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Explicit—implicit domain decomposition
methods based on splitting for solving
parabolic equations*

S.V. Gololobov

In the article we propose and study a new noniterative domain decompo-
sition algorithm without overlapping subdomains and with the use of split-
ting procedure in one of subdomains for solution multidimensional boundary
value parabolic problems. Noniterative domain decomposition algorithms
were studied in the articles [1-12], where the methods were considered with
overlapping [1, 2, 4-6, 9, 10] and without overlapping subdomains [1-3, 7,
8, 11, 12]. Although the methods with overlapping subdomains possess bet-
ter properties as regards convergence, the methods without overlapping are
preferable from the algorithmic point of view. The majority of methods
without overlapping subdomains are merely conditionally convergent (at a
fixed ratio between the mesh-widths of the space and time grids) [1-3, 7, 8].
In the article [11], some method was proposed which is free from this short-
coming and is based on an idea analogous to that of the penalty method,
where a solution to the Dirichlet problem is approximated by a solution to
- the third boundary value problem with a small parameter ascribed to the
normal derivative in the boundary condition [13]. It is this approach that
we take in the present article. Approximation to a spatial operator by the
finite element method (and it is the method that we employ) in a separate
subdomain may be accomplished by use made of chaotic grids. This, in
turn, leads to obvious difficulties in using implicit method in such a do-
main. Application of an explicit cyclic iterative process of Chebyshev type
to solving the resulting linear algebraic system in fact generates an explicit
scheme with variable interior mesh-widths corresponding to the mesh-width
of an implicit scheme. The stability condition for such scheme is essentially
weaker that the standard condition for a scheme with constant interior mesh-
width. When such explicit algorithms are considered on the entire domain,
the interior mesh-widths can be chosen in correspondence with the roots of
Chebyshev polynomials [14~16]. Owing to the additional “explicitness” in
the decomposition method, Chebyshev polynomial happened to be a rather
weak tool for obtaining a stable scheme. In the case under consideration we
made use of Lanczos polynomials. In [17], this approach only demonstrated
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one more possibility of constructing an explicit algorithm on the entire do-
main. In the present article, the application of Lanczos polynomials is of
principal importance. Finally, it is worth noting that the arising inhomoge-
neous difference scheme has a certain analogy to the scheme with a weight
varying over the spatial points whose stability was studied in [18].

The present article is the logical extention of [25]. In distinguish from
[25] we consider only convex domains. Only in this case we may use the
Nitshe trick for the domain with piece-wise smooth boundary (see the proof
of Theorem 4.1).

1. The original boundary value problems

Let €2 be a convex bounded open connected polyhedron in R™ m=2,3;let
2, and €23 be subdomains of € such that

n_=§1U§2, QN0 =0,

and let S = Q; NQ,. We also assume that 2 is a parallelogram (paral-
lelepiped) and the boundery S is othogonal to the m-coordinate axis.
We define the following bilinear forms in the space HY(Q,) x H(Q,):

& du dv
aw,0)= [ Ni@) e oL gz, p=1,,
fip #i=1 Ozi Oa;
) ou Ov (1.1)
)= [ Mi(Z)s— z—dZ, [=1,...,m,
ay’(u,v) / “(I)Bm 9z, z m
Q2
here Z = (zy,...,z,,) denotes a point in B™. Concerning the functions

Ai;(Z), we assume that in €, Aij(Z) = 0, when ¢ # j and that the bilinear
forms are symmetric, continuous in H}(Q,) x H}(€,), and Hj(2,)-elliptic;
i.e., there are positive numbers A; and X, such that

lap(w,0)| < Mlulinop ol lap(ew)] 2 dalullng)  (1.2)

Here Hg(S,) is the subspace of H'(,) obtained by the taking of closure,
in the norm of H'(£2,), of the set of infinitely differentiable functions with
compact support in €,. Moreover, [u|H1(9p) is the norm of HJ(R,). It is

easy to see that ) ag)(u, v) = az(u,v). Next, we introduce one-parameter
=1

families of continuous linear functionals on H'(,) by using the duality
pairing on H1(Q,) x H(R,); i.e., L,(t;v,) = (fo(t)yvp)p, p = 1,2, where
(1+)p is the scalar product in Ly(Q,), t € [to,2.]. Here and in what follows
u(t) is the value of a function u : [ty,t,] - X and du (1) is the strong limit
in X of the elements [u(t)], = (u(t+7) — u(t))/r as T — 0 (if it exists).
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We denote by Xp the space of the functions in X (£2,) extended to Q by
zero beyond €,. Now, we may introduce the space X = X x...x X, of
vector-functions with a norm || |- For example, flull?, :( §=1 “u?’“z"(ﬂp))’
where u, are the components of a vector-function . The scalar product in
Ez is

(u,v) = (uy,vy); + (uz, v2)2.

