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A finite-difference model of atmospheric
dynamics with the conservation laws

A.A. Fomenko and V.N. Krupchatnikov

A description of the basic model of atmosphere, which has been worked
out in Siberian Scientific Hydrometeorological Institute and Computing
Center of Siberian Division of Russian Academy of Sciences, is presented
in this paper. Some concervations laws of the model allow to realize long-
time integration. A limited-area variant of the model served as a basis of
operative technology of regional weather prediction for Siberia. The results
of predictions with this model are described at the end of this paper.

1. Introduction

In the present paper a basic atmospheric model is described. The vari-
ants of this model are intended for reproduction of climate and weather
prediction. The possibility of long-time integration is provided with con-
cervation of some invariants in finite-difference form, which exists in dif-
ferential formulation of the task. Therefore in the statistical sense they
allow to approach discrete model dynamics to the continuous atmospheric
dynamics.

For short-range numerical weather prediction the demand in order to
finite-difference scheme providing the fulfilment of integral properties may
not be essential. In such case it is interesting to local accuracy of solution in
the space and time. However, it is believed that supplementarily demands,
which give realistic energy interaction between the waves of different scales
may play here some positive role.

The experience of leading specialists (in particular ECMWTF [13]) and
the model author’s experience were considered in this paper. We also took
into account the availability of technical posibilities.
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2. The basic equations

In the given model version Phillips’ sigma-coordinate system is used, where

o2
Ds

— pressure, p, — its value on the Earth surface.
The basic system is

%ftf - coinpsvcostp + is{pal\(‘l"F E)

+ RT,,M;S(PBI(;‘AP’ g: = F, (2.1)
g_t+zp l——(@+E)+RT 1ag:pp, +r‘r§;=Fw (2:2)
ST MY, S T
b A o) ensll] s o
% ﬁ—;[%(p,u) + :%(p,v cos 90)] + a%(?sf’) =0, (2:6)

where
ws= j—f =po+o %3:’ + aczw(p,uagi\p’ +p5vcos<pag;p’)-

We use the following notations:

4, v, 0 — components of wind vector,

$ — geopotential,

T, T, =(T+0.607¢) ~ temperature and virtual temperature,
¢ — specific humidity,

= ,,L,[f + —,,c;w(gﬁ 3“ s222)] — vertical component of potentla.l
absolute vorticity,

fs @, A, ¢ — the Coriolis parameter, Earth radius, longitude and latitude,
E = Y(u®+ v?) - kinetic energy,

K= %, R — gas constant for dry air,
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¢, — specific heat capacity for dry air at constant pressure,

F,, F,, @, § — nonadiabatic sources.

At the upper boundary of the atmosphere the natural boundary con-
dition for the free surface is

(PsF)o=0 = 0. i (2.7)

At the Earth surface we set the kinematic flow condition

(psé'_)ozl =0. : (28)
Besides that, the distribution of geopotential is
(®)o=1 = Ps. (2.9)

While passing to cartographic coordinates, the initial equation system
may be presented in the following form

0 , . du d . Oln p, _
a—t(mu) — Zmpsv + mé o + EE(E + &) + RT, e mkFy, (2.10)
' ( 1 N
%(m'v) + Zm'psu + 1?1'6‘3—; + E)%(E + @)+ RT,,B (;lyp =m'F,, (2.11)
*aT * T,

;%(mm'T) + %g_a, + ;—83—5 + mm’&—g—i - mm’% =mm'Q, (2.12)

d , w*dq v*0Oq L .

31(mm q) + R + o9y + mm G5y = Mmm S, (2.13)

a, ., du™ et 0o ‘

E)_—r(mm Ps) + o + 3y + mm 5o = 0, (2.14)

)P

C)(!ucr = RT.. (2.15)

where

m = acos pAA, m’ = aAp,

u* = m'pgu. 0™ = mp,v,

r=AfAN y=@/Ap.

