 (ν)〉 τ→

d
〈s1

n+1, ν
1
n+1〉

to a run, say, γ′1. Let α′ = α(τ, d). According to Lemma 2 (iii), for
the run γ′1, we can find a unique morphism (µ′1, η

′
1) : T α′ → T1 in

T T SIbarbed. Using Lemma 2 (i), we may conclude that there is the
only run r′ in T α′ , generating α′ and ending in the final τ -reachable
configuration, say, 〈s′, ν ′〉 of T α′ . By the construction of T α and T α′ ,
there is the only morphism (f, ηf ) : T α → T α′ in Pbarbed. Thus, we
have the commuting diagram
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T1 T α
(µ1,η1)oo (µ2,η2) //

(f,ηf )

²²

T2

T α′
(µ′1,η′1)

aaBBBBBBBB

Due to R being a path-Pbarbed-bisimulation, there exists a morphism
(µ′2, η

′
2) : T α′ → T2 such that ((µ′1, η

′
1), (µ

′
2, η

′
2)) ∈ R and (µ2, η2) =

(µ′2, η
′
2)◦(f, ηf ). According to Lemma 2 (iii), for (µ′2, η

′
2), we can find a

unique run γ′2 in T2, generating α′. Clearly, γ′i is a (µ′i, η
′
i)-image of r′,

for all i = 1, 2. Hence, γ′2 is an extension of γ2 by the τ -timed transition
〈µ2(s), η−1

2 (ν)〉 τ→
d
〈µ′2(s′), η′−1

2 (ν ′)〉. From the construction of B, it fol-

lows that (〈s′1, ν′1〉, 〈s′2, ν ′2〉) ∈ B, where 〈s′2, ν′2〉 = 〈µ′2(s′), η′−1
2 (ν ′)〉.

– 〈s2, ν2〉 τ→
d
〈s′2, ν ′2〉 in T2. The proof is symmetric to that of the previ-

ous case.

– 〈s1, ν1〉 σ→
d

in T1 for some σ ∈ Σ. According to Lemma 2 (iv), for

the run γ1 we can find a unique morphism (µ′1, η
′
1) : T α(σ,d) → T1

in T T SIbarbed. By the construction of T α and T α(σ,d), there is the
only morphism (f, ηf ) : T α → T α(σ,d) in Pbarbed. Thus, we have the
commuting diagram

T1 T α
(µ1,η1)oo (µ2,η2) //

(f,ηf )

²²

T2

T α(σ,d)

(µ′1,η′1)

ccGGGGGGGGG

Due to R being a path-Pbarbed-bisimulation, there exists a morphism
(µ′2, η

′
2) : T α(σ,d) → T2 such that ((µ′1, η

′
1), (µ

′
2, η

′
2)) ∈ R and (µ2, η2) =

(µ′2, η
′
2)◦ (f, ηf ). It is obvious that 〈f(s), η−1

f (ν)〉 is a final τ -reachable
configuration of T α(σ,d). Due to the construction of T α(σ,d), we may
conclude that 〈f(s), η−1

f (ν)〉 σ→
d

in T α(σ,d). According to Lemma 1,

we get that 〈µ′2(f(s)), η′−1
2 (η−1

f (ν))〉 σ′→
d

in T2 for some σ′ ∈ Σ. Since

(µ2, η2) = (µ′2, η
′
2) ◦ (f, ηf ) we have

〈µ′2(f(s)), η′−1
2 (η−1

f (ν))〉 = 〈µ2(s), η−1
2 (ν)〉 = 〈s2, ν2〉.

– 〈s2, ν2〉 σ→
d

in T2 for some σ ∈ Σ. The proof is symmetric to that of the

previous case.

♦
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6. Decidability

In this section, we consider the decidability questions for Pbarbed-openness
of a morphism and for the timed barbed bisimilarity in the setting of finite
timed transition systems with invariants, i.e. systems with a finite set of
states and for which all constants referred to in clock constraints and in
invariants are natural valued. The subclass of finite timed transition systems
with invariants is denoted by T T SIN.