In the space H' x H !, we introduce the bilinear forml
a(u,v) = ay(uy,v;) + az(uz, vq).
We distinguish the following subspace in A
HY ={ve B |v(2) = v(z), 7 € S).

Now, we formulate the parabolic Neumann problem as some problem in
the subspace H'®. Assume ug € Lz and f € Ly(to,te; H~1). The problem is
to find a vector-function u € Ly(to, t.; H') such that %1?" € La(to,t.; H™1)
and the equalities

(%(t),v) +a(u(t),v) = (£(2), v), (1.3)

(u(to), v) = (uo, v) (1.4)

hold for every v € H' and almost every t € (to,t.). It is easy to observe
that problem (1.3), (1.4) is equivalent to the conventional Neumann problem
in the space H(Q). We point out that the Neumann problem is considered
exclusively for notational sim plicity. All results of the present article remain
valid for other boundary value problems.

Following [11], we formulate the Neumann problem with conditions of a
nonideal contact on the interface: given the same initial data as in prob-
lem (1.3), (1.4), find the function w* ¢ La(to, t.; H') such that & ¢
Lg(to,t,.,;f-}"l) and, for every v € H! and almost every t € (to,t.), the
equalities

(d_;';(t),v) + a(u’(t),v) + %S](uf(t) — uh(t)) (v1 — vy) ds = (F(t),v), (1.5)

(u*(to), v) = (ug, v) (1.6)

hold, where p > 0. It is shown in [11] that if a solution to problem (1.3),

(1.4) is sufficiently smooth in subdomains, then the following inequalities
hold:
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19? = wll ey euiy < ClPlMlﬁt(ﬁo.t—.;ﬁ?): llw’llx < e2llulix, (1.7)

where X is an arbitrary subspace in La(to, t.; H'), p < po, and the num-
bers ¢; and c; are independent of the parameter p and the vector-functions -
u and wP. These equalities justify the use of the penalty method for solv-
ing problem (1.3), (1.4) on applying the domain decomposition method to -
problem (1.5), (1.6). ‘

Finally, we give one well-known inequality that will repeatedly be used
in the sequel. The estimate [19, p. 73]

1 .
ol < < (3ol + Sbnay) . 2=12 (9)

holds for an arbitrary function v € H'(Q;) and an arbitrary & > 0; the
number c is independent of § and the function v.

2. Discretization and some inequalities

We introduce a certain notation connected with the approximation of prob-
lem (1.5), (1.6) by the finite element method. The terminology used hence-
forth adheres to the monograph [20). We introduce regular systems of m-
simplices T}, in the subdomains Q,, p = 1,2. In general, the set T), =
Th1UTh2 is not coordinated; i.e., the grid in § is composite. Using the sets.
Thp, we introduce basis systems of piecewise linear functions {gop,.-(i)}f{;l.
Here {:E,,',-}ff__"1 is the set of all distinct vertices of the m-simplices in Thp
and @pi(Zp;) = &j, where &;; is the Kronecker symbol. Observe that
K, = O(h=™). Put Vi, = span{ppi(@)}idy C H'(Q) N C(,). In line
with [21], we introduce lumping linear operators

Ph_p : Vh,p -3 Lh,p,
where Ly, C La(S,), and
dhp(v,w) = (Papv, Papw), v, w € Vap, p=12. (2.1)

Bilinear forms (2.1) are continuous in Lz(£2,) X L2(Rp) and Ly(2y)-elliptic.

We introduce the space Vj = Vi X Vg of vector-functions, where Vi
'p = 1,2, are the spaces of functions in Vjp extended by zero beyond €. It
is easy to see that V.c H'nC. :

To study convergence of the method proposed in the article, we need
the Ritz projection of a solution of problem (1.5), (1.6) to the subspace Vi,
given some H'-elliptic bilinear form. Let A be a positive number. Introduce
the bilinear form -
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: ) ‘
ax(u, v) = A(u,v) + a(u,v) + ;](ul - ug)(v; — v2) ds. (2.2)
S

Generally speaking, bilinear form (2.2) is not H Lelliptic at A = 0. We
define the Ritz projection w?(t) € V}, of the vector-function u?(t), given this
bilinear form. Put £°(t) = u?(t) — w?(t). The following assertion holds:

Lemma 2.1. The inequality

h 1/2
el <ok (14+2) W@l te ot

holds, where the number ¢ is independent of h, p, and the vector-function
uP(t).

