Bull. Nov. Comp. Center, Comp. Science, 38 (2015), 67-90
(© 2015 NCC Publisher

Programming paradigms in higher education

L. V. Gorodnyaya, T. A. Andreyeva

Abstract. The paper concerns a topical problem of System Informatics, namely,
the study and development of the methods of analysis, comparison and formal defi-
nition of the programming paradigms. The importance of this topic arises from the
increase in the number of new-generation programming languages oriented towards
the application and development of modern information technologies.

Keywords: programming languages, programming paradigms, programmers’ train-
ing, educational programming languages, language concepts, implementation struc-
tures, parallel programming, very high-level languages.

1. Introduction

This paper introduces the variety of programming paradigms (PPs) and ap-
proaches to their support in programming languages and systems (PLSs),
focuses on historically important and conceptual programming languages
(PLs) that demonstrate the key ideas and practical effects of their realiza-
tion. The programming styles and languages characteristic to the paradigms
under consideration reflect the evolution of the programming technologies
(PTs) used for solving problems in System and Applied Informatics: from
means of machine programming on the verge of hardware to very-high-
level languages and high-performance programming systems (PSs) including
means for supporting the software life cycle (SLC).

Programming paradigms were the central point of the 1978 ACM Turing
Award Lecture by Robert Floyd, where he drew attention to the importance
of this concept in the context of programmers’ training [10]. Being the
authority who has laid foundations of the Program Analysis and Program
Verifications theories and created several very effective methods of data
processing, Floyd believed that it was important to highlight the PP’s in-
fluence upon the success of programming projects. He emphasized the role
of studying various PPs and ways of their support in PLs. To start with,
these are top-down design, step-by-step solution improvement, and problem
reduction to simpler subproblems. Next, there occurs a shift from specific
machine-level objects and functions to more abstract ones that are helpful
for thinking through top-down projected modules.

From his programming experience, Floyd has made an interesting ob-
servation: the programming art includes the enrichment of the paradigm
repertoire in use. Floyd’s reasoning was guided by Thomas Kuhn’s works
and discussions with authorities in Programming (Edsger Dijkstra, Niklaus



68 L. V. Gorodnyaya, T. A. Andreyeva

Wirth, David Parnas, Donald Knuth, John Cocke, and Marvin Minsky).
Floyd analyzed the effect of various popular programming languages (FOR-
TRAN, Lisp, APL, Algol, Planner, COBOL, and Pascal). His attention
was drawn to the possibility of writing the recursive co-programs formu-
lated conveniently in terms of non-determinism whose ineffectiveness can be
mastered in practice by macro technique. Robert Floyd highly appreciated
numerous examples built at MIT, as they showed the potential of program-
ming in Lisp, and, most of these, the transition from elementary lists to
universal data structures (DSs) that can process programs as data.

Robert Floyd aimed the study of Programming at acquiring skills in solv-
ing problems that arise at all phases of a programming project. Such teach-
ing can be based on the studying of the semantic support of paradigms at
the system implementation level and of paradigm manifestations in the soft-
ware life cycle. During three decades since Robert Floyd’s The Paradigms
of Programming lecture, the number of various programming languages and
systems has increased from hundreds to tens of thousands; while the num-
ber of paradigms is not so large: different authorities count from twenty to
forty paradigms. There are reasons to believe that the need for the enrich-
ment of the paradigm repertoire in programming pointed out by Floyd is
related to the dynamics of knowledge representation specific to succession
of bottom-up and top-down stages in problem specification.

Many famous scientists have made great contribution to the paradig-
mization of programming languages. Among them are such coryphaei in In-
formatics as John McCarthy, John Backus, Peter Naur, Jacob T. Schwartz,
Edsger Dijkstra, Niklaus Wirth, Robert Floyd and others [3, 7, 10, 29, 34].
Among Russian scientists, it is necessary to mention Andrey Ershov and
Sviatoslav Lavrov [8, 56]. A preview of the problem of computer languages
classification was made in [2, 42, 43].

It can be pointed out that, in the period from Computing Curricula 2001
[65] to Computer Science Curricula 2013 [54], recommendations show ten-
dencies to shift the teaching of programming paradigms down towards the
first year of education and to pay more attention to parallel programming.
At Novosibirsk State University, these tendencies are reflected by the Pro-
gramming paradigms course [60], which covers the concept of paradigms, the
methods of definition of programming languages and systems, the abstrac-
tion levels of programming languages including low-level languages, and the
main programming paradigms of high-level and very-high-level languages for
parallel programming. Also, the paper describes an approach to the teach-
ing of programming paradigms and the educational programming languages
and systems required for this teaching.



Programming paradigms in higher education 69

2. Conception

Different approaches to information processing that were formed and accu-
mulated while creating and applying the programming languages and sys-
tems are called programming paradigms. Today, experts recognize more
than a score of PPs. Many PLs can be referred to five to eight paradigms.
The study and clear classification of the already existing and new PPs must
help to reasonably choose and design computer languages while forming
programming projects and developing IT [5, 16, 17, 20, 36].

The evolution of PPs reflects the usability of language concepts and im-
plementation structures availed in creating complex programming systems.
It must be said that the vogue rate of PLs differs from the rate of PLs availed
in successful projects. Some difficulties in the research into PPs arise from
the ambiguous classification of programming means. Many languages refer
to several paradigms; sometimes, a language is unreasonably affiliated with
a vogue paradigm. That is why we not only compare paradigms by DSs and
admissible means of their processing but also take into consideration the cri-
teria and boundaries of their successful application. Moreover, we consider
requirements imposed on the exploration level of the problems solved and
the abstraction level of the concepts used [49, 51, 60].

For example, low-level programming is characterized by the feasibility to
implement effective solutions at the cost of using common access to poorly
protected DSs. Meanwhile, the peculiarity of high-level languages is a DS
hierarchy whose components are protected against uncontrolled interactions
of independently created program fragments. The very-high-level means
(specification languages, parallel languages, knowledge representation sys-
tems and so on) focus on the completeness of the space of implementation
solutions. Complexity of the space is mastered by factorization over separate
directions of problems in the field of design and application of long-living
programs [26, 37].

Besides educational, amateur, and experimental programs, the world of
programming has produced a wide spectrum of various instruments for vari-
ous conditions of program design and application. Independently of this va-
riety, there exists a purely programming line of increasing the programming
productivity. The main milestones of this line are bound to the crystalliza-
tion of certain PPs; they look like creation of certain PLs, invention of new
ways of PS implementation, nascence of new PT's:

1. Creation of FORTRAN was accompanied by the incipience of the sep-
arate compilation technology.

2. Lisp gave life to the symbolic computation technology and functional
programming.

3. Development of C as an operation system implementer resulted in the



70 L. V. Gorodnyaya, T. A. Andreyeva

machine-dependent porting technology.

