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Novel modification of the W-method

M. Dorofeeva, I. Koufareva

Testing strategies based on finite states machines (FSMs) are widely used for protocol
test derivation. Most FSM-based methods of test generation are based on the well-known
W -method. In this paper, we determine the necessary conditions for a test suite to be
complete under an assumption that only the number of states of an implementation under
test is known. Based on the above conditions, we propose a novel modification of the
W -method for the complete test suite derivation. We also present the results of computer
experiments that clearly show that the total length of a test suite returned by the proposed
modification is close to the minimal.

1. Introduction

In the protocol conformance testing, there exist a number of test derivation
strategies based on finite state machines (FSMs). The FSMs are used to
represent both the specification and the implementation under test (IUT).
Usually a test suite has to determine whether the IUT is equivalent to its
specification, i.e., if both machines have the same behavior. Some methods
are based on an explicit enumeration [1] of all possible implementations,
while another methods do not use an explicit enumeration of faulty ma-
chines. The former methods usually return a test suite of minimal total
length, but they are out of practical use when the fault domain is large
enough.

Most methods that do not use an explicit enumeration of all faulty ma-
chines are based on the well-knownW -method [2, 3]. There exist some mod-
ifications of the W -method, in particular, Wp- and HSI -methods [4, 5] that
return a shorter test suite than the original method. It can be shown that
identification facilities of the states of the specification FSM is the only
thing that can be manipulated in order to shorten the obtained test suite.
However, the paper [6] has an example illustrating that the arbitrary state
identifiers do not always preserve completeness of a test suite. Moreover, in
all modifications the authors use the fixed state identifiers throughout the
test suite construction process.

In this paper, we show that, in the case when only the number of states
of an IUT is known, a complete test suite always has an appropriate iden-
tification sequence for each transition of the implementation. The sequence
has a prefix that takes the implementation to an appropriate state; then
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an appropriate input is submitted. Finally, the suffix of the sequence dis-
tinguishes the expected final state of the transition from any other state of
the specification. Based on the above condition, we propose to use different
identification sequences for the same state. Identification sequences in our
modification depend on a sequence that takes the specification FSM to a
given state. The result essentially depends on a strategy for selecting the
distinguishing sequences. The computer experiments we performed clearly
show that the new modification returns a test suite shorter than that re-
turned by the W - and HSI -methods. Moreover, the length of the obtained
test suite is close to the lower bound [7].

The rest of the paper is structured as follows. Preliminaries are in Sec-
tion 2, while Section 3 briefly describes the enumeration, W - and HSI -
methods for generating test cases from a given FSM specification. The nec-
essary conditions for a test suite to be complete when only the upper bound
on the number of states of an implementation under test is known are pre-
sented in Section 4. A novel modification of the W -method is described in
Section 5. Section 6 concludes the paper.

2. Finite state machines

Protocols can be formally considered as systems mapping the sequences of
input symbols into the sequences of output symbols. Any finite set of symbols
is called an alphabet. For any alphabet X, Xm denotes the set of all words of
length m over alphabet X, while X∗ is the set of all finite words including
the empty word ε. Any two words u and v from X∗ can be concatenated

and produce a new word uv ∈ X∗. Given a subset U ⊆ X∗, the set Pref (U)
is the set of all prefixes of all words of U . For any two sets U, V ⊆ X∗,
the set UV ⊆ X∗ is called the concatenation of U and V and is defined as
UV = {uv|u ∈ U, v ∈ V }.

A finite state machine (FSM) A, called amachine throughout this paper,
is a deterministic complete initialized finite state machine, i.e., a 6-tuple (S,
X, Y , δ, λ, s0), where S is a finite nonempty set of states with the initial
state s0, X and Y are input and output alphabets, δ : S ×X → S is a next

state function, and λ : S ×X → Y is an output function. In the usual way,
the functions δ and λ are extended to words in X∗.

The FSM A is called connected if for each state s ∈ S there exists an
input sequence αs ∈ X∗ that takes the FSM A from the initial state to
the state s; αs is called a transfer sequence for the state s. The set of input
sequences that has an empty sequence and a transfer sequence for each state
is called a state cover set of the FSM A. We assume that there exists a special
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reliable input r called reset input that takes the machine from any state to
the initial state.