A proof follows from standard estimates [20] and inequality (1.8) with
6 =h.

Remark 2.1. For ¢ € [to,t. — 7], the vector-function [w”(t)], € V, is the
Ritz projection of the vector-function [u?(t)],; therefore, for [€”(t)],, some
assertion holds analogous to Lemma 2.1 with the replacement of the norm

llu? ()|l 7. by the norm [|[u?(t)]-| -

Henceforth we will use vector-matrix notation. Let E(?) denote Eu-
clidean vector spaces of dimension K,, p = 1,2, and let E = E(1) x E®),
Denote by (-, -)(p), |l - ll(p) and (-, ), || - || the scalar product and the norm in
E®) and E. Put pZ; = dhp(%p,i»¢pi)s P = 1,2, = 1,..., Kp. Further, let
u, € Vip and @, € E(®); moreover, the components of the vector @, are de-
termined by the equalities (@p); = ppiv(Zpi), ¢ = 1,..., K,. The equalities
give an isomorphism between the space V}, of finite elements and the Eu-
clidean space E(P). It is easy to see that the equality d ,(up, vp) = (fip, Up)(p)
holds for all u,, v, € Vjp. Introduce square matrices A, of order K, p = 1,2,
and Ag} of order K3, I = 1,...,m, with entries map(cpp,,-,tpp,j) and

1
P2,iP2,;

ag”(goz,,‘, ©2,;) consequently. The equalities

ap(tp, Up) = (Apllp, Bp)(p), P=1,2, 2.3)
a(zl)(ug, ’02) = (A.(;)ﬁg, 1—12)(2], = 1,....m

. L3
hold for all up,v, € Vi p. It is obvious that 3 Ag” = A;. The preceding
=1
equality and condition (1.2) readily imply nonnegativity of the matrices A,.
Observe that the kernel of A, is one-dimensional: ker A, = {cé,}, where
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(€s)i = pp,i- Now, introduce square matrices By, of order K, p = 1,2,
with entries m s ©p,i0p,; ds and the (K x K;)-matrix B ; with entries

1
Pl,iP2,j

NupllLo(s)-
We will present a succession of inequalities that will be of help in the
analysis of stability and convergence for the decomposition method.

Jspripeids,i=1,...,K;,j=1,..., K,. Observe that l#liB,, =

Lemma 2.2. The inequality

_ _ 1, _ £, _
{01, B1,282) (1] < Ell"’l”%lll + 5””2”232,2
holds for every vector v € E and every £ > 0.

From now on, we put 4,, = A, + %Bp,p, p=12, Agjo = Ay, 1l =
L...,m=1, A7 = A(™ 4 1Bsa.

Lemma 2.3. Let p < 1/);, where \; is the constant in condition (1.4).
Then the matrices A, , are positive definite.

A proof follows from the generalized Friedrichs inequality (22, p. 129],
condition (1.2), Ly(,)-ellipticity of bilinear forms (2.1) and equalities (2.3).

Henceforth, we assume the condition p < 1/ to be fulfilled. Lemma 2.3
implies existence for the matrix Al"},, which enables us to consider the Schur
complement

1 _
Agv;;) = A - FBEQAIJ‘,BM (2.4)

A(m)_( Avp “%31'2)
’ Bl A7)

of the matrix

Moreover, by Lemma 2.2 the inequality (Af,m)ﬁ,ﬁ) > <Agmj’f’2,l_)2>(2-) holds
for every © € E. On the other hand, the following equality

(A2, 8) (3 = (A5, 5)

holds in the vector subspace {(%A;},Bl‘gﬁg, )T, 9, € E®}Y of E, that im-
plies nonnegativity of the matrix A(z':,) — A{™. Thereby, we established in

m)

particular that the matrix Ag , generates the seminorm lo2]] ¢y in E®@),
» ] 2,0

The nonnegativity of the matrix A(;";} - Agm) and inequality (1.8) imply
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Lemma 2.4. The inequality
12 — 2 )
wm“_@wmwmmw

holds for every vector v, € E(?) and every & > 0, with the number ¢ inde-
pendent of h, 8, p, and the vector o,.