4. Usage of the educational language Pascal helped to formulate the max-
ims of structural programming, which plays the role of the method-
ologically dominant paradigm in educational programming.

5. PROLOG is bound to the logical programming paradigm and to imple-
mentation means for logical derivations based on the partial solution
definition sufficient for practice.

6. Process organization in Simula67 and object implementation in
SmallTalk80 impelled object-oriented programming and the technol-
ogy of program decomposition over the class hierarchy, which allows
extensions that do not distort previously debugged definitions.

Most of these approaches, except for Lisp, regard a program as a static
object. Nonetheless, in reality, the program develops and can be partly
modified.

We have to point out that many authors of modern PTs do not approve
of the authorities’ recommendations about the programming style and tech-
nique because of the misconception that these make programming practice
helpless. Here one must keep in mind that I'Ts develop quickly and so their
potentialities are recognized later. Additionally, since parallel programming
is laborious, methods for verifying compilation and optimization of pro-
gram components should be developed. Implementation of these methods
requires means for macro-based code generation and automated program
transformations that support property validation for the combinations of
the components validated earlier [47, 52, 53].

In general, the process of program development can be represented as a
sequence of steps in three directions:

e refinement of the problem’s statement and solution methods,
e improvement of the solution’s program text,

e augmentation of the data set used as debugging tests.

If such a sequence achieves a state where the refined entities correspond,
then debugging is claimed to be over. Making the debug process convergent
is the most important problem of a programming technology. When the
inter-accordance is achieved, the problem’s final refined statement can be
both a generalization and a restriction of the initial problem.

It should be noted that the extending class of programming problems
more and more actively attempts to cover application fields for which no
programmable algorithms are available yet. Solution methods for such prob-
lems are on the level of preliminary study. It is known that the progress of
the study level of problem statements is not as monotonous as the growth



Programming paradigms in higher education 71

of the implementation laboriousness of program versions. Namely, it is easy
to design a prototype in order to show the advantages of an idea. It is much
more difficult, however, to create an experimental testing field for the full
exploration and valuation of the problem’s solution means and methods and
for the determination of its implementation limits. As a rule, the labori-
ousness of the practical version is intuitively underestimated, which leads to
a shortage of explorations and often results in the necessity to repeatedly
verify the problem solution.

3. Programming languages and systems

A programming paradigm is a tool forming the professional conduct that
guarantees the reliability of the ITs in mass use. The Vienna method for
the definition of programming languages has thoroughly studied the prob-
lem of PLs and PSs description. This method was developed in the late
1960s. Its main idea is the definition of programming language semantics
by an abstract syntax (AS) and an abstract machine (AM) [28]. Languages
that share AS are semantically equivalent: they are comparable in terms
of the laboriousness of program debugging. There are two styles of the PL
semantics definition: the semantics of value computations and the semantics
of memory alterations. Specifics of the compilation process are complicated
even for simple languages; therefore, the specification of the compilation
process is often described in terms of language-oriented abstract machines
(AMs) [21]. Programming languages that share an AM are semantically
equipotent: they provide a basis for the comparable effectiveness of compu-
tation processes.

While studying the requirements for program compilation and analysing
the compiler definition schemes, one can notice that, for many PLs, such a
definition can be presented by means of the same PL. There are two differ-
ent approaches to the organization of the compilation process: to select as a
unit to be compiled either the whole program or only some of its functions
or procedures. The compilation of the whole program creates an indepen-
dently executable code whose functioning depends on the input data only.
The separate compilation of functions and procedures assumes that a sub-
routine’s executable code is a reusable component to be embedded in various
programs. Including subroutines in a PS implements the problem-oriented
extension of a PL.

The study of the various schemes of partial, mixed, and lazy evaluations
and meta-compilation shows that it is expedient to combine such schemes
within one PS in order to exploit their advantages on the different explo-
ration levels of the problems solved. Partial evaluation allows execution of
a program with a lack of input data. Operations which have data are exe-
cuted and a residual program is created: it can be executed later with the



72 L. V. Gorodnyaya, T. A. Andreyeva

rest of the data to produce the same result as the initial program could have
produced from a full data set. Mixed evaluation allows an arbitrary marking-
out of the program into executable and suspended parts. The routes not
blocked by suspended actions are executed and a residual program is cre-
ated: it can be executed after the suspended actions have been de-blocked.
Lazy evaluation is only performed if the operation result is necessary for
other actions; the results are saved in memory to avoid further recalcula-
tions. Meta-compilation processes a program together with its typical data
set [1, 19, 23, 31, 35].

Traditionally, a programming system may contain an interpreter-compiler
pair. Any interpreter contains elements whose implementation can be de-
scribed in machine terms: memory structure, binary tree implementation,
and so on. Any compiled program contains interpretable components, for
example, calls to a file system and other OS elements. In practice, the
advantages of interpretation become evident when a program is being de-
bugged, while these of the compilation are obvious when a ready program
is being exploited. However, this topic is worth a more detailed discussion.

To classify PPs, it is important to define the smallest educational imple-
mentation kernel. As a result, the set of all PLs can be split into the classes
of implementationally similar and substantially comparable languages hav-
ing the same (or, to be more exact, equivalent) semantic basis. Sometimes,
the PL’s kernel contains some concepts that are not represented directly in
the PL implemented. Such concepts expand a language and have a consider-
able influence on understanding the mechanisms of effective programming.
The implementation of experimental educational programming languages
and systems often uses unwinding, which minimises initial laboriousness by
excluding the formal redundancy of the PL’s means. A kernel can be sepa-
rated out; all the rest is programmed methodically on its basis.

The analysis of PPs is based on implementation pragmatics (IP). IP
affects all levels of the PL definition, but mainly represents solutions in a
certain memory management. This specifies solutions and maxims declared
in the AM’s definition. First of all, the memory protection solutions dif-
fer from the memory finiteness-considering solutions. The implementation
pragmatics that supports different PLs includes:

e In functional programming (FP): lists, garbage collector, atom prop-
erty lists;

e In imperative-procedural programming (IPP): side effect, vectors, data
types (variable — value);

e In logical programming (LP): differential lists, serial search, back-
tracking;

e In object-oriented programming (OOP): references, virtual and ab-
stract methods and classes, multiple inheritance.