Such statement allows without difficulties to construct spatial-difference
approximation [1]. which gives the second order approximation and exhibits
the potential enstrophy conservation law at the eddy advection by the
horizontal velocity, and mass and energy conservation laws in adiabatic
nondissipative processes [6].
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3. Spatial-difference scheme

In the model Arakawa’s C-grid is used. In the vertical direction the basic

computational unequally-spaced levels are defined by the formulae
o = 0.75s% + 1.7585° — 1.58;*,

where
Sk =‘(k - 1/2)/NLEYV, k=1,NLEV,

NLEYV is the number of vertical levels.
Let us introduce the notations
Tit1/2,5+1/2 = mj+1/2m’(Ps)i+1/2,j+1/2a
wiit/ze = (Bu)ijer2am’s
Vir1/25k = (P10)ig1/2,5,6M5)

1
m; = 5(m1‘+1/2 + mj_1/2),

(3.1)
(3.2)
(3.3)

(3.4)

where the overbar denotes the average with respect to corresponding vari-
able. The equation for the surface pressure tendency, which is received by
vertical integration of continuaty equation, may be approximated by the

following way

9 NLEV
27 i+/25+12 z Dit1y2,j41/2480% = 0,
k=1

—_— * * * — *
Disrjagar/ak = Wiy jan/ak = Yijarjan + Y1/ 010 = Vir1 2.0k

Next, with the notations

1 , :
Taik = o M i 2k = mvicy20
+ (mu);jory2p = (MU); j41/724)
1 l—si 11—
E; /24172 = (—mu2 + —muv? )
i+1/2,j41/2, Mg \2 2 i+1/2,541/2,k°

2(f; + iju)m;
Mpry2(Be)iirrz2 + Micaja(B)ijer

Ziik

the equations for horizontal components of wind may be written
form

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

in the
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* *
P22k T E /2,541 /280 1G4 2k T Eim1/2,541 /280 i=1,541 2,k

*x *
O i 41/2,kY it1/2,541,k — ﬂi,j+1/2,k” i—1/2,4+1,k

= Vi i41/2,k0 i-1/2,5,k = Gija1/240" 41725,k

Mjt1/2 —
—(ﬁi )J_f:lﬂ{{(l’sa Jig+r/2,k41/2(Ui 54172, k41 — Ui j+1/2,k)
§/%,)
+ (F)i,j«ﬂﬂ,k—l/z(ui,j-l—l/2,k — U jy1/2,k-1)]/(200%)} (3.10)

+ Eivay2541/2% — Eic1y2,541724
+ ®ipy2,54172.0 — Picryz 4172k

+ RT 1,j+1/2, k[ln(ps)z-t-lﬁ NEST Y R ln(p8)1—1/2,_1+1/2} j+1/2Fui,j+1fz.k’

! *
am Vigy1/2,5k T (Pi+1/2,j+1fz,kv*i+1/2,j+1,k = Pit1/2,j-1/2,kV i+1/2,j-1,k
» *
+ Yig1, 417268 i1, 541720 0 jp1/200 0 G412,k

E 3 -
+ a; j-—l/2 KU i =172,k T Big1,i-1/24% i41,i-1/2,k

{[(Ps z+1/23 k+1f2(”;+1/2,;,k+1 - Ua+1/2,g,k)

(Pi);+1/z,3
+ (ps0’ )i+l/2,j,k—1/2(vi+1/2.j,k — Viy1/2,jk-1))/(280%)} (3.11)
+ Eivip2,41724 — Eiv1y2,-1/2
+ q’i+1/2.j+1/2 k= Piyr/2,-1/2.k
+ RT! L2k (Pe)ivr/2,54172 — (P )ivr/2-1/2) = m "Foiprjazn

where

Pit1/2,j+1/2.k = 51;(-3;+1,j+1.k + Zijwik + Zijk — Ziv15k),  (3.12)
Eip1/2,41/2k = _L(Z£+1.j+1!k + Zijr1k — Zijk — Zit1,jk)s (3.13)
Qij4r/2k = 24(27¢+1 ik Zijak +2Zi ke + Zigr,jx), - (3.14)
Biit1/2k = i(zi._ﬂ-l.k +2Zi-1,j41k + Zic1,jk +2Zi k),  (3.15)
Vig+1/2k = %(QZJ.}H,k + Zicvjerke +2Zicr i+ Zijr),  (3.16)