3. Description of the method

In this section we describe the domain decomposition method in vector-
matrix form. Let N be a natural number; 7 = (t. —to)/N; and t, = to+nr,
n = 1,...,N. Henceforth, let {r;}{_, be a number sequence such that
T=T1+...+7; and 74 > 0. With notation of Section 2, we write down the
method as follows:

—ntkfs _ _n+(k=1)/s

4 | + Ay uft e 1 Biaif=fi, k=1,...,s, (3.1)
Tk P

—n+l/m _ —n+(l-1)/m _

e fl +AP @™ =0, 1=1,...,m—1, (3.2)

sl _ nd(m=1)/m 1 )

S + A "‘) wtt - ~Ba = 7, (3.3)

(), = ppitiop(Fpi), i= L...,K, p=1,2, (3.4)

S
where 1! = 32 %@ and o = o3 (fy(ta + (0~ 1)7), 2p,)p- Here

we assume uo,, € H?($,). Equation (3.1) presents an explicit scheme with
variable mesh-width in the subdomain ;.

Eliminating the intermediate steps in the explicit scheme reduces formu-
las (3.1)-(3.3) to the next form:

al — a? A B

S QuAuat - B = Q. (3:5)
=ntlfm  _nt(l=1)/m B
Uy :_"1 + AV @™ =6, 1=1,... m-1, (3.6)
aptl — ﬁ;+(m—l)/m 1

m)_n ]' =7 =n
+ A ;sz[‘—gR,Bl,guz +Qyi]

=fr+ B 2R, fr, (3.7)

where P, = H (Il - kA P) Qs = lAl_:J(Il -F), R, = A—I(Il - Qs)'l
=1
C(m} = A(m} - -—Bl 2By s, I, are the identity matrlces of order K,.
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The matrix P is easily seen to be a matrix polynomial of degree s in
the matrix A; ,. Furthermore, the properties of stability and convergence
are governed by the choice of the sequence {7x}i=,- In the articles cited in
the introduction, the answer to the question about expanding the stability
region for explicit methods is based on the relation between the polyno-
mial and Chebyshev’s polynomials of the first kind. In our case (for the
domain decomposition method) it is Lemma 4.1 that serves as a basis for
studying convergence. The lemma takes place in case we consider Lanczos’
polynomials [23]. The properties of the polinomials we need are given in
[25].

4. Convergence theorems

Assume ||A1,|| < A, where A, is some upper bound of the spectrum of the
matrix A;,. Here and in the sequel, we consider the spectral norm of a
matrix. According to [25], put

Os = TAp, (4.1)

where o5 = &13)—2_—1 Condition (4.1) allows us to define some integer-valued
parameter s. Let A, = min{A, | |41l < A, 37A,+1 = k?, kis an integer}.
Then we define the integer-valued parameter s by the formula

s=(3rA,+1)V/2 -1 (4.2)

From [25] we take the formula for ¢

r
Tk ossin?kr/(s+1)’ e ® (4.3)

The properties of the matricies Py, Q,, R, are formulated in [25, Lemma 5.1].
For the comfort reading we give it here:

Lemma 4.1. The inequalities
0 < (P,0,B)1y < ||6)1? Yo ye2 - < (0.5, 5 < 152
<{ aU,U)(l) S Hvum, pe H‘U“(l) <A{QsY, D)) < Hvll(l),
0 < (R, 0)(1) < T”"—fuﬁ)s 0< (Q;leﬁ,ﬁ)(l) < ”OTHT—’“(zn

hold for every vector & € E(), where a number vy = 1 - (s + 1)~? and a
number vg 1s independent of s.

It is easy to observe that Lemmas 2.3 and 4.1 imply that the symmetric
matrix Q,A; , is positive definite; i.e., the matrix generates a norm in the
space E(1).
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Assume u”(t) to be a solution to problem (1.5), (1.6) and let w”(t) be
the Ritz projection of u?(t) to the subspace Vj given bilinear form (2.2).
Henceforth, we put wy = wh(tn), p = 1,2, » = 0,..., N, and denote by
w, the vectors with components Pp,iWp MZpi)y 1 =1,..., Kp. Introduce the

followmg sequence of .vectors in E®); fp =1y —Wy a.nd in Em

P

6_;+l/m _ ﬁg-}-f/m +1_Fﬂ+f/m, | = 1,‘. vy M - 1,

where
' 1

Fg-ulm = Hhﬂ-(z z,-(tn-j-l))v.

t'—l

2iltns1) = ~ - s Gz

(t), n=0,....,N.