Programming paradigms in higher education 73

PLs that share an IP are implementationally equivalent and comparable
in terms of the laboriousness of PS implementation. Implementation prag-
matics is a specification of operational semantics, starting from four main
semantic systems (monads): data procession, data storage, data structure,
and data processing control in programming systems. Moreover, to predict
the efficiency of a PP selected, exploitational pragmatics (specific applica-
tion conditions) is also taken into account as an expert valuation of the
requirements imposed on the results of using the PP.

4. Abstraction levels

On studying the method for defining the LP’s paradigmal characteristic in
the form of a specification of the interactions of the main semantic systems’
(such as data processing, data storing, data structuring, and data procession
controlling), the following three paradigm levels are distinguished, showing
the extension of the language support of the program life cycle and an in-
crease in the implementation complication of a PL definition:

e low-level coding,
e high-level programming,

e programming on the base of very high-level languages.

The main characteristic of low-level coding is the hardware approach
to computer management, aimed at the access to any hardware resources.
The main attention is paid to hardware configuration, state of the memory,
control-transferring commands, the event queue, exceptions and failures,
reaction time, and reaction success [5, 24, 32, 33]. To store data and pro-
grams, the global memory and automaton model of data procession control
are used.

High-level programming allows the definition of data structures that re-
flect the nature of a problem to be solved and actively uses the domain hier-
archy of data structures and their processing procedures. This hierarchy fol-
lows the structure-logical managing model that allows the convergence of the
program debugging process. For a short time, even in micro-programming,
Pascal and C got the upper hand over the assembly language as a preferable
tool.

Programming in very high-level languages is aimed at the representation
of regular, effectively implementable data structures whose processing allows
transformations of data and program representation, use of similarities and
constructions that guarantee high computing productivity and reliability of
the development of programs fitted for variations of architecture solutions.

The semantic system concept was introduced by Sergey Lavrov [56].



74 L. V. Gorodnyaya, T. A. Andreyeva

For each paradigm, there exist programming languages corresponding
to it (the so called referring, or relating languages); in many PLs, several
paradigms are represented or implemented. On studying and specifying the
paradigmal characteristics of such languages, it is natural to represent the
language definition as an aggregation of monoparadigmal sublanguages that
are fragments of the initial language.

As a rule, the actively exploited programming languages and systems
(PLSs) absorb tools from different paradigms, which impedes their study. To
be precise, almost any PL allows a package library that supports the required
paradigm. It is convenient to use definitions of several monoparadigmal
languages in order to ascertain to what extent the language studied supports
the paradigm. Some conceptual languages were selected while the main
programming paradigms were described. The comparative description of the
exploitational and the implementational pragmatics of the main paradigms
results in the following method of the definition of a PL’s paradigm:

e The semantic basis definition: decomposition of the language into frag-
ments in order to define the basic means of the language and its im-
plementation kernel.

e Decomposition of the language’s semantic basis into main semantic
systems with the least complexity and probably their description in
terms of the conceptual languages.

e The normalized definition: determination of the language’s AM for-
mally sufficient for building extensions equivalent to the initial lan-
guage.

e Comparison of the obtained definition with the descriptions of the
known paradigms and conceptual languages.

e Determination of the language level and its place in the life cycle of
programs and programmers’ activities (goals and tasks) and also of
the base languages exploited for its design and implementation as rec-
ommendations for the selection and application of the PL and its PS.

In Russia, the studies of the paradigmal characteristics of programming
languages and systems lay in Andrey Ershov’s sphere of influence and origi-
nate from discussions held in the 1970s at conferences and seminars of vari-
ous experimental projects aimed at the development of the means, methods,
and techniques for an effective and reliable implementation of a program-
mer’s toolkit. At that time, the number of languages to study was a little
more than two or three hundred and so it was much easier to decide on their
key ideas. Now the issue of a classification of programming languages, com-
puter languages, and information systems has become much more urgent

42, 64].



Programming paradigms in higher education 75

5. Low-level languages

Programming (or coding) in the low-level languages (LLLs) is associated
with one-level data structures (DSs) determined by architecture and hard-
ware?. Data and programs are stored in the common global memory with
an arbitrary access. In principle, the utmost program effectiveness is achiev-
able, but program debugging is complicated by the low start — high finish
combination. In other words, it is easy to succeed in first exercises, but it is
difficult to create a program product and to maintain it competently. Distin-
guishing for LLLs is univocal accordance between a program and the process
generated by its running. Therefore, the LLL’s operational semantics can
be analysed on the level of an abstract machine, which fully determines the
characteristics of programs and processes designed with the help of a LLL.
As a rule, three registers are enough to define the abstract machine of an
LLL: the “result”, the “program”, and the “memory” (or the “result”, the
“context”, and the “program”).

Traditionally, LLLs include machine-dependant assembly languages,
macro processors, machine-oriented languages, and script languages [5, 24,
32, 33]. For these LLLs, it is characteristic to signify all actions explicitly.
A program is an arbitrary mixture of commands, which can occupy almost
any position. All fragments of data and programs are accessible. For data
and data structures, all basic means of their representation in memory and a
control scheme of their processing are predefined; this helps to refer a LLL
clearly to a certain paradigm. Other approaches to the machine-oriented
effective programming are also interesting.

Data processing with the help of programs written in assembly languages
comes to an imperative machine-oriented model for controlling the execution
process of program-generated actions. An assembly language operates such
data as addresses and values. The paradigm of low-level coding in assembly
languages is aimed at considering any specific features of computer archi-
tecture. Architecture is often defined as a set of user-accessible resources.
These are the command system, the common registers, the processor status
word, and the address space. The assembling process consists of

a) reserving memory for the sequence of commands making up the pro-
gram being assembled,

b) matching identifiers used in the program with their memory addresses,

¢) mapping assembly commands and identifiers onto their machine equiv-
alents.

Programming in an assembly language requires knowledge of commands
in use, their operands and results. Low-level programming is successful

2The assembly language Elbrus and autocode Engineer are counter-examples showing
that the pure hardware-based estimation of the language level is insufficient.



76 L. V. Gorodnyaya, T. A. Andreyeva

if computer architecture has been studied in detail, which finally leads to
its understanding. In general, maxims and ways of programming do not
depend on the language. The main requirement is the ability to think logi-
cally. The imperative programming style of LLLs is inherited by most high
level programming languages (HLLs) supporting procedural-imperative and
object-oriented programming.