A state s of an FSM A and a state t of an FSM B = (T,X, Y,∆,Λ, t0)
are said to be equivalent, written s ∼= t, if for all α ∈ X∗ it holds λ(s, α) =
Λ(t, α). Otherwise, we say that the states s and t are distinguishable and
an input sequence β such that λ(s, β) 6= Λ(t, β) is called a distinguish-

ing sequence for the states s and t. An FSM A is said to be reduced or
minimal if its states are pair-wise distinguishable. The machines A and
B = (T,X, Y, ψ, ϕ, t0) are equivalent, written A ∼= B, if their initial states
are equivalent; otherwise, the machines are called distinguishable. The se-
quence α such that λ(s0, α) 6= ϕ(t0, α) is said to distinguish the FSM A from
the FSM B.

A fault domain is a set of all possible faulty implementations. Based on
the assumption that only the number of states of an implementation under
test is known, we consider the fault domain consisting of all machines with
at most m states over the input alphabet X. The set is denoted as Jm(X).
A set TS ⊂ X∗ is an m-complete test suite for an FSM A [8] if for each
machine B ∈ Jm(X) that is distinguishable from A, there exists a sequence
in TS distinguishing the machine A from B.

In the next section, we sketch three methods for anm-complete test suite
derivation, analyze them and show how these methods can be enhanced.

3. A sketch of the test derivation methods

1. Explicit enumeration of faulty machines. A straightforward ap-
proach to derivation of an m-complete test suite from a specification FSM
A is an explicit enumeration of all machines of Jm(X) over the output al-
phabet Y . For each FSM, we determine the shortest sequence distinguishing
the machine from the specification FSM. The set of all such sequences is
an m-complete test suite for A. A test so derived is called an enumeration

test. The test is known to have little redundancy and its length is close to
minimal; however, the latter essentially depends on the order of the FSM
enumeration. It is known that the length of the shortest sequence distin-
guishing two machines does not exceed m + n − 1. By this reason, it is
naturally to expect that the test length increases with n when m is fixed.
The main disadvantage of the enumeration method is its time consumption
due to a huge number of machines in the fault domain. Other well-known
methods return an m-complete test suite without explicit enumeration of
faulty machines.
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2. W - and HSI-methods. The above testing methods use input sequences
that can distinguish the states of a specification FSM in order to check the
equivalence between transitions of the specification FSM and corresponding
transitions of an implementation under test. Given a reduced FSM A =
(S,X, Y, δ, λ, s0) and a state si of the FSM A, a set Wi of input sequences is
called a state identifier of the state si if for any other state sj there exists
α ∈Wi such that λ(si, α) 6= λ(sj, α). We now define a family of harmonized

identifiers [5] or a separating family. A family of harmonized state identifiers
is a collection of state identifiers Wi, si ∈ S, which satisfy the condition that
for any two states si, and sj, i 6= j, there exist β ∈ Wi and γ ∈ Wj with a
common prefix α such that λ(si, α) 6= λ(sj , α). A characterization set of the
FSM A is a union of identifiers of each state. A characterization set and a
family of harmonized state identifiers always exist for a reduced machine.

Given a specification reduced FSM A = (S,X, Y, δ, λ, s0), |S| = n, and
an implementation FSM B = (T,X, Y,∆,Λ, t0) such that |T | = m, letW be
a characterization set of A and F = {W1, . . . ,Wn} be a family of harmonized
state identifiers of A.

All the methods have three phases. In the first phase, they establish
a mapping h : T → S using the set VPref (Xm−n), where V is a state
cover set of the specification machine, and Pref (Xm−n) is the set of all
sequences of length at most m − n over the alphabet X. After that, all
inputs x ∈ X are submitted to verify transitions from the reached states
of the implementation. The third phase is meant to check if any state t of
the implementation is equivalent to the corresponding state s = h(t) of the
specification, and if the same holds for the next states of all transitions from
t. For this purpose, for each sequence αj ∈ VPref(Xm−n+1) a test suite
has a subset rαjWj (HSI -method) or rαjW (W -method), where r is the
reset input. If an FSM B passes the test sequences of all testing phases,
then it is equivalent to the specification FSM A, i.e., it is a conforming

implementation.