Here Il is the linear operator of piece-wise linear interpolation in the
subdomain €, [20]. In accordance with (3.5)—(3.7), the equation in £ takes
the form

©ogntl
S - 61 +Qs [Al,pfl - '1"Bl 252] =1 7 (4.4)

ggwm _ é'n+(l 1)/m

b (f)g;l-'-”m_g"z Il=1,...,m-1, (45)
P

A(m}€n+1 Bif:zé"’l‘h@ - -g-;h , (4.6)
where 7
91 = Qs21 — RsA1,W07,
ggl _ F1rt+1,r’m _ F:21+(I-1)fm _ gl)_n TA(!) _n+f/m, | = 1,...,m—1,

m = ’ - 1 -n m=1}
g; —Zg ;BE2R321+;BEZ(R —TE] -,-1+Z AU)“‘" +( l)/m,

A R—— —n =n
=f-Wr - A,07 + ‘Bl.2w2a

=1 "Azp"'”' + - BT @t

8
we assume smoothness conditions on the vector-function ? (t):

Aij € C() NC3 (),

du’ -~ d?u”
rry € La(to, t.; Ha), N

We use the notation w?, = L @ttt —wy). Before formulating a theorem

u? € C(to, ta; HY), € Lz(tg,t.,Lz) (4.7)
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Theorem 4.1. Assume that conditions (4 7) are satzsﬁed for problem (1.5),
(1.6) with p < 1/X3 (A2 is the ellipticity constant of (1.2)) and that, for

solving the problem, method (3.1)~(3.4) is used with h < hg, T < 75, and
the choice of the parameter s and the sequence {13 }i_, made eccording to
equalzttes (4.2). and (4.3). Then the following estimate holds:. :

. ' mP o p -1/2713/2
I W)l <cM(u)[h+r+p (h? +7) +
PN 4 ) + pT R 4 1Y),

where the numbers ho, Tg, and ¢ are mdependent of the parameters p, h, 7,
and s and the vector—functmn uf(t).

Proof Multlply (4 4) by 2r£}*! to obtain

n =1 T ~n
”El+1”(l] +1I¢7 HP_, g‘ll‘fh 13,4, + 7l 1.4, —
27 “n Fn
—(Qs31 272, M) + *"(Qan,zC?aCl Yoy —

_(QsBl 272, C1 )(1) +t3 (QsBl 205, M) = €T 117, + 27 (g} Ninn )(1),

where 7" = £n+1 4 £n (7 = Entl _ €7 (4.5) multiply by 2T€;+Um, then -
I/m m 1 —- )
67 ity + 270 g0 + G = GOV R,

n+l/m

né"*“*”’"‘||(2,+2f<g2 &™) ).

Multiply (4.6) by 2r&3+! and we arive at

165+ 1y + 27165 gy + 116G = 771 -
2_‘02(352}23.31,2’?2 ) le)(z) + ‘%(Bf,stBl-,z@, @)(2) -
733(3%’2@,77 o) + - (BLQUT By -
| (312Q3771,C2>(2)+ (BlesCu’?z)(z)
= GV, 2r(ge™ &Yy ).

Take the sum of the equalitiés obtained. Using Lemma 4.1, we arrive at
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. m cntifm —ym LT |
nenﬂuswzn“*‘f m+zu G+ S g +

= T =
1B + 512805, 0., + S197 10,41, + 215 37, .5,

< Ils+2r<gl EI‘“)m+2-rZ(g£", ™y o 48)
=1 :
where ||§“H2 léx ||(1) + ”52“(2) + 7€ “A(mji e = 17 - %A;LBI,T’—?ga

1/;1 ‘C_l IA 11’312C2
_ Make the estlmate of the scalar products

27(91 &) +2r Z(ﬁg Let "
I=1

£n _n4lfm zn+l
= 2r(gn €M) 42?3 (AN I grtimy
. I=1 :
m-—1 : .
27 Z: (1—_121+1/m‘ _ F;1+(l—1),/m A(I)_n.H -n+l/m.