Forth gives an example of computations over a stack. It can be regarded
as the kernel language with the possibility of almost unlimited problem-
oriented expansion. A well written program in Forth is a specialized virtual
machine that can be expanded further as the problem statement develops.
The Forth interpreter sorts words by belonging to the dictionary [5]. The
memory processing is based on a stack. The program execution is a dialog
over the stack. Each command “knows” what to get from the stack, what to
transform this into in order to produce the result of the program, and what
results to push onto the stack. The Forth programming system contains the
interpreter-compiler pair, and the compiling technique is highly effective.
The system uses the unified program representations of data and commands:
these are word sequences. Data are positioned before operations that process
them. An operation is a word known to the system. Data are just pushed
onto the stack, and an operation gets them from there, according to the
number of its operands.

The macro technique gives powerful but not always safe means to in-
crease a PL’s expressiveness. For macro processors, the LLL semantics usu-
ally accompanies the string processing tools, in the open procedure style. A
program is a flow of macro definitions and macro calls. Macro names can be
regarded as base means. A macro processor is often exploited together with
an assembler (a macro assembler) and other PLs. Macro expansions can use
local and global variables, nested scopes, and recursion. A macro processor
can be built into a compiler; it can be an autonomous tool of a programming
system, such as a text editor, optimiser or debugger; or it can exist indepen-
dently as a universal general-purpose tool. As an instrument for extending
a programming system, a macro processor must be developable by its na-
ture. The macros’ main assignment in programming systems is to provide
flexibility and portability of programs applied in different conditions. Many
difficulties in such a use of macro technique arise from type-checking on the
source code level. Conceptually, the macro technique is close to the pro-
duction programming style, mark-up languages, and text rewriting systems,
which are actively growing today as hypertext languages for developing sites
and information services. As a matter of fact, Lisp’s special functions de-
fined with the FEXPR and the FSUBR indicators act as macro definitions,
i.e., they perform open argument substitution [29].

The script languages for an OS look like a cross between macro assem-
blers and HLLs. The difference appears in the data processed and processing



Programming paradigms in higher education 77

commands.

e Files play the role of data: files are independently behaving objects
that are subject to the external influence.

e Files do not have to exist during their processing. Files can be used
in several processes simultaneously.

e The command execution is regarded as an event. This event can be
both successful and unsuccessful. Also, there exist external events.

e Reaction to an event is programmed as the event’s handler to be exe-
cuted independently from other handlers: it is a separate process.

e The program of a process can be aimed not at achieving a result in a
finite time but at supporting the ceaseless service of object-processing
tasks.

e A process can be active or postponed. Processes can rival for com-
mon objects. The synchronization of processes and generation of slave
processes are possible.

e The program of a process looks like an object; it is created as a data
element, and can be applied as a command.

e The consequent commands in the program do not have to be executed
in exactly the same order.

e A command can be executed during several time intervals between
which other commands are executed.

As a result, the design of programs for organising the interaction of
processes differs from that of the ordinary sequential programs at a very
deep level and requires the implementation of data structures for the queues
that regulate access to objects. The two most frequently used models are
a supervisor that manages interactions of several processes and an automa-
ton that can multiply itself when processes ramify. In both cases, program
execution comes to an infinite cycle analysing the current events whose ap-
pearance turns on the handlers corresponding to these events. The termi-
nation problem is solved outside the language at the level of basic tools or
externally by interrupts. During its design and debugging, any program is
executed against the background of an operation system that manages the
data input-output processes in order to demonstrate the course of data pro-
cessing. Therefore, the minimum context of a program to be debugged is
the standard input-output accessible by default [33].

Very interesting is the design of the adjustable macro assembler Sigma
aimed at porting programs across different architectures, which can be used
to support architecture-independent highly productive computations.



78 L. V. Gorodnyaya, T. A. Andreyeva

It is not difficult to determine the LLL paradigms: the key idea is ob-
vious, and the semantic systems are more or less isolated in the language
definition. The main difference is in the instantiation of the value concept
and of the spectrum of tools for enlarging the program units.

The data representation and data processing methods amassed in LLLs
were largely inherited by the implementation methods in HLLs, which helps
to localise the study of these methods. The practice of programming in
LLLs is important for education. Universities which prepare highly skilled
programmers and drill winners of international programming contests start
education from teaching programming in assembly languages and in script
languages.

6. Main programming paradigms

While analysing the paradigms of the high-level programming languages
(HLLs), the following characteristics have to be considered:

e To make programs laconic, implicit forms of concept representation
are practised.

e Most often, expressions use a pre-calculation scheme over definite-
size scalars or complex values (first, operands are evaluated; next, the
result of operations is calculated).

e Types of forks and cycles, categories of functions and procedures are
multifarious.

e Data types are constructed according to firm rules set in a PL and are
implemented in accordance with the patterns usual to its PS.

e Schemes of calculation management are often fixed in a PL and are
firmly implemented in its PS.

e Interaction and compliance of means and methods relevant to different
semantic systems but implemented in one PS are defined according
to traditions and precedents; in the code, their implementations are
hidden or scattered and not structured.

e Effectiveness of programming is based on the knowledge of the imple-
mentation methods of the values and handlers of data structures in
memory.

e As arule, the result of a program is scattered over several values; still,
many HLLs have expressions and functions that form only one result.

Standard imperative-procedural programming (IPP) considers informa-
tion processing as a finite sequence of local changes of memory. It is typical
for IPP that the program and wvalues concepts are divided in regard to the



Programming paradigms in higher education 79

static methods of data type checking and program optimisation during com-
pilation. It is natural to realize the common interpretation mechanism for a
standard program as an automaton with separate name tables for variables
that can alter and for labels and procedures that are constant. The result
of a program is formed as a sequence of the alterations of data placed at
certain addresses. Therefore, a programmer has to study thoroughly all side
effects both of the program’s fragment in work and of the adjacent ones.
This has proved to be a serious obstacle against a speed-up.

Functional programming (FP) regards data processing as a composition
of their mappings with the help of universal functions. From this point of
view, a program is no more than a data variant. From a practical stand-
point, in standard PLs, any constructions can be introduced as functions
that augment the initial programming system, which turns them into fully
legal means of the functional approach. Such representation does not mean
that concepts are lumped together: vice versa, it keeps all concept limits
and builds an enveloping space where these concepts are regularized and
can interact in accordance with the formal definitions of different function
categories. In many papers, the correlation between the potentials of the
imperative approach and of the functional one was studied. The formal co-
reducibility (with some minor limitations on the programming technique)
was proved [51]. The functional programming languages (FPLs) are aimed
at the full type checking during the execution of programs that allow dy-
namic analysis, postponed calculations, and an automatic memory manage-
ment (garbage collection).