|
bijvijzk = stZivvivik + 22041k + Zijk + 2Zi41,5%)-  (3.17)
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In so doing, with formal approximation of hydrostatic equation in the
form
¢ = &, + RGT,,

where (' is the upper-triangular matrix with the elements gy (g = 0,
l > k), the consistent difference approximation of the expression L ip
the temperature equation, satisfying the energy conservation low, takes the
form

T,
(mm,Rva) - K’( v)k [Vk* . V]nps - (AVV*);:],
P k DPs

where A is the lower-triangular matrix ay = g”“% (for simplicity the
horizontal indexes are ommited).

The special choice of matrix G structure allows to construct an angular-
momentum conserving scheme [10].

Therefore, spatial-difference approximation for the equation of temper-
ature is

a tp
FTHG AR TELCE RS VERESVENS

ﬁ;‘l;[u*i+1,j+1/2,k(11i+3/‘2‘j+1/2.k ~ Tiv1/2,j41/2.%)

+ 07 26Ty 0120 = Ticvjagei/2.k)

+ iz (Tivayag s = Tiviyze1/2.6)

+ 0 200 Tisag g2 — Tigryz—1/2.4)] (3.18)
0,204 g2 a2 Tipr j2, 541 20s1 — Tigiy2j41/24)

+ 0ivipziviak—120Tm e ok — Tii25+1720-1)]/(2204)

!
=Myt Qi+l/2,_,i+]/2,k~

H,’I‘,Iw)
12, 541/2,k

!
— M /oM (
/2 »

The spatial-difference approximation for specific humidity equation is con-
structed in the same way.

The vertical component of the wind is calculated by the following di-
agnostic relationship, which is constructed from the continuity equation,

NLEV
(I’s5li+;/2,,y+1/2.k+i/z = (”k+|/z Z D{+|/2,;‘+1/2,13f’i

=1 (3.19)

k
- Z l)i+1/2.,,'+|/2,113(7!)/("”-Hl/z"”r)-
=1
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It is not difficult to receive the modification of difference equations near
the poles with the supposition (vcos¢), = 0. :

To eliminate the possibility of internal symmetric computational insta-
bility [5] the following modifications of finite-difference expressions (3.2),
(3.3), (3.8) are foreseen '

'“f*i,j+1/2,k = 025[@9:‘.3’—1/2 + 2(ﬁi)z‘,j+1/2 + (f’i)c’.j+3/2]“i.j+1/2,km'; (3.20)

Visr/zik = 0.25[(P))ica 2 + 200)igrs2,; + (Pivasaglvipryzjemi,  (3.21)
1 .
8m;t1/2

— —t
Eiv172,541/2k = [(mu2)ig1/2,-1/2.% + 2(mu? )ig1/2541/2.k

+ (mu? i1/ 43720 + (M02) _yaipyn (3.22)

N — —i
+ Z(ﬂlvzj)i+1/2'j+]j2,k + (mv? )i+3/2,j+1/2rkl'

4. The time integration scheme

The basis of time integration algorithms’ construction is the semi-implicit
scheme with respect to dynamical sources, the explicit scheme with respect
to “slow™ physical sources. and the implicit scheme with respect to “fast”
physical sources (e.g. vertical diffusion).