As for many existing results for timed models, including the results con-
cerning verification of real-time systems, our decision procedure relies heav-
ily on the idea behind regions [1] which essentially provide a finite description
of the state-space of timed transition systems with invariants.

Given a finite set of clock variables V and an integer constant c, a region
is an equivalence class of the equivalence relation ' over clock valuations,
where ν ' ν ′ iff

• for each x ∈ V , bν(x)c = bν ′(x)c or both ν(x) > c and ν(x) > c,

• for each pair x, y ∈ V such that both ν(x) ≤ c and ν(y) ≤ c,
fract(ν(x)) ≤ fract(ν(y)) iff fract(ν ′(x)) ≤ fract(ν ′(y)),

• for each x ∈ V such that ν(x) ≤ c, fract(ν(x)) = 0 iff fract(ν ′(x)) =
0.

For a clock valuation ν, let [ν] denote the region to which it belongs. Let
RV,c denote the (finite) set of regions associated with V and c. Given the
regions reg, reg′ ∈ RV,c, reg′ ∈ Reach(reg) iff there exists ν ∈ reg and
d ∈ R such that ν + d ∈ reg′. Finally, for a finite timed transition system
with invariants T , an extended configuration is defined as any pair 〈s, reg〉,
where s ∈ S and reg ∈ RV,c. An extended configuration 〈s, reg〉 is called
τ -reachable if 〈s, ν〉 is a τ -reachable configuration for some ν ∈ reg.

We can now give a characterization of Pbarbed-open maps in terms of
extended configurations.

Theorem 5. Consider finite timed transition systems with invariants T =
(S, s0,Στ , V, T, I) and T ′ = (S′,Στ , s

′
0, V

′, T ′, I ′) and associated regions de-
fined with respect to some integer constant greater than or equal to the largest
constant referred to in transition constraint expressions and in invariants in
T and T ′. A morphism (µ, η) : T → T ′ is Pbarbed-open iff for any τ -
reachable extended configuration 〈s, reg〉 of T and any reg′ ∈ Reach(reg),
such that ∀reg′′ ∈ Reach(reg) if reg′ ∈ Reach(reg′′) then ‖η−1(reg′′)‖V ′ ⊆
‖I ′(µ(s))‖V ′, the following conditions hold:

• whenever there is a transition µ(s) τ→
δ′,λ′

s′1 in T ′, such that
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‖η−1(reg′)‖V ′ ⊆ ‖δ′‖V ′ and ‖η−1(reg′)[λ′ → 0]‖V ′ ⊆ ‖I ′(s′1)‖V ′ ,

there exists a transition s
τ→

δ,λ
s1 in T such that µ(s1) = s′1, ‖reg′‖V ⊆

‖δ‖V , λ′ = η−1(λ), ‖reg′[λ → 0]‖V ⊆ ‖I(s1)‖V and ∀reg′′ ∈ Reach(reg)
if reg′ ∈ Reach(reg′′) ⇒ ‖reg′′‖V ⊆ ‖I(s)‖V .

• whenever there is a transition µ(s) σ′→
δ′,λ′

s′1 in T ′ for some σ′ ∈ Σ such

that ‖η−1(reg′)‖V ′ ⊆ ‖δ′‖V ′ and ‖η−1(reg′)[λ′ → 0]‖V ′ ⊆ ‖I ′(s′1)‖V ′,
there exists a transition s

σ→
δ,λ

s1 in T for some σ ∈ Σ such that

‖reg′‖V ⊆ ‖δ‖V , λ′ = η−1(λ), ‖reg′[λ → 0]‖V ⊆ ‖I(s1)‖V and
∀reg′′ ∈ Reach(reg) if reg′ ∈ Reach(reg′′) ⇒ ‖reg′′‖V ⊆ ‖I(s)‖V .