We ought to point out the difference between the interpretations of FP
maxims formed in the programming theory and practice. This difference
appeared in the 1980s, when standards for Lisp were made; two standards
were approved: “LISP1” for the academic Lisp and “LISP2” for the indus-
trial one. Theoretically, it is sufficient to study purely functional, laconic
program representations. The behaviour of these programs does not de-
pend on side effects and the program result can be obtained by reducing its
representation. The reducing processes can be selected according to the cal-
culation strategy. In practice, the most laborious is program debugging in a
specific programming system supporting a definite calculation strategy and
allowing an explicit management of the program execution. The optimising
compilation can reduce a purely functional program to its formal result, not
generating its executable code.

The imperative organisation of calculations in accordance with the prin-
ciple of immediate and obligatory execution of each command is not always
effective. There exist many non-imperative models of process management.
The processes can be interrupted or postponed and then restored, renewed,
or cancelled. Organisation of such management sufficient to process optimi-
sation and programming is implemented with the help of the so-called lazy,



80 L. V. Gorodnyaya, T. A. Andreyeva

or called-by-need evaluation. The main idea of such evaluation is to reduce
function calls to their calculation receipts that include function closures in
a certain context.

Logical programming (LP) reduces data processing to selecting an ar-
bitrary result-producing composition of definitions (facts, equations, pred-
icates, etc.). Formula processing is the basis: calculations are understood
as operations over a formula. In case of a failure, other definitions are pro-
cessed. Representation of variants is similar to the definition of forks without
a predicate that controls the choice. Its implementation resembles that of
variant records or unions in common HLPLs. As a rule, the concepts of an
algorithm and a program are connected to the determined processes. How-
ever, they do not become very complicated if non-determinism limited by a
finite number of variants (so that at each moment only one of them exists)
is allowed. Such an approach is efficient when solving problems associated
with changing the attitude to problem stating and to valuing its solution
methods in the course of coding, debugging and exploiting the program.

Object-oriented programming (OOP) regards information processing as
partial processing of objects by means of reacting to events with the help
of the methods selected according to the type of data to be processed. The
assortment of private methods used in a program is structured according
to the class hierarchy of the objects to be processed by these methods.
It means that constructions defined in a program can be locally modified
while common schemes of the information procession are fixed. Due to
this, programs can be modified by declaring new classes and by adding new
methods for processing the objects of separate classes without radical al-
teration in the previously debugged program. Thus, the OOP reflects the
evolution of approaches to data structure organisation on the level of prob-
lems and their solving programs, starting from the imperative-procedural
programming paradigm. The OOP introduced concepts of information hid-
ing, inheritance of definitions down the class hierarchy, and implementation
polymorphism of functions and operations.

In shifting from the standard IPP to the OOP, ways of program organi-
sation show radical changes induced by a growth in hardware capacity. The
OOP alters conventional programming in many ways. Instead of creating a
separate program that operates with a bulk of data, one has to cope with
data that have their own behavior while the program is reduced to the inter-
actions of objects, which are a new data category. In order to compare the
OOP and the FP, Paul Graham, in the description of the Common Lisp stan-
dard [13], proposed to consider the model of the object-oriented language
(OOL) embedded into Lisp and gave an 8-line example of OOL implemen-
tation on the basis of hash-tables. As a matter of fact, the inheritance
is provided by a single Lisp feature: the recursive version of GETHASH.
However, in Paul Graham’s opinion, Lisp was always an OOL.



Programming paradigms in higher education 81

The typical formulations of problem statements draw borders between
the domains of different paradigms.

e Imperative-procedural programming: There exists an algorithm for the
solution of a relevant problem. It is necessary to prepare a program for
this algorithm’s implementation with effective spatial-temporal charac-
teristics on an available hardware.

e Functional programming: The knowledge domain is known. It is nec-
essary to select a symbol data representation for this domain and ad-
just a system of universal functions suitable for various data-processing
programs that will solve relevant problems from this domain.

e Logical programming: A collection of facts and relations showing a
relevant problem is given. It is necessary to reduce this collection to
a form sufficient for getting answers to relevant queries about this
problem.

e Object-oriented programming: A hierarchy of classes of objects, which
supports efficient methods of solving problems in some knowledge do-
main, is available. It is necessary to easily adjust this hierarchy to
solving new relevant problems from this domain or from its extension
or variant.

Practical problems often include all these wordings as subproblems, which
results in supporting different paradigms simultaneously while PLs are de-
signed and PSs are built. We ought to draw attention to the fact that
the most successful and long-living programming languages and systems are
multi-paradigmal.

The main difficulty in shifting to new programming paradigms is the lure
of an easy-way, the tendency to simulate quickly the accustomed program-
ming means and methods. A more effective way is to study them as alien
worlds. It is easier to accept unusual ideas as a self-standing theory or an
intellectual game, which not only leads to known and interesting problems
but also provides an advantage of elegant solutions and deep understanding.

In a PL, one can recognize the main paradigm and the additional ones.
In referent PLs, parts that fully correspond to one paradigm can be identi-
fied. Descriptions of the main HLPL paradigms are easily simulated by FP
means. The main differences are in the variations of the discipline of access
to separate name categories. Parts referent to an additional PP can play
the role of this paradigm’s model when it is compared with other languages.

7. Parallel programming

Today, the expansion and evolution of the system of base concepts necessary
for the rational development of the process management systems on mod-



82 L. V. Gorodnyaya, T. A. Andreyeva

ern hardware result in an urgent need to form the parallel programming
paradigm (PPP) [6, 18, 22, 25, 30, 48]. The diversity of parallel comput-
ing models and the widening spectrum of available architectures should be
regarded as a challenge for the developers of PLSs helpful in creating com-
pilation methods for multithreaded programs for multiprocessor configura-
tions. The language has to allow representations of all models of parallelism
that appears at the problem statement level and can be implemented on the
existing architecture.

Shifting to parallel algorithms induces a revision of many concepts. New
concepts reflecting the phenomena and effects insignificant for conventional
sequential algorithms are introduced. For instance, there are special prob-
lems that arise from the necessity to regard the special features of the mul-
tilevel memory in multiprocessor systems. These problems are of no impor-
tance in sequential programming: they are solved by a compiler that has
static information about the types of data in use and can optimize the pro-
gram if necessary. Also, the use of a PPL as the source code language does
not guarantee that the program will be suitable for easy paralleling.