The length of a test suite derived by the W -method does not exceed
n2 ·m · |X|m−n+1 [2]. Thus the total length of the test suite exponentially
depends on m− n and, at fixed m, the less is n, the greater is the length of
the test suite. The latter contradicts the above assumption that the length of
an enumeration test increases with n at fixed m. Therefore, it is interesting
to study if this fact is a drawback of theW -method or it is natural. It is clear
that the length of the test derived by the HSI -method does not exceed the
length of the test derived by W -method. However, by construction, a test
suite includes the set VPref (Xm−n+1), i.e., the test length also exponentially
depends on (m− n) and decreases with increasing n at fixed m.
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Below we present the results of computer experiments [9]. Figure 1 rep-
resents the average length of a 6-complete test suite derived by the above
methods. One can easily see that the total length of m-complete test suite
exponentially depends on the difference between (m − n) and deteriorates
with increasing n at fixed m, no matter what method is used to derive the
test. The latter contradicts a natural supposition that the more complex is
the specification FSM the more complex is a test if the implementation is
equivalent to the specification. One of possible explanations of the obtained
results is that the test cases become more powerful when n is close to m,
i.e., each test case detects more faulty machines of Jm(X).

Unfortunately, we could not precisely estimate the length of an enumer-
ation m-complete test suite for greater values of m, since the number of
machines of the set Jm(X) is exponential.
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Figure 1. Test length dependence on the number of states of the specification
when m = 6

1 — the average length of a test suite derived by the W -method
2 — the average length of a test suite derived by the HSI -method
3 — the average length of an enumeration test suite

In Section 4, we analyze the test cases of the shortest m-complete enu-
meration test.
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4. The shortest m-complete enumeration test

Our experiments described in the previous section have shown that the
length of an enumeration test exponentially depends on m− n and, thus, is
very close to the lengths of the tests derived by the W - and HSI -methods.
Moreover, due to the following theorem, the structure of the enumera-
tion test is the same, i.e., any enumeration test is also based on the set
VPref (Xm−n+1).

Theorem 1. Any m-complete enumeration test for A contains a subset⋃
β∈V Pr ef(Xm−n+1)

βwβ , where, for any β ∈ VPref(Xm−n+1), wβ is an iden-

tifier of a state where β takes the specification machine A from the initial

state.

Proof. To prove the statement of Theorem 1, we show that for any two
states s, s′ ∈ S of the specification machine and for any input sequence
x1 . . . xk ∈ Pref(Xm−n+1) there exists a faulty machine B ∈ ℑm(X,Y ) such
that the shortest sequence distinguishing B from A is αx1 . . . xkω, where α
is the shortest sequence taking A from the initial state to the state s, while
ω is the shortest sequence distinguishing the state s′ from δ(s0, αx1 . . . xk).

Without loss of generality, we denote the states of A by positive integers
1, 2, . . . , n so that the state s is denoted by n. In other words, we consider
the specification machine A = ({1, 2, . . . , n},X, Y, δ, λ, s0) and δ(s0, α) = n.
We denote by s′′ the state δ(s0, αx1 . . . xk) where the sequence αx1 . . . xk
takes A from its initial state. Then we construct a faulty machine B =
(T,X, Y,∆,Λ, t0), where T = {1, 2, . . . , n+ k − 1} and the functions ∆ and
Λ are defined in the following way:

1. ∀t ∈ {1, . . . , n − 1}∀x ∈ X Λ(t, x) = λ(t, x) and ∆(t, x) = δ(t, x);

2. ∀t ∈ {n, . . . , n+ k − 2}∀x ∈ X Λ(t, x) = λ(δ(n, x1 . . . xt−n), x);
∀x 6= xt−n+1 ∆(t, x) = δ(n, x1 . . . xt−nx); ∆(t, xt−n+1) = t+ 1;

3. ∀x ∈ X Λ(n+ k − 1, x) = λ(δ(n, x1 . . . xk−1), x);
∀x 6= xk ∆(n+ k − 1, x) = δ(n, x1 . . . xk−1x); ∆(n+ k − 1, xk) = s′.

Since k ≤ m − n + 1, it holds that |T | ≤ m and, thus, the constructed
machine B is in the set Jm(X). Its responses to all sequences that do not tra-
verse the last state n+k−1 coincide with those of the specification machine
A. The shortest sequence taking B to the state n + k − 1 is αx1 . . . xk−1.
Under the input xk, the machine B goes to the state s′ while the speci-
fication machine A goes to the state δ(s0, αx1 . . . xk) = s′′. Finally, since
λ(s′, ω) 6= λ(s′′, ω), the sequence αx1 . . . xkω distinguishes B from A. Obvi-
ously, no shorter sequence possesses this property.
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Due to the above considerations, any enumeration test must contain all
possible sequences αx 1. . .xkω for all states s ∈ S, all sequences

x1 . . . xk ∈ Pref(Xm−n+1),

and all states s′ 6= δ(s0, αx1 . . . xk). Thus, it always has a subset

⋃

β∈V Pref(Xm−n+1)

βwβ,

where wβ is an identifier of a state δ(s0, β) for any β ∈ VPref(Xm−n+1). ✷

Based on Theorem 1, the lower bound of an m-complete test suite can
be established [7]. This lower bound is also shown to depend exponentially
on the value of m− n and to deteriorate with increasing n at fixed m.