Proof. Follows from Theorem 2, Proposition 3 of [13] and the property
that if one clock evaluation in a region satisfies an invariant, then all the
clock evaluations of that region satisfy the invariant. ♦

Notice that Theorem 5 immediately implies the following decidability
result of Pbarbed-openness of a morphism between two finite timed transition
systems with invariants, because the number of regions over the set of clocks
V with a constant c, is |V | ! ∗ 2|V | ∗ (2c + 2)|V |.

Corollary 1. Given T , T ′ ∈ T T SIN and a morphism (µ, η) : T → T ′,
Pbarbed-openness of (µ, η) is decidable.

In order to establish decidability of the timed barbed bisimulation, we
need to prove the following fact.

Theorem 6. Given two timed transition systems T1 and T2 from T T SIN,

if there exists a span of Pbarbed-open morphism of the form T1
(µ1,η1)←− T0

(µ2,η2)−→
T2, then there exists a span of Pbarbed-open morphisms of the form T1

(µ′1,η′1)←−
T (µ′2,η′2)−→ T2, where T is a timed transition system with invariants from
T T SIN and its size is bounded by the size of T1 and T2.

Proof. Assume that T1 and T2 are timed transition systems with invariants

from T T SIN and T1
(µ1,η1)← T0

(µ2,η2)→ T2 is a span of Pbarbed-open morphisms.
Construct a timed transition system with invariants T = (S, s0,Στ , V, T, I)

and two morphisms (µ′i, η
′
i) : T → Ti (i = 1, 2) as follows:

• S = S′ ∪ S′′, where
S′ = {(s1, s2) ∈ Sτ (T1) × Sτ (T2) | ∃s ∈ Sτ (T0) ¦ µ1(s) = s1, µ2(s) =

s2}, S′′ = {s(s1,δ1,λ1,I1,s2,δ2,λ2,I2) | (s1, s2) ∈ S′, s1 σ′→
δ1, λ1

s′1 in T1,
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I1(s′1) = I1, s2 σ′′→
δ2, λ2

s′2 in T2, I2(s′2) = I2 and σ′, σ′′ ∈ Σ}. Define the

mappings µ′i : T → Ti as µ′i((s
1, s2)) = si (i = 1, 2).

• s0 = (s1
0, s

2
0),

• V = V1
⊎

V2, where V1
⊎

V2 is the disjoint union of the sets V1 and V2.
Define the mappings η′i : Vi → V (i = 1, 2) as injections,

• T = T ′ ∪ T ′′, where
((s1, s2), τ, δ1[η′1(x)/x]∧δ2[η′2(x)/x], η′1(λ1)∪η′2(λ2), (s

′1, s
′2)) ∈ T ′ ⇐⇒

(s1, s2), (s
′1, s

′2) ∈ S′, s1 τ→
δ1, λ1

s
′1 and s2 τ→

δ2, λ2

s
′2, and

((s1, s2), σ, δ1[η′1(x)/x] ∧ δ2[η′2(x)/x], η′1(λ1) ∪ η′2(λ2),
s(s1,δ1,λ1,I1,s2,δ2,λ2,I2)) ∈ T ′′ ⇐⇒ (s1, s2) ∈ S′, s(s1,δ1,λ1,I1,s2,δ2,λ2,I2) ∈
S′′;

• I((s1, s2)) = I1(s1)[η′1(x)/x]
∧

I2(s2)[η′2(x)/x] for all (s1, s2) ∈ S′ and
I(s(s1,δ1,λ1,I1,s2,δ2,λ2,I2)) = I1[η′1(x)/x]

∧
I2[η′2(x)/x] for all

s(s1,δ1,λ1,I1,s2,δ2,λ2,I2) ∈ S′′.