Only recently, studies performed at the Institute for System Program-
ming, Russian Academy of Sciences, began to demonstrate a serious ap-
proach to the problems of parallel programs debugging; theories of process-
ing the information prone to distortion and comparative debugging methods
using the concepts of a sample program and a distributed debugger scheme
are being developed. A common parallel programming paradigm that would
bind together the means and methods for creating and developing parallel
programs has not been formed yet.

Programming in very high-level languages (VHLLSs) is aimed at the long-
living solutions of urgent and complex problems. The life cycle becomes
longer due to the representation of generalized solutions having a degree
of freedom in the full spaces of acceptable adjacent components that have
been or will be implemented. The implementation shrinkage of the family of
processes allowed by the VHLL semantics contradicts its aims and concepts
for the following pragmatic reasons:

e The solutions to be programmed are at a high abstraction level.
e The problems to be solved depend on unpredictable external factors.
e The basic tools and/or algorithms use parallelism.

e The pragmatic requirements to the computation rate and capacity are
relevant.

e The dynamically reconfigurable multiprocessor complexes are in use.

As a rule, parallel programming languages (PPLs) include tools char-
acteristic for different paradigms. Nonetheless, parallelism is important as



Programming paradigms in higher education 83

such and is not just an addition to traditional programming. However,
reports given at conferences on compilation methods continue to concern
separate, historically formed, implementation means for languages and sys-
tems adapted only for the initial transfer to the world of parallel program-
ming. They include the just-in-time compilation, separation of purely func-
tional subsets and forms with the only assignment, reversible compilation
and interpretation, transaction memory, action accessibility analysis, loop
transformations over large arrays, and so on. As a rule, the operational
semantics of a programming language is based on the definition of an ab-
stract machine which, in the case of multiprocessor configurations, naturally
becomes an abstract complex (AC), i.e. a construct of abstract processors.

Separation of the scheme level makes it easier to include verification
mechanisms (pattern matching or conformity to axioms) into the scheme
of program development. On their basis, it is possible to check the pro-
gram plausibility, logical deduction of properties, and execution of inductive
and deductive constructions. The road to the automation of parallel pro-
gramming runs through the development of a constructing and debugging
system for language-dependant libraries of program transformations whose
compilation is supported by the use of verified program components and by
code generation adjustable to certain hardware. A valuable solution of par-
allel programming problems requires the creation of more specialised tools.
Some of their implementation mechanisms can be studied in the form of
experimental development of an educational PPL.

8. Teaching of programming paradigms

Being an enthusiastic supporter of Robert Floyd’s ideas, Academician An-
drey Ershov attached high importance to studying and teaching program-
ming paradigms [8]. Due to efforts of Ershov and his associates and followers,
the paradigmal approach to the teaching of programming was accepted at
Novosibirsk State University (NSU). Many courses (e.g., Logical program-
ming, Functional programming, and Parallel programming) focus at studying
the corresponding programming paradigm and languages in detail. Along
with these courses, only the Programming paradigms course familiarizes stu-
dents with the methods of paradigm description, analysis and comparison.
The course has been taught to the third-year students of the NSU Informa-
tion Technologies Department (ITD) since its foundation in 2000 and at the
NSU Mechanics and Mathematics Department (MMD) since 2002 [48].

By the fourth year, ITD students already have an idea of the most com-
mon PPs (the procedural PP and the object-oriented PP) and some expe-
rience in applying them. Yet not many of the students realize, for exam-
ple, that they work within the domain-specific metaprogramming paradigm
when they use Microsoft Excel to prepare spreadsheets or Open Office to



84 L. V. Gorodnyaya, T. A. Andreyeva

develop HTML-pages. The same is true of the MMD students using Math-
ematica or Maple systems.

The lectures delivered during the course introduce a wide variety of ex-
isting PPs, then systemize and generalize this information by analyzing and
comparing some paradigms. Their specific features are illustrated by the
fragments of the referring languages though the course is not aimed at learn-
ing these PLs in detail.

The practical part of the course focuses on studying the parallel PP and
the functional PP.

The main way to study PPs in practice suggests studying several PLs
referring to them. These languages may be educational [50] and, at best,
monoparadigmal. Students solve the same problem in different PLs and
within different PPs. In this case, it is important to require that data
representation and data processing correspond not only to the nature of the
problem but to the referring paradigm as well. Thus, programs solving the
same problem and written in, for example, C++, Lisp and Prolog must
differ both in syntax and in structure. As a result, students not only get
ideas of different PPs but also become acquainted with several PLs.

Another way to study and compare PPs in practice uses only one multi-
paradigmal PL. The richest set of suitable features has Lisp, which supports
almost all PPs: from functional to object-oriented and from procedural to
generic. This also allows students to learn this language in detail.

Using just one multiparadigmal PL prevents sliding down to a familiar
PP, which often occurs while working with several PLs: programs are written
with the procedural means embedded almost in every PL. Therefore, when
solving the same problem in several PLs, students have to show additionally
that the opted ways of data representation and data processing correspond
to the PP being studied.

Students’ individual work is also important. The Programming paradigms
course includes the following learning techniques: independent learning a
new PL’s syntax, solving problems in this PL, and finally, doing written
reports and giving talks about the specific features of this PL.

It was noted that the first autonomous attempts to study a new PL re-
ferring to an unfamiliar PP inevitably lead to using new syntax with old
programming methods. To restructure thinking and to familiarize them-
selves with a new programming style, students need time. In this case, it
is useful to solve serial tasks [41, 9, 20, 39] where more complex solutions
are derived (sometimes after just a slight modification) from the simpler
solutions written earlier.

Inertness of thinking mostly shows itself when students start getting fa-
miliarized with the first paradigm that differs markedly from a familiar one.
Yet, henceforth they learn new paradigms more and more easily: inertness
and rejection of an unfamiliar programming style give way to the fervor of



Programming paradigms in higher education 85

solving new “puzzles”. According to Robert Floyd [10], such fervor is a
must-have for any highly skilled programmer.

The Internet University of Information Technologies has a vast collection
of educational materials for programming (more than a hundred courses).
Among them are courses that cover the main programming paradigms [58,
59, 60, 62, 63]. In addition to these courses, there is an interesting philosoph-
ical essay concerning methods and styles of programming [61]. Also, there
are new works that represent a review of fundamental paradigms, with par-
allel programming given the highest priority[63], and argumentation in favor
of the importance of teaching of programming paradigms, which results from
the difference between the number of programming paradigms (a score or
two) and the number of programming languages (tens of thousands). Useful
materials (for example, short courses on some programming paradigms and
languages) are also available at the Coursera [65] and other sites.