=1
m-—1

972 z (A(f) —n'z’ ‘ﬂ“/m)(z) +

)(2)

() =nt1 _ zn+(m=1)/m znt1 ‘ :
Summand 27(g", £"*1) can be evaluated like in [25):

-n fn en T =n 5
2r(@", &N < exrllE)1% +€—(2||21 Iy + 1250,) +
3
€T, . 521' - voT
N, + NG, + TG, +
453CT||E"+1||§ + 25307”5"”25 + 53C7‘||’7§‘||i£m) +
- : P

2eser |33 A + H" alla, - (4.10)

Afterwa.rds using the piecewise linear mterpolatlon theorem we obtain the
estimate:

_. m . 2 :
) N _ntl/m I/m aifm mT
2t2|E<A£,Lr2 /m gt >(2)|<Taqz|zs g HN e ——|lw*|,). (4.11)

We use the notation ||uP]|( )= (llu "HC(! i) + h2||u”[]2 Oltortaifi®) ). With
the help of equality (2.2) and Lemma 2.1 we arrive at the estlmate ‘



30 S. V. Gololobov
_n+l/m _n+(l-1)/m 1) —n l/m =
2-r| Z (7 +Hfm _ r2+( 1)/ A() wyt!, *;+/ )(2)| < 2£5cmr||§"'+1|[% +

2meN@WﬂMrHVZMTW ?W”WW
1=1

2emh2T (1 + 2 2emhr
-————-——II "!ic(tot g2yt —— W1}, (4.12)

The obvious estimate of the next summand is

2r ’Z <A(”—:l21 _71+I/m.)(2)| < —||’w.,,2||A2 P+T 662“ “J1+l/m . (4‘13)

A(r,)

Fina]]y, the latter summand can be evaluated by the inequality (1.8) and
Lemmas 2.1 and 4.1. The corresponding estimate looks like:

2‘r|( Z A(!)—n+1 —n+(m—1)fm’§g+1>(2)|
I=1

1 1
< s-,cmr”E"HHB + ETCT” 21 (m) + 57CT||C2“ () +
2ch’r h : 2cmh T
P
[ &7 (1+ + )]I “C(to,t- H’) ||u"”(_) (4..14)

When we obtain the latter estlm'a.te, we use the Nitsche’s method. A
posibility of the one is based on the convexity of the domain €2, such as
H?-norm of the solution is estimated by L;-norm of the right- hand side’
in this case [19]. That is why the set of domains under consideration was
constricted.

In line with [25] we have the estimates:

cﬁ0+90+%wmmﬂ,

{h2 (1+ )(” p”c'(to.t.,H?) "

d*uP 2
IIW"Lz(ta.tn“‘zz)}

ﬂEf,szA,,p <c (”dup”[,,(t,,,tn“,m) ( )" I

Put .*";‘1 16’ €2 ——'2,763 6—1‘;, E4 =Eg = 21 , €5 = 32cm’ E7 = chm Assume
r <1/2. By virtue of equalities (4.8)—(4.9), inequalities (4.10)- (4.15) and
using the grid version of the Gronwall’s lemma [24, p. 311], we obtain the
estimate ,

#0112
€715

IA

122

I/\

+
La(tn,tn ,H?)
2(tnitng1iH2) (4.15)

La(tntns1 ;I?n)) ‘
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P 2 20 0[1p2 | 2, —1/23 , _2
Jax [lu” = v ()1} < eMP(w) (R 4+ 7%+ p7 (B 4 ) +

PR+ +pTI (S 1Y) O

Remark 4.1. The inequality (4.8) yield the stability of the scheme
(3.1)~(3.3) relative to initial data and right-hand sides.

Remark 4.2, At a fixed value of the parameter p, we obtain an error
estimate of order O(h + 7).

So far, equalities (3.1)-(3.4) were treated as a method for solving the
perturbed problem (1.5), (1.6). By analogy to [11], method (3.1)~(3.4) may
be used as a method for solving the original problem (1.3), (1.4). In that
event, inequalities (1.7) serve as a basis; i.e., we speak about the penalty
method at small values of p. Let a solution u(t) to problem (1.3), (1.4)
satisfy the following conditions that are analogous to those of (4.7):

)\,',J' € C(ﬁ]) N Ca(ﬁg),
2

(RS C(th b H4)s d_'!: € LZ(tﬁat:; H?)a d—t;{ € L?(tOr ta; L2) (418)