Due to the above theorem, the explicit enumeration of all faulty machines
is of a little help for the derivation of a minimal m-complete test suite.
Moreover, the set VPref (Xm−n+1), where V is the shortest state cover set of
the specification FSM, seems to be the basis of any test derivation method.
Therefore, an m-complete test suite can only be shortened based on an
appropriate choice and distribution of state identifiers.

In Section 5, we propose a novel modification of the W -method that
returns m-complete test suite with the length close to the lower bound.

5. A novel modification of the W -method

Since the set VPref (Xm−n+1) is the basis of any test derivation method,
identification facilities of the states of the specification FSM are the only
thing that can be manipulated in order to shorten the obtained test suite.
However, the paper [6] presents an example illustrating that arbitrary state
identifiers do not always preserve completeness of a test suite. Below we
present the sufficient conditions ofm-completeness of a test derived from the
set VPref (Xm−n+1) and based on the appropriate choice of state identifiers.

Theorem 2. Let A be a specification FSM, A = (S,X, Y, δ, λ, s0), |S| = n

and V be its prefix-closed state cover set. Consider the set VXm−n+1 (m ≥ n)
such that:

1. λ(δ(s0, αi), w) 6= λ(δ(s0, αj), w), ∀αi, αj ∈ V ;

2. λ(δ(s0, αi), w) 6= λ(δ(s0, βj), w), ∀αi ∈ V, βj ∈ VPref(Xm−n+1);

3. λ(δ(s0, αβi), w) 6= λ(δ(s0, αβj), w), ∀α ∈ V, βi, βj ∈ Pref(Xm−n+1)
such that βi is a prefix of βj .
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The set TS constructed under the above conditions is m-complete test

suite for A.

Proof. To prove the statement of the theorem, we consider an arbitrary
FSM B ∈ Jm(X) that is not equivalent to A. There are two cases.

1. FSMs A and B are distinguished by a certain sequence α ∈ V . Then
α ∈ TS and TS distinguishes B from A.

2. No sequence α ∈ V distinguishes B and A.

In the latter case, consider the sequence αβx, α ∈ V , that distinguishes
B from A and has the shortest suffix βx. If the length of βx is not greater
than m − n + 1, then αβx is a prefix of some sequence of TS, i.e., B is
distinguished from A.

Now suppose that the length of βx is greater than m− n+ 1. Then βx
has a prefix β′ of length m − n + 1 such that αβ′ ∈ VPref(Xm−n+1). By
construction of the set TS, the set V ∪ αPref(β′) contains m+ 1 different
sequences. And since the machine B has only m states, two sequences α1

and α2 from V ∪ αPref(β′) take it to the same state t. At the same time,
the sequences α1 and α2 take the specification to different states s1 and s2,
since αβx is the sequence with the shortest suffix βx distinguishing the two
machines. In this case, any sequence w(s1, s2) distinguishing the state s1
from s2 of the specification distinguishes the state t from either s1 or s2. By
construction, the set TS has such sequences, i.e. TS distinguishes B from
A. Therefore, the set TS is m-complete test suite for the FSM A. ✷

Due to Theorem 2, below we present an algorithm of an m-complete test
suite derivation.

Input. A connected reduced FSM A with n states; a prefix-closed state
cover set V ; and an integer m greater than or equal to n.

Output. m-complete test suite

The method includes the following steps.

Step 1. Derive the set TS = VPref (Xm−n+1).

Step 2. For each αi ∈ VPref (Xm−n+1) determine the state si where αi

takes the FSM A from the initial state.

For each sequence αj ∈ V ∪Pref(αi), if δ(s0, αj) 6= si then check whether
TS has sequences αjω and αiω such that ω distinguishes the state δ(s0, αj)
from the state si.