9. Educational programming languages and systems

Time has come to teach Computer Science and Programming from the view
of parallelism. Shifting to parallel computing does not make the initially dif-
ficult teaching of Programming much more complicated. Acquaintance with
the educational problems of parallel programming and with the parallelism
models that occur in educational and experimental programming languages
and systems shows that the teaching of programming skills has to cover the
distance from the level of base means for controlling interacting processes to
the level of programs for high-productive computing [18, 22, 30, 33, 34, 64].

Creation of an educational high-level language aimed at parallelism, at
studying language means supporting the function arguments field similar
to the iterations field, and at an action and scheme typification support-
ing computations, memory reorganization, memory modification, duration
registration, memorization, flows construction, dynamic performance regis-
tration and so on, is a matter for the future [11, 12]. Also, it is important
to prevent students from addiction to traditional sequential programming.
Within the educational parallel language, it is advisable to divide the com-
puting sequence and the sequence of placing results into memory elements.
These sequences may not coincide [14, 27, 38, 39].

To choose a programming paradigm means to choose a conceptual scheme
for problem stating and solving, an instrument for “literate” description of
facts, events, phenomena, processes, and particular and common concepts.
Different approaches to information processing that have been accumulated
and exist now as programming languages and systems are called program-
ming paradigms. Analysis and efficient classification of the existing and new
computer paradigms make choice of programming languages for building up
new programming projects and inventing new information technologies well



86 L. V. Gorodnyaya, T. A. Andreyeva

founded.

The aim of the design of an educational programming language intended
for teaching complex computational models and parallel programming is to
select mechanisms supporting experiments in designing new programs, lan-
guages and paradigms oriented towards educational research projects in the
field of distributed information systems. Educational experiments should
cultivate a habit to use program verification methods since without these
program reliability and program capability are questionable. Such a training
is a topical issue because the solutions of well-studied problems continuously
turn into standard component libraries or immediate-use application toolk-
its. Real programming always contains new subproblems, which result in a
next turn of programming and debugging.

References

[1] Aho A.V., Hopcroft J.E., Ullman J.D. Data Structures and Algorithms. —
Addison-Wesley, 1983.

[2] Anureev LS., Bodin E.V., Gorodnyaya L.V., Marchuk A.G., Murzin F.A.
Shilov N.V. On the problem of computer language classification // Bulletin
NCC. Series: Computer Science. — 2008. — Vol. 28. — P. 31-42.

[3] Backus J. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs // Communs. ACM 21. — 1978. —
Vol. 8. — P. 613-641.

[4] Bratko I. PROLOG Programming for Artificial Intelligence. — 2000. — ISBN
0-201-40375-7.

[5] Brodie L. Thinking Forth (PDF Online book) / Bernd Paysan, ed. — 2004. —
ISBN 09764587-0-5.

[6] Cann D. C. SISAL 1.2: A Brief Introduction and Tutorial. — California, May,
1992. — (Tech. Rep. / Lawrence Livermore National Lab., Livermore; UCRL-
MA-110620).

[7] Dijkstra E. W. Structured Programming (EWD-268). — E.W. Dijkstra Archive.
Center for American History, University of Texas at Austin.

[8] Ershov A. P. Aesthetics and the human factor in programming // Communs.
of the ACM. — 1972. — Vol. 15, No. 7.

[9] Field A. J., Harrison P. G. Functional Programming. — London, 1990.

[10] Floyd R. W. The paradigms of programming // Communs. of the ACM. —
1979. — Vol. 22, No. 8. — P. 455-460.

[11] Gorodnyaya L. On the language for basic learning of parallel programming //
Proc. Ershov Informatics Conf. PSI Ser., 8th Edition. Internat. Workshop on
Program Understanding, Novososedovo, Russia. — 2011. — P. 18-24.



Programming paradigms in higher education 87

[12]

[13]
[14]

Gorodnyaya L., Shilov N. Educational value of teaching parallel programming
paradigm // Proc. Ershov Informatics Conf. Workshop on Educational Infor-
matics, Novosibirsk, Russia. — 2011. — P. 1-6 (In Russian).

Graham P. ANSI Common Lisp. — Prentice Hall, 1996.

Harvey B. 1997 Computer Science Logo Style. — MIT Press (3 volumes). —
ISBN 0-262-58148-5, ISBN 0-262-58149-3, ISBN 0-262-58150-7.

Henderson P., Hoare C.A.R. Functional Programming: Application and Im-
plementation. — Prentice-Hall, 1980.

Henner C.R. A Simple Set Theory for Computer Science — Toronto, 1979. —
(Prep. / TR N 102).

Higman B. A Comparative Study of Programming Languages. Reader in Com-
puter Science. — London and American Elsevier, 1969.

Hoare C.A.R. Communicating Sequential Processes. — Prentice Hall Internat.
Ser. in Comput. Sci., 1985. — ISBN 0-13-153271-5 hardback or ISBN 0-13-
153289-8 paperback.

Hopgood F.R.A. Compiling Technology. — London: Macdonald, 1970.

Hudak P. Conseption, evolution and application of functional languages //
ACM Computing Servys. — 1989. — Vol. 21, No. 3. — P. 359-411.

lliffe J.K. Basic Machine Principles — London: Macdonald, 1968.

Iverson K, E. A Programming Language. — New York: John Wiley & Sons,
Inc., 1962. — ISBN 0-471-43014-5.

Knoop J. Compiler construction // Proc. 20th Internat. Conf., CC 2011. —
Lect. Notes Comput. Sci. — 2001. — Vol. 6601.

Knuth D. The Art of Computer Programming. Vol. 1-4. — Addison-Wesley,
2005-2011.

Kotov V.E., Marchuk A.G., Vishnevsky Yu.L. MARS — a hierarchical heteroge-
neous modular system // Proc. IFIP TC 10 Working Conf. on Fifth Generation
Computer Architectures. — Amsterdam: North-Holland Publishing Co., 1986.
- P. 277-2809.

Lehman M. M. Programs, life cycles, and laws of software evolution // Proc.
IEEE. — 1980. — Fasc. 68, No. 9. — P. 1060-1076.

Levinsky J. L. The GROW Book. — San Diego, California, Computer Systems
Design Group, 1980.