The semi-implicit time integration scheme widely used in numerical
prediction and general circulation models. belongs to the class of central
time differencies schemes and go ideologically back to G.I.Marchuk’s [8]
and A.Rober’s [9] works. The basis of the method is that linear terms
of dynamical part of numerical model, which are responsible for the grav-
itational waves evolution. are considered implicitly, while other terms -
explicitly. Then our system in asswned indications takes the form

(o Ay (by p) - -
i + J”A_,-(E-AHP) = A, (4.1)
_ 11

Jd o - — .
bt + =3, (3A0P) = Au. (4.2)
&T' + ‘-1(%_\,,«1) = Ar. (4.3)
_ 1
dlnps + 10 - (EA,,d) =A,,. (4.4)

Here the following property is used X2 = X'+ 13, X,

Ay = (A, Ay, Ay — syvmmetrical differencies by spatial and time
respectively.
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6, Xt — central-differencies time approximation,

A — the matrix of the divergency contribution into temperature tendency,
II — row-vector with the eleme@ﬂ;s Aoy,

P=®+ RIglnps, d= #(Axm’u + A,mv),

u, v, d, Ty P, ® ~ column-vectors.

In so doing Ty is column-vector of reference standard temperature, in the
given model version it is not dependent on o.
Let B = GA+ RTy,®II, then from (4.3) and (4.4) we have

_ 1
8§,P' + B(EA“(E) = A,, (4.5)
and from (4.1) and (4.2)
- 1
6:dt + V2(§AuP) = Ay, (4.6)

where Ay, A,, A7, Ap,, Ap, Ay are the explicit tendencies.
Using the representation

- 1 Xt— X!
C T — » —_—
HX' = 3 tA“X + ; ,

we transform (4.6) and (4.5) to

| 1 _ i}
SAud + ANZ(;Z"A”P) = AfAy — (d —d™h), (1.7)

] 1 _
%A“P + ALB(EA;M) = Atdp — (P = P (1.8)

Let affoct on (1.8) by operator —AIV2, then we obtain the equation
with respect to .—'2-_/3”((

| 7]
S Bud - Azﬁvln(ia,,,rt)

4.9
d — ! (1.9)

Al

pt_ pt=t )

= At("l" - Al

) - A!”V’(/lp —
The NLEV eigenvalues of the matrix 3 are squares of the phase speeds
("31.:“-7 = 1,....NLEV) of the models gravity waves in resting atmosphere.
The vertical structure of the gravity waves are described by eigenfunctions
Celk =1, ..., NLEV). The system may be transformed, using the matrix

1= (Ciaee o CNLEV) (-1.10)
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We define the vector Y by formulae
/1 *
Y =E (rQ»Attd), (4.11)
and using the fact that
E7'BE = diag(C%), (4.12)
we give the N LEV equations
Yi — APCER VY = E7'(rhs(4.9)), (4.13)

where rhs(4.9) is the right side of (4.9).

The polar boundary conditions for equation (4.13) may be derived from
this equation using Green’s formulae for polar cups. In the solving of (4.13)
one of the variants of direct method of partial reduction with the Fourier
transform was used.

In the regional model version the poles are assumed not to belong to
the calculation forecast region. In this case, solving the equation (4.13), we
set the uniform Dirihlet conditions at the regional boundary. The matrix
of general equation system passes the diagonal predominance and hence is
non-singular. In regional model version the method of boundary conditions
assimilation. which is the modification of relaxation method, developed in
[2]. 15 used.

In order to overconie some stability restrictions arising from the con-
vergence of the meridians to poles. a latitudianal dependent spatial filtring
operator can be applied to all tendencies.

5. Sub-grid scale processes

Iu the given model version we use the linear horizontal second- order diffu-
sion scheme. though. there are variants of linear and nonlinear fourth-order
schemes.

The calculation of surface flows is based on the Monin-Obukhov simi-
larity theory, where wind and temperature profiles depend on outer param-
oters and on surface moment and heat flows. Equations used in the model
for moment. sensible heat and moisture flows are different for stably and
unstably stratificated surface level. Earth surface roughness height Zy over
the sea is calculated with the help of ratio

i

ZU - (](]-‘2 ——
)
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it is assumed that Zg > 0.0015 cm. Over the land Z; is assumed to depend
on vegetation amount, urbanization and topography height and variability
in accordance with [12]. Over the ice Z; is taken as 0.0015 m.

Flows over the surface layer are calculated on the basis of mixing length
theory, where diffusion factors are defined in different ways for stable and
unstable stratifications.