Clearly, T is a timed transition system with invariants from T T SIN, more-
over, the size of T is bounded by the size of T1 and T2, because |S′| ≤
|S1| ∗ |S2|, |S′′| ≤ |S1| ∗ |S2| ∗ |T1| ∗ |T2| ∗ |S1| ∗ |S2|, |V | = |V1| + |V2| and
|T | ≤ |T1| ∗ |T2|.

Next, we shall check that (µ′i, η
′
i) (i = 1, 2) is a morphism. To verify this

fact, we consider the conditions of Definition 4.

• Obviously, we have µ′i((s
1
0, s

2
0)) = si

0.

• Let (s1, s2) ∈ Sτ (T ). Then we have

I((s1, s2)) = I1(s1)[η′1(x)/x]
∧

I2(s2)[η′2(x)/x].

This implies ‖I((s1, s2))‖V ⊆ ‖Ii(si)[η′i(x)/x]‖V = ‖Ii(µ′i(s
i))[η′i(x)/x]‖V .

• Assume that (s1, s2)
τ→

δ, λ
(s′1, s

′
2) in T . From the construction of T , it

follows that s1
τ→

δ1, λ1

s′1, s2
τ→

δ2, λ2

s′2, δ = δ1[η′1(x)/x] ∧ δ2[η′2(x)/x], and

λ = η′1(λ1) ∪ η′2(λ2). Clearly, µ′i((s1, s2)) = si and µ′i((s
′
1, s

′
2)) = s′i.

Hence, we have µ′i((s1, s2))
τ→

δi,λi

µ′i(s
′
1, s

′
2) in Ti, and, moreover:

1. (η′i)
−1(λ) = {xi ∈ Vi | η′i(xi) ∈ λ} = {xi ∈ Vi | η′i(xi) ∈ η′1(λ1) ∪

η′2(λ2)} = {xi ∈ Vi | η′i(xi) ∈ η′i(λi)} = λi,
2. ‖δ‖V = ‖δ1[η′1(x)/x] ∧ δ2[η′2(x)/x]‖V ⊆ ‖δi[η′i(x)/x]‖V .
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• Assume that (s1, s2)
σ→

δ, λ
s∗. From the construction of T , it follows that

s∗ = s(s1,δ1,λ1,I1,s2,δ2,λ2,I2) and there exist transitions (s1)
σ1→

δ1, λ1

s′1 in T1

and (s2)
σ2→

δ2, λ2

s′2 in T2 for some σ1, σ2 ∈ Σ, such that δ = δ1[η′1(x)/x]∧
δ2[η′2(x)/x], λ = η′1(λ1) ∪ η′2(λ2), I1 = I1(s′1) and I2 = I2(s′2). Since
µ′1((s1, s2)) = s1, we have µ′1((s1, s2)

σi→
δi, λi

s′i in Ti. Moreover, we get

the following:

1. (η′i)
−1(λ) = λi,

2. ‖δ‖V = ‖δ1[η′1(x)/x] ∧ δ2[η′2(x)/x]‖V ⊆ ‖δi[η′i(x)/x]‖V ,
3. ‖I(s∗)‖V = ‖I1[η′1(x)/x]

∧
I2[η′2(x)/x]‖V ⊆ ‖Ii[η′i(x)/x]‖V =

‖Ii(s′i)[η
′
i(x)/x]‖V .

Thus, (µ′i, η
′
i) (i = 1, 2) is a morphism.

Finally, we shall show that (µ′i, η
′
i) (i = 1, 2) is a Pbarbed-open morphism.