Theorem 4.1 and inequalities (1.7) imply that the estimate

" = u(ta)llg, < eM(u)[h+r+p~Y2(h3/2 4 7) 4
p~ (R3? 4+ )+ p"3/2(h3 + 78+ p]

holds for p < min(pg, 1/A;). The precise optimization of the right-hand side
of the preceding inequality with respect to the parameter p is quite difficult
(it leads to a fifth-order equation in p~!/ %). However, optimization of the
expressions p~1/2(h3/2 + 1) 4 p, p~1(h3/2 4 7) 4+ p, and p~32(h3 4 72) 4 p
is easily performable and yields p; = ¢;(h3/2 4 7)%/3, p, = ca(h3/2 + r)1/2,
and p3 = c3(h®+ 72)%/5 respectively. It is easy to see that the best estimate
is attained at p = p;. Thus we proved

Theorem 4.2. Let conditions (4.18) be satisfied for problem (1.3), (1.4)
and method (3.1)~(3.4) be used to solve the problem with h < ho, T < 7,
p=7ch3¥24 )12 < min(po, 1/1;), and the choice of the parameter s and
the sequence {T;}i_, make in accordance with equalities (4.2) and (4.3).
Then the estimate
n_ - 3/4
2% (1" — u(ta)lz, < eM(u) (/4 4 y7)

holds, where the numbers hg, 7o, ¢, and ¢ are independent of the parameters
h, T, and s and the vector-function u(t).



32 S.V. Gololobou

Thus, as opposed to the scheme with constant mesh-width 73 = 7/s for
which s = O(r/h?), the stability in our case is guaranteed at s = O(y/7/h).

5. Numerical experiments

Make some tests according to the method under consideration. Thus, we
can confirm the fact that the estimate obtained in Theorem 4.2 can not be
improved as regard with the power of 7. As for the power of h, the estimate
is not optimal.

Let Q be the square (0,1) x (0,1). Treat in §2 the parabolic Dirichlet
problem:

du (8% O '
_a'%z D[a_;;+6+;;]1 (tax1y)e(011)XQ‘

u(t,z,y) =0, (t,z,y) € (0,1) x99,
u(0,z,y) = sin (rz)sin (7y), (z,y) € Q.

The solution to the problem is the function
- u(t, z,y) = exp (=2Xo7t) sin (7z)sin (7y).

Put Ag = 0.05. In this supposition the Lo-norm of the solution decreases
approximately € times during the interval ¢ = 1.

Let ©; = (0,1) x (0,3/8) and Q; = (0,1) x (3/8,1). We made tests on a
uniform grid with A = 7. The grid version of the L;(£2y)-error norm at the
moment ¢ = 1 we denote by '

& = h[S (e (&) - u@0)] ) p=1.2,

where N7 = 1. So, the Lo-error norm can be written as follows:

= /g2 4 2
E=\/e] +£&;5.

Let calculate parameter p by formula
p=c\t+ h3/2,
where ¢ = 8.

The results are given in the table. Variable interior mesh-widths ¢
calculate by formula (4.3). The parameter s was defined so, that the decrease
s on 1 leads to the instability. _ ‘

It is obvious that the reduction of the mesh-widths twice implies the
decrease of the L-error norm roughly in /2 times and the increase of the
parameter s — in approximately v/2 times.
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r=h|s T € T=nh s & T=~h ] I
1| 0.024006 2 | 5.03349702 4 | 2.827« 10T
2=% [727] 0.023098 21 3 | 0.015347 2-% 5 0.010599
3 | 0.022990 4 | 0.015328 6 0.010598
7 | 3.492 * 10°° 11 | 2.19232914 | 18 overflow
2=¢ '8 | 0.0074342 277 12 | 0.0052428 2=% [17 | 0.0037044
' 9 | 0.0074340 13| 0.0052428 18 | 0.0037044

In conclusion, we make some remarks.. We does not address the question
about the influence of round-off errors. As for the subdomains in which the
implicit scheme is used, the decomposition itself diminishes the dimension
of the arising algebraic systems, which increases the stability of algorithms
for solving them. The question about the influence of the round-off errors
in implementation of the explicit scheme relates to the well-studied problem
of permutating the roots of polynomials [24]). At this juncture, the use of
the Lanczos polynomials in place of the Chebyshev polynomials improves
the situation due to the presence of multiple roots. This is experimentally
confirmed by numerical calculations in which, for s near 30, the different
ordering of the roots of polynomials is practically negligible. For the Cheby-
shev polynomials and the same values of s, the different ordering essentially
influences stability [24].
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