Before the calculation of main variables at each step the general con-
vective adjustment is performed breaking up into several stages:

¢ exclusion of negative values in the moisture field;
¢ performing of dry convective adjustment;

® moist convection.

For the exclusion of negative values of the moisture field, which can oc-
cur due to the truncation errors of central difference scheme simultaneously
with condensation processes, the scheme which retains the total moisture
content is used.

The deep moisture convection parameterizatin scheme is based on Kuo’s
[7] method, in which the following assumptions were used:

e a criterion for the convection existence is the presence of moisture
convergence at lower levels and conditionally unstable stratification
in the lower troposphere,

e the rise of air in clouds is performed pseudoadiabatically, the upper
cloud boundary is located at the level, where the cloud temperature
equals the ambient air temperature,

e forming clouds get mixed up instantly with ambient air.

The main distinction of the used scheme from Kuo’s parameterizatin
is that not only convective clouds, generated by air rise from the Earth
surface, are considered, but also clouds being conceived at higher levels,
where moisture convergence also can occur,

In the non-convective cloudiness parameterizatin scheme the conden-
sation process occurs when specific humidity reaches the saturation value,
but liquid water does not fall in the form of precipitation until one of two
conditions will be fulfilled.

The first condition, a fairly cold cloud top is based on the mechanism
which takes into account that ice nuclei generation goes more effectively
when temperature is below some threshold temperature 1. After nuclei
generation their fast growth due to overcooled water drops and precipitation
fall-out follow.
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The second condition, a fairly thick cloud is based on the fact that the
rain drop coagulation increases when these drops number density increases.
In this case criterion is that cloud water must exceed some value.

Sea temperature is treated as assigned. This assumption is made both
for open water and for water covered by ice.

At the land the thin soil layer is signed out with certain heat capacity,
which exchanges heat and moisture with atmosphere and deep soil (active
soil layer).

The snow melting is considered each time when snow presents and land
temperature exceeds ice melting temperature. In this case land temperature
is taken equal the ice melting temperature, while incoming energy goes to
the snow melting. '

Moisture over the sea is equal to the saturation value at given temper-
ature.

Soil moisture and snow cover are calculated with account of precipita-
tion, evaporation, melt water, run-off and moisture diffusion into soil.

The solution of the radiative transfer equation to obtain the fluxes is
very expensive, and we do it only twice a day at every grid point. When
the diurnal cycle is explicitly considered in solar flux, we have to perform
the full radiation computation more than twice a day at coarser grid.

The solution of the radiative transfer equation involves integrations over
angles, over vertical coordinate and over some intervals of spectrum. We
suppose that we can separate the whole spectrum into two intervals: short
waves (B,(T) = 0) and long waves (S,, = 0). In order to avoid a huge
number of computations at different frequencies, we have to find how to
determine optical depth v, single-scattering albedo w and phase function
[3].

The solution of the monochromatic equation being of exponential type,
the problem comes from the nonlinear nature of the exponential functions,
and we have to use spectrally averaged coefficients of absorbtion and scat-
tering only when the coefficients have the same order of magnitude through-
out the considered spectral interval. This is a case for cloud-aerosols ab-
sorbtion and scattering and Rayleigh scattering (for short waves) in some
spectrum domains (3 for long waves, 2 for short waves) and we have grey
effects except for gaseous absorbtion in these intervals. An extra difficulty
arises in the case of gaseous absorbtion (COz, H20, O3), because the co-
efficients strong depend on temperature and pressure.

We, therefore, use empirical transmission functions for gases. First of
all we make computation without any gaseous absorbtion, the resulting
flux represents either the parallel flux or the upward or downward diffuse
flux. After that we add each gase H,0. CO,, O3 with small absorbtion
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~ coefficient and finally we compute the real flux. In the long wave domain
of the spectrum the problem is more complicated, because there is not a
single external source and every absorbtion is accompained by an equivalent
emission. Hence, to estimate the amounts of absorbers we have to compare
computations with and without gases in an isotermal case.