Take an arbitrary 〈(s1, s2), ν〉 ∈ Confτ (T ) and ν ′ = ν + d such that ∀d′ :
d′ < d ⇒ ‖η′−1

i (ν + d′)‖Vi ∈ ‖Ii(µ′i((s1, s2)))‖Vi . Due to the definition of T ,
there exists s ∈ Sτ (T0) such that µj(s) = sj for all j = 1, 2. It is easy to
check that 〈s, ν〉 is a τ -reachable configuration in T0, where η−1

i (ν) = η′−1
j (ν)

for all j = 1, 2.
Assume that µ′i((s1, s2)) = si

σi→
δi,λi

s′i is a transition in Ti such that

‖η′−1
1 (ν ′)[λi → 0]‖Vi ∈ ‖Ii(s′i)‖Vi

and ‖η′−1
i (ν ′)‖Vi ∈ ‖δi‖Vi . We consider only the case with σi = τ (the proof

of the case with σi ∈ Σ is similar). Since (µi, ηi) is a Pbarbed-open morphism,
from Theorem 2 it follows that there exists a transition s

τ→
δ0,λ0

s′ in T0 such

that µi(s′) = s′i, ‖ν + d‖V0 ∈ ‖δ0‖V0 , ‖(ν + d)[λ0 → 0]‖V0 ∈ ‖I0(s′)‖V0 , λ0 =
η−1

i (λi) and, for all d′ such that d′ < d, it holds that ‖ν + d′‖V0 ∈ ‖I0(s)‖V0 .
Next, we may conclude that there is a transition µ3−i(s)

τ→
δ3−i,λ3−i

µ3−i(s′)

in T3−i such that
µ3−i(s) = s3−i, µ3−i(s′) = s′3−i, ‖δ0‖V0 ⊆ ‖δ3−i[η−1

3−i(x)/x]‖V0 ,
λ3−i = η−1

3−i(λ0) and ‖I0(s′)‖V0 ⊆ ‖I3−i(µ3−i(s))[η3−i(x)/x]‖V0 ,
because (µ3−i, η3−i) is a morphism. This means that ‖(η′−1

3−i(ν
′)[λ3−i →

0]‖V3−i ∈ ‖I3−i(s′3−i)‖V3−i and ‖η′−1
3−i(ν

′)‖V3−i ∈ ‖δ3−i‖V3−i .
Due to the construction of T , we get a transition (s1, s2)

τ→
δ,λ

(s′1, s
′
2) in T ,

where δ = δ1[η′1(x)/x]∧δ2[η′2(x)/x] and λ = η′1(λ1)∪η′2(λ2). It is not difficult
to show that µ′i((s

′
1, s

′
2)) = s′i, ‖ν ′‖V ∈ ‖δ‖V , ‖ν ′[λ → 0]‖V ∈ ‖I((s′1, s

′
2))‖V ,

λi = η′−1
i (λ) and, for all d′ such that d′ < d, it holds that ‖ν + d′‖V ∈

‖I((s1, s2))‖V .
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Thus, by Theorem 2, (µ′i, η
′
i) is a Pbarbed-open morphism. ♦

Corollary 2. Given two finite timed transition systems with invariants T
and T ′ from T T SIN, the timed barbed bisimulation is decidable.

Proof. Follows from Theorem 6 and Corollary 1. ♦

7. Conclusion

In this paper, we have generalized the category-theoretic approaches intro-
duced in the paper [15] to the timed barbed bisimulation on timed transition
systems with invariants illustrating that the bisimulation can also be cap-
tured by the idea of span of open maps and by path bisimilarity. This allows
us to transfer general concepts of equivalences to the model under consid-
eration and to apply general results from the categorical setting (e.g. exis-
tence of canonical models and characteristic games and logics) to concrete
time-sensitive equivalences. It is also shown that the decidability result con-
cerning timed bisimulation from [13] can be directly adopted for the timed
barbed bisimulation.

In the future, we plan to extend the obtained results to other classes of
timed models (e.g. time Petri nets, networks of timed automata, etc.). In
particular, relying on the paper [15], we contemplate to adapt the unfolding
methods for time Petri nets from [5] and open maps based characteriza-
tions for timed event structures from [23] to transfer the general concept of
bisimulation to the timed models mentioned above.
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