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One-dimensional direct and inverse problems for
one system arising in a two-phase medium

J.E. Davlatov, Kh.Kh. Imomnazarov

Abstract. A one-dimensional system of the Hopf-type equations is considered.
Axial solutions to problems in the field of modeling two-fluid interactions are sought.
A nonlinear system of ordinary differential equations is obtained. Direct and inverse
problems for the obtained ODE are considered. A theorem on local solvability is
proven.
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Introduction

A significant number of mathematical formulations of various problems in
natural science have the property of spatial locality, i.e., the most important
changes in the characteristics being studied are concentrated in a very lim-
ited area of space. In this case, as a rule, the governing dynamic equations
with partial derivatives are specified in the entire space, and the correspond-
ing boundary conditions actually determine the asymptotic behavior of the
sought solutions at infinity. Such problems arise, for example, in hydrody-
namics [1], plasma physics [2], laser physics [3] and other areas of natural
science. For example, when spatial locality is generated by the axial sym-
metry of the statement, i.e., when using cylindrical coordinates, a decrease
in solutions in the radial direction is clearly expressed. A similar situa-
tion arises in geophysics problems when studying near borehole space. In
numerical modeling of this type of phenomena, as a rule, the behavior of
functions on the axis is of primary importance (for example, effects such
as self-focusing or self-channeling; see [3] and the literature cited there).
However, to calculate the axial characteristics it is necessary to carry out
calculations of “complete” problems, i.e., in a sufficiently large range of
changes in the radial variable compared to the characteristic scales of the
process [4].

1. Equations of two-velocity hydrodynamics with one
pressure

In papers [5, 6] based on conservation laws, invariance equations for the
Galilean transformations and conditions thermodynamic consistency, a non-
linear two-speed model of fluid movement through a deformable porous
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medium. Two-fluid hydrodynamic theory with the condition for the equilib-
rium of subsystems under pressure, was constructed in the work [7]. Equa-
tions of motion of a two-velocity medium in the dissipative case conditioned
by the coefficient of interfacial friction χ with one pressure in the system in
the isothermal case has the form [7]

∂ρ

∂t
+ div(ρu) = 0,

∂ρ̃

∂t
+ div(ρ̃ũ) = 0, (1)

ρ̄
(∂u
∂t

+ (u,∇)u
)

= −∇p+ ν∆u + (ν/3 + µ)∇ divu +

ρ̃

2
∇(ũ− u)2 − bρ̄ ρ̃

ρ
(u− ũ) + ρ̄f , (2)

ρ̄
(∂ũ
∂t

+ (ũ,∇)ũ
)

= −∇p+ ν̃∆ũ + (ν̃/3 + µ̃)∇ div ũ−
ρ

2
∇(ũ− u)2 + bρ̄(u− ũ) + ρ̄f , (3)

where ũ and u are the velocity vectors of the subsystems, components of a
two-velocity continuum with corresponding partial densities ρ̃ and ρ, ν (µ)
and ν̃ (µ̃) –– corresponding shear (volume) viscosity, b = χ ρ̃, ρ̄ = ρ̃ + ρ ––
total density of two-velocity continuum; p = p(ρ̄, (ũ − u)2) –– equation of
two-velocity continuum states; f –– mass vector force per unit mass.

Let us rewrite equations (2) and (3) in equivalent form

ρ̄
(∂u
∂t

+
1

2
∇(u2)− u× rotu

)
= −∇p+ ν∆u + (ν/3 + µ)∇ divu +

ρ̃

2
∇(ũ− u)2 − bρ̄ ρ̃

ρ
(u− ũ) + ρ̄f , (4)

ρ̄
(∂ũ
∂t

+
1

2
∇(ũ2)− ũ× rot ũ

)
= −∇p+ ν̃∆ũ + (ν̃/3 + µ̃)∇ div ũ−
ρ

2
∇(ũ− u)2 + bρ̄ (u− ũ) + ρ̄f (5)

From these equations, another equations can be derived that determine
the change in vortices over time. To do this, apply to both sides of equations
(4), (5) the operator rot. As a result we obtain

∂Ω

∂t
− rot(u×Ω) = − rot

(∇p
ρ̄

)
+ ν∆Ω + rot

(ν/3 + µ

ρ̄
∇ divu

)
+

rot
( ρ̃

2ρ̄
∇(ũ− u)2

)
− b ρ̃

ρ
(Ω− Ω̃) + rotf ,

∂Ω

∂t
− rot(ũ× Ω̃) = − rot

(∇p
ρ̄

)
+ ν̃∆Ω̃ + rot

( ν̃/3 + µ̃

ρ̄
∇ div ũ

)
−

rot
( ρ

2ρ̄
∇(ũ− u)2

)
+ b (Ω− Ω̃) + rotf .
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2. One-dimensional Hopf type system

Let us consider the process of propagation of nonlinear waves in a two-fluid
medium, described by a one-dimensional homogeneous system of equations
[8–13]:

∂u

∂t
+ u

∂u

∂x
= −b(u− ũ), (6)

∂ũ

∂t
+ ũ

∂ũ

∂x
= εb(u− ũ), (7)

where ε =
ρ

ρ̃
is a dimensionless positive constant.