To resolve the vertical iritegration problem, we suppose that each layer
is vertically homogeneous absorbing and scattering medium, and that in
each spectral interval of the long wave domain the Planck function vary
linearly with the optical depth through every layer. We use the two-stream
Eddington approximation. At each level both upward and downward diffuse
radiation fields are hemispherically isotropic. The radiation model uses the
cloud prediction scheme which allows for four cloud type — covective and
three layer clouds (high, middle, low level) [11].

6. Verification of operational forecasts

‘In this section the results of operative using of regional version of the
model are presented. Operative predictions are doing one time/day with
meteorological data of 12h GMT for Siberian region during 60 hours. The
domain of forecast is in the form 1.66° x 1.25° longitude-latitude grids
coverning the region from 40° — 146.6°E and 40° — 80°N. [Initial fields
are received as a result of two-dimension one-element objective analysis by
optimal interpolation method. The first-guess is the 12h forecast with this
model. The using of the procedure of nonlinear normal mode initialization
is given initial consistent fields of temperature and wind.

Boundary conditions are received from the prediction geopotential data
of NMC, which are provided by connection canals in the GRID’s code.
Maximum accessible data quantity are only five izobaric levels 100, 300,
500, 850, 1000 mb with discrete in 12h. Prediction data are interpolated
with respect to vertical on all levels. The temperature is reconstructed by
geopotential, horizontal wind components are geostrophical. Because we
have no data upper 100 mb, the izotermal distribution of temperature is
supposed. Linear interpolation by time is used for boundary conditions
inside 12h intervals.

It is necessary to note that the GRID’s information data give the pos-
sibility, as a rule, to use changing by time boundary conditions only for
36h forecast. After that the stationary boundary conditions are used.

In spite of coarse boundary conditions, which are connected with the
unsufficient quantity of external prediction informations, the quality of pre-
dictions is quite satisfactory, althogh less than with using boundary condi-
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tions with whole volume.

In Figure 1 tendency correlations of 500 mb geopotential and surface
pressure 24 and 48 hours forecasts in 1992 year are demonstrated.
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Figure 1. Tendency correlation coefficients for surface pressure p, (top) and 500
gPa heights Hsgo (bottom) averaged over region for 24h (solid line) and 48h
(dashed line) forecasts in 1992 year

Figure 2 demonstrates the possibilities of predictability of the model.
It is evident that the utility of predictions is more than 60h.

7. Conclusion

In this paper we introduced the basic model of atmosphere. At present the
limited-area version of this model is used for operative numerical weather
prediction in Siberian region. Estimations of weather predictions, which
were got by the means of model, show a good quality. Global version of the
model is intended for climatic investigations. Interactjon between limited-
area and global models will allow to carry out numerical experiments on
study of influence of global climatic changes on to regional scales.

This work has been supported financially by Soros Fund.
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Figure 2. January 1993 year root mean square errors of forecast (dashed line)
and persistence (solid line) for 500 gPa heights

Appendix

The pre and post-processing package provides an interface between the
model and databases for dissemination and archiving. After some com-
parison of numerical experiments the next procedures were applied. Cubic
tension splines with the vertical coordinate In p were used for the interpola-
tion in the vertical from the model coordinates to constant pressure levels
and back. Preliminarily the specific humidity was transformed to the terms
of relative humidity.

Surface pressure p, was calculated from the mean sea-level pressure p,,s
by the means of some modification of the Shuman-Hovermaile[4] scheme.

For the calculation mean sea-level pressure Pmst from p; the following
procedure was used.

Define

Ts =Tniev + v(®nLev — 8,)/9,
TO = TB + 7¢5/gs

To at 1y <290.5,
Ty = ¢ 290.5—-0.005(Tp — 290.5)> at Ty > 290.5, Ts > 290.5,
290.5 in other cases,

and
71’[ = ()G(T‘m + ""5)
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After that

Pmsl = Ds eXP(Qs/RTg)-

Tio00 Was obtaind from Tnxzgv by means of using standard profile of tem-
perature.
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