Lucas P., Lauer P., Stigleitner H. Method and Notation for the Formal Defi-
nition of Programming Languages. — Vienna, 1968. — (Tech. Rep. / IBM Lab-
oratory; TR 25.087).



88

L. V. Gorodnyaya, T. A. Andreyeva

[29]

[30]
[31]

[32]

[33]

[34]

[43]

[44]

McCarthy J. LISP 1.5 Programming Manual. — Cambridge: The MIT Press,
1963.

Odersky M. The Scala Language Specification Version 2.7.

Pratt T. W., Zelkowitz M. V. Programming Languages Design and Implemen-
tation. — Prentice Hall PTR, 1999.

Prechelt L. An Empirical Comparison of C, C++, Java, Perl, Python, Rexx
and Tecl for Search/String-Processing Program. — Universitat Karlsruhe, 2000.
— (Tech. Rep. / Fakultat fur Informattik; 2000-5).

Ritchie D.M., Tompson K. The UNIX time-sharing system // Bell System
Technical J. — 1978. — Vol. 57, No. 6. — P. 1905-1929.

Schwartz J. T. Set Theory as a Language for Program Specification and Pro-
gramming. — Courant Institute of Mathematical Sciences, New York University,
1970.

Strachey Ch. A general purpose macrogenerator // Computer J. — 1965. — Vol.
8 (3). — P. 225-241.

Tanenbaum A. S. Structured Computer Organization. — Englewood Cliffs, New
Jersey: Prentice-Hall, 1979. — ISBN 0-13-148521-0.

Van Tassel D. Program Style, Design, Efficiency, Debugging and Testing. —
Prentice Inc. California, 1978.

Weinberg G.M. The Psychology of Computer Programming. — New York: Van
Norstand Reinhold Comp., 1971.

Wetherell Ch. Etudes for Programmers. — Prentice Hall Inc. Davis, 1978.

Yourdon E. Death March. The Complete Software Developer’s Guide to Sur-
viving “Mission Impossible” Projects. — Prentice Hall, 1997. — ISBN 0-13-
748310-4.

Andreyeva T.A. Serial tasks in programming // Proc. Fifth Internat. An-
drei Ershov Memorial Conf. Workshop on Educational Informatics, July 9-12,
2003, Academgorodok, Novosibirsk, Russia. — IIS SB RAS, 2003. — P. 2—4 (In
Russian).

Andreyeva T.A., Anureev 1.S., Bodin E.V. et al. Computer languages as de-
vice for presentation of scientific and professional knowledges // “Telematika-
2008”. — Sankt-Peterburg, 2008. — P. 77-78 (In Russian).

Andreyeva T.A., Anureev 1.S., Bodin E.V., et al. Educational value of the
computer Inguages classification // Applied Informatics. — 2009. — No. 24. —
P. 18-28 (In Russian).

Andrei Ershov — a Scientist and a Person / Ed. by A.G. Marchuk. — Novosi-
birsk: SB RAS Publishing, 2006 (In Russian).



Programming paradigms in higher education 89

[45]

[46]

[47]

[48]

[49]

Gorodnyaya L.V. Introduction to parallelism for children // “Telematika-
2008”. — Sankt-Peterburg, 2011. — Vol. 2, Sec.D. — P. 323-324 (In Russian).

Gorodnyaya L.V. To automation of parallel programming // “Scientific Service
at the Internet”. — http://agora.guru.ru/abrau2012/pdf/239.pdf (In Russian).

Gorodnyaya L.V. Parallel programming paradigm: models, languages, systems
// VII Siberian Conf. on Parallel and High-performance Calculations. — Tomsk:
TGU, 2013. — P. 17-18 (In Russian).

Gorodnyaya L.V. Parallel programming paradigms at universities // “Scientific
Service at the Internet”. — 2008. — P. 180-184 (In Russian).

Gorodnyaya L.V. Programming in education of computer scientists // Prob-
lems of Specialization at Education. — Novosibirsk, 1998. — P. 115-124 (In
Russian).

Gorodnyaya L.V. Functional programming: style, method and potential //
”Cosmos, Astronomy and Programming” (Lavrov’s Days). — Sankt-Peterburg:
Sankt-Peterburg State University, 2008. — P. 46-53 (In Russian).

Gorodnyaya L.V. Functional Aproach to Definition of the Programming
Paradigms. — Novosibirsk, 2009. — (Prep. / IIS SB RAS; No. 152) (In Rus-

sian).

Gorodnyaya L.V., Marchuk A.G. Development of the models of parallelism
at the high level lenguages // “Scientific Service at the Internet”. — 2013. —
http://agora.guru.ru/abrau/2013/ (In Russian).

Shilov N.V., Gorodnyaya L.V., Bodin E.V. Paradigms of parallel programming;:
to teach or not to teach (that is the question) // “Scientific Service at the
Internet”. — 2011 (In Russian).

https://www.acm.org/education/CS2013-finalreport.pdf

Computing Curricula 2001. Computer Science. — Final Report (December 15)
— IEEE Computer Society. —
https://www.acm.org/education/curric_vols/cc2001.pdf.

Svyatoslav S. Lavrov’s Archive. —
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?lang=2&tid=79

Peter Van Roy. Classification of the Principal Programming Paradigms. —
http://www.info.ucl.ac.be/ pvr/paradigms.html.

Andreyeva T.A. Programming in Pascal. —
http://www.intuit.ru/studies/courses/41/41/info (In Russian).

Gorodnyaya L.V. Fundamentals of Functional Programming. —
http://www.intuit.ru/studies/courses/1109/204/info (In Russian).

Gorodnyaya L.V. Paradigms of Programming. —
http://www.intuit.ru/studies/courses/1109/204 /info (In Russian).



90

L. V. Gorodnyaya, T. A. Andreyeva

[61]

[62]

[63]

[64]

[65]

Nepejvoda N.N. Styles and Methods of Programming. —
http://www.intuit.ru/studies/courses/40/40/info (In Russian).

Soshnikov D.V. Logical Programming. —
http://www.intuit.ru/studies/courses/558/414 /info (In Russian).

Mejer B. Essence of Object-oriented Programming. —
http://www.intuit.ru/studies/courses/71/71/info (In Russian).

Site with Materials on the Mozart System That Supports the Educational
multi-paradigmal programming language Oz. —
http://sourceforge.net/projects/mozart-oz/.

Free On-Line Courses from the World’S Leading Universities. -
http://www.coursera.org/ and http://ru.coursera.org/.