The paper considers finding axial solutions to problems in the field of
modeling two-fluid interactions. In this case, new direct and inverse prob-
lems arise for a nonlinear system of ordinary differential equations. The basis
for modeling is a system of hydrodynamic equations for a two-fluid medium
[4, 14]. In the plane case, axial symmetry is, of course, not assumed, but for
the sake of convenience we will use this name for real solutions of a system
of the Hopf-type equations [14] of the form

u(t, x) = U(t)x, ũ(t, x) = Ũ(t)x.

Amplitudes U(t), Ũ(t) satisfy a nonlinear system of ordinary differential
equations:

U ′ + U2 = −b(t)(U − Ũ), (8)

Ũ ′ + Ũ2 = εb(t)(U − Ũ). (9)

3. Direct problem

It is required to determine the functions U(t), Ũ(t) from (8), (9) with known
b, ε and the Cauchy data

U(0) = U0, Ũ(0) = Ũ0. (10)

Let us multiply both sides of equation (8) by ε and add them to (9)

d(εU + Ũ)

dt
+ εU2 + Ũ2 = 0. (11)

It follows that for all t ∈ (0, T ) we have the estimate

εU(t) + Ũ(t) ≤ εU0 + Ũ0. (12)
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From equation (8) subtract (9), then obtain

d(U − Ũ)

dt
+ (U + Ũ)(U − Ũ) = −(1 + ε)b(U − Ũ). (13)

The solution to the Cauchy problem for system (12), (13), (10) has the form

εU(t) + Ũ(t) = εU0 + Ũ0 −
∫ t

0
(εU2(τ) + Ũ2(τ))dτ, (14)

U(t)− Ũ(t) = (U0 − Ũ0) exp
(
−(1 + ε)bt−

∫ t

0
(U(τ) + Ũ(τ))dτ

)
. (15)

Solving system (14) and (15) we obtain a system of nonlinear Volterra equa-
tions of the second type

U(t) =
εU0 + Ũ0

1 + ε
− 1

1 + ε

∫ t

0
(εU2(τ) + Ũ2(τ))dτ +

U0 − Ũ0

1 + ε
exp
(
−(1 + ε)bt−

∫ t

0
(U(τ) + Ũ(τ))dτ

)
, (16)

Ũ(t) =
εU0 + Ũ0

1 + ε
− 1

1 + ε

∫ t

0
(εU2(τ) + Ũ2(τ))dτ −

ε

1 + ε
(U0 − Ũ0) exp

(
−(1 + ε)bt−

∫ t

0
(U(τ) + Ũ(τ))dτ

)
. (17)

The solution to system (16), (17) (where it exists) is infinitely smooth. It
exists locally according to the Picard theorem [15]. This paper does not
discuss the issue of the existence interval.

4. Inverse problem

It is required to determine the functions U(t), Ũ(t) and the coefficient b (the
constant ε is assumed to be known and U0 6= Ũ0) from (3)–(5) for additional
information

U |t=t∗ = U∗, t∗ < T. (18)

Assuming in (16) t = t∗, we obtain

(1 + ε)U∗ = εU0 + Ũ0 −
∫ t∗

0
(εU2(τ) + Ũ2(τ))dτ +

(U0 − Ũ0) exp
(
−(1 + ε)bt∗ −

∫ t∗

0
(U(τ) + Ũ(τ))dτ

)
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or

exp
(
−(1 + ε)bt∗ −

∫ t∗

0
(U(τ) + Ũ(τ))dτ

)
=
ε(U∗ − U0) + U∗ − Ũ0

U0 − Ũ0

+
1

U0 − Ũ0

∫ t∗

0
(εU2(τ) + Ũ2(τ))dτ.