If there are no such sequences, then include the sequences αjω and αiω

into TS for an appropriate distinguishing sequence ω. Repeat this step until
all the sequences of the set VPref (Xm−n+1) are considered. ✷
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The length of the obtained test suite essentially depends on the strategy
of selecting the distinguishing sequences ω. We developed an algorithm that
allows us to select the best distinguishing sequence according to a special
cost function. Since it is our purpose to decrease the length of the obtained
test suite, the value of the cost function shows the relative increment in the
test length when submitting each distinguishing sequence [10]. The time and
space complexity of the proposed algorithm is proportional to the number
of pairs of sequences in the set VPref (Xm−n+1) that are concatenated with
distinguishing sequences. The number of sequences in VPref (Xm−n+1) does
not depend on the specification machine and is equal to

|X|m−n+1 − 1

|X| − 1
+ n · |X|m−n+1 , (1)

where m and n are the numbers of states of the specification and the imple-
mentation, respectively, and |X| is the cardinality of the input alphabet. The
number of different pairs of states that need to be distinguished according
to the proposed algorithm is actually equal to

m · n · |X|m−n+1 +

m−n∑

k=0

k · |X|k −
n · (n− 1)

2
. (2)

Thus, the proposed algorithm is enumerative one and, like any other enu-
meration algorithm, is rather consuming: the time and space consumption is
proportional to ∼ m ·n · |X|m−n+1 (at the same time, the upper bound of the
test length derived with the W-method [2] is n2 ·m · |X|m−n+1). Practically,
the number of pairs appears to be less than this value, since only different
states of the specification need to be distinguished.

Moreover, when m = n, the number of states, where the sequences of
the set VPref (Xm−n+1) take the FSM from its initial state, is n · |X| + 1
and the number of different pairs of states is defined by the value

n2 · |X| −
n · (n− 1)

2
(3). (3)

Thus, with the help of modern computer systems, it is possible to process
FSMs with a rather large number of states.

Example 1. Consider an FSM A in Figure 2.
In our case, n = 3 and we consider m = 4. By Theorem 2, the set

{xxx, xyxx, yxxx, yxyxx, yyxxx, yyxxy, yyxyy, yyyxx, yyyyx, yyyyy} is a 4-
complete test suite. By direct inspection, one can see that the state identifiers
y and x that are used to check the transition under y after the sequence
yyx ∈ VXm−n and the transition under x after the sequence yyy ∈ VXm−n
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A 1 2 3

x 1/0 2/1 1/1
y 3/1 3/1 2/0

Figure 2

are not harmonized. The same situation holds for the pair of sequences yyxy
and yxx taking the specification to states 3 and 1, respectively, and for the
pair of sequences yyxy and xx.

Keeping in mind that the reset input is submitted at the beginning of
each test case, the total length of the test suite is 46+10=56.

At the same time, the HSI -method returns a 4-complete test suite {xxx,
xyx, xyy, yxxx, yxyx, yxyy, yyxxx, yyxxy, yyxyx, yyxyy, yyyxx, yyyyx, yyyyy} for
the family of harmonized state identifiers {W1,W2,W3}, where W1 = {x},
W2 = {x, y}, W3 = {y}. The total length of the test suite is equal to
56 + 13 = 69.

Figures 3 and 4 represent the results of computer experiments. In Figure
3, the average length of a 10-complete test suite derived by the HSI -method
and its proposed modification are compared with the lower bound. Figure 4
represents the average length of a test suite when m = n for n = 2, . . . 10.
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Figure 3. The test length dependence on the number of states of the specification
when m = 10

1 — the average length of the test suite derived by the HSI-method
2 — the average length of the test suite derived by the proposed

modification of the W -method
3 — the lower bound of a 10-complete test suite
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Figure 4. The average length of the tests derived by different methods when
n = m

1 — the average length of the test suite derived by the HSI-method
2 — the test length derived by a new modification of W -method
3 — the lower bound of the m-complete test suite, m = 2, ..., 10 [7]

The experiments clearly show that the method proposed in this paper
returns the tests shorter than other existing methods. Additionally, time
consumption of the proposed method is comparable with time consumption
of the HSI -method and is very close to that of the W -method [10].

6. Conclusion

In the paper, we have studied a possibility to reduce the total length of
the m-complete test suite derived from a given specification FSM. We show
that the total length exponentially depends on the difference between m

and the number of states of the specification FSM and can be only reduced
by an appropriate choice and distribution of state identifiers. Based on this
observation, we have proposed a novel modification of the W -method. The
performed experiments clearly show that the proposed modification returns
the m-complete test suite shorter than other methods. Our future work is
directed to develop the strategies of how to select and distribute the state
identifiers in order to obtain the shortest test suite.
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