From here, taking the logarithm we obtain

b = − 1

(1 + ε)t∗

∫ t∗

0
(εU2(τ) + Ũ2(τ))dτ −

ln

(
ε(U∗ − U0) + U∗ − Ũ0 +

∫ t∗

0 (εU2(τ) + Ũ2(τ))dτ

U0 − Ũ0

)1/(1+ε)t∗

. (19)

Using this formula from (16), (17) with respect to U(t), Ũ(t) we obtain a
system of nonlinear Volterra equations of the second type

U(t) =
εU0 + Ũ0

1 + ε
− 1

1 + ε

∫ t

0
(εU2(τ) + Ũ2(τ))dτ +

(U0 − Ũ0)
(t∗−t)/t∗

1 + ε

(
ε(U∗ − U0) + U∗ − Ũ0 +

∫ t∗

0
(εU2(τ) + Ũ2(τ))dτ

)t/t∗

×

exp
(
−
∫ t

t∗
(U(τ) + Ũ(τ))dτ +

t− t∗

t∗

∫ t∗

0
(U(τ) + Ũ(τ))dτ

)
, (20)

Ũ(t) =
εU0 + Ũ0

1 + ε
− 1

1 + ε

∫ t

0
(εU2(τ) + Ũ2(τ))dτ −

(U0 − Ũ0)
(t∗−t)/t∗

1 + ε

(
ε(U∗ − U0) + U∗ − Ũ0 +

∫ t∗

0
(εU2(τ) + Ũ2(τ))dτ

)t/t∗

×

ε exp
(
−
∫ t

t∗
(U(τ) + Ũ(τ))dτ +

t− t∗

t∗

∫ t∗

0
(U(τ) + Ũ(τ))dτ

)
. (21)

The local existence of a solution to the system of equations (20), (21) is
proved in the same way as in the Picard theorem [15]. After finding the
function U(t), Ũ(t), the Darcy coefficient b is determined by formula (19).

References

[1] Landau L.D., Lifshits E.M. Hydrodynamics.–– Moscow: Nauka, 1986 (In Rus-
sian).

[2] Dnestrovsky Yu.N., Kostomarov D.P. Mathematical Modeling of Plasma. ––
Moscow: Nauka, 1982 (In Russian).



6 J.E. Davlatov, Kh.Kh. Imomnazarov

[3] Borovsky A.V., Galkin A.L. Laser Physics. –– Moscow: IZDAT, 1996 (In Rus-
sian).

[4] Zhabborov N.M., Imomnazarov Kh.Kh. Some Initial-boundary Value Prob-
lems in the Mechanics of Two-velocity Media. –– Tashkent, 2012 (In Russian).

[5] Dorovsky V.N. Continuum theory of filtration // Geology and Geophysics. ––
1989.–– No. 7. –– P. 39–45 (In Russian).

[6] Dorovsky V.N., Perepechko Yu.V. Phenomenological description of two-
velocity media with relaxing tangential stresses // PMTF. –– 1992. –– No. 3. ––
P. 94–105 (In Russian).

[7] Dorovsky V.N., Perepechko Yu.V. Theory of partial melting // Geology and
Geophysics. –– 1989.–– No. 9. –– P. 56–64 (In Russian).

[8] Vasiliev G.S., Imomnazarov Kh.Kh., Mamasoliyev B.J. On one system of the
Burgers equations arising in the two-velocity hydrodynamics // J. Physics:
Conference Series (JPCS). –– 2016.–– Vol. 697, 012024.

[9] Vasiliev G., Imomnazarov Kh., Kalimoldayev M., Mamasoliyev B.J. Cauchy
problem for system of the Burgers equations arising in the two-velocity hydro-
dynamics // Math. Model. Nat. Phenom.––2017.––Vol. 12, No. 3.––P. 134–138.

[10] Vasiliev G.S., Zhian-Gang Tang, Mamasoliev B.Zh. Invariant submodels of the
system of equations of two-velocity hydrodynamics with phase equilibrium in
pressure // SEMI.–– 2018.–– Vol. 15. –– P. 585–602 (In Russian).

[11] Turdiyev Ul., Imomnazarov Kh. A system of equations of the two-velocity hy-
drodynamics without pressure // AIP Conference Proceedings 2365.–– 2021.––
070002.

[12] Imomnazarov B.Kh., Erkinova D.A., Imomnazarov Kh.Kh. Cauchy problem
for one quasilinear system // Abstracts of rep. scientific conference with the
participation of foreign scientists “Sarymsakov Readings”, September 16–18,
2021. –– Tashkent, 2021. –– P. 66–67 (In Russian).

[13] Imomnazarov Kh.Kh., Mukimov A.Kh., Salaev D.K. One-dimensional inverse
problem for a system of Hopf-type equations // Materials of Intern. scientific-
practical conference “Modern problems of applied mathematics and informa-
tion technology”, May 11–12, 2022. –– Bukhara, 2022. –– P. 209–210 (In Rus-
sian).

[14] Imomnazarov Kh.Kh., Erkinova D.A. Axial solution of a Hopf type system //
Abstracts of the international. scientific-practical conference Current problems
of mathematical modeling and information technologies, May 2–3, 2023. ––
Nukus, 2023. –– Vol. 1. –– P. 267–269 (In Russian).

[15] Arnold V.I. Ordinary Differential Equations. –– Moscow: MTsNMO, 2018
(In Russian).


