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A numerical model
of thermal bar in lake Baikal*

E.A. Tsvetova

A two-dimensional compressible nonhydrostatic numerical model is proposed
for the simulation of thermal bar in a deep freshwater lake. An equation of state is
used which shows a nonlinear dependence of density on temperature and pressure.
Numerical experiments demonstrate the peculiarities of the temperature distribu-
tion and lake currents associated with the thermal bar. The two-cell convection
divides the nearshore region into three zones in the direction of the temperature
front movement: warm, transition, and cold regions. The temperatures of the
transition zone are close to those of maximum density. Downward currents are de-
veloped between two cells in the transition zone. Their calculated values are rather
large (maxw = 0(0.1)~0O(1) cm/s). This indicates the intensive exchange between
nearsurface and deep waters.

1. Introduction

The thermal bar is a natural phenomenon which takes place in freshwater
temperate lakes in spring and autumn due to nonuniform heating of the
shallow nearshore and the deep offshore regions. It looks like the alongshore
hydrofront which propagates from the shore toward the center of the lake.
The difference between the spring and autumn events is that nearshore is
warmer than offshore region in spring, and vice versa in autumn.

From the physical point of view, its nature is the same in spring as in
autumn and is connected with the anomalous behavior of water density.
Namely, the water density reaches the maximum values at some tempera-
tures. As the consequence of this, the mixing of two parcels of water, one of
which is warmer and the other is colder than the temperature of maximum
density (tmd), produces the resulting water mass which is denser than the
both origins. In response to the formation of density gradients, dynamic
processes occur in order to sink the heavier water. Thus, the temperature
front is generated near the places where warm and cold waters mix. While
the heavy water begins to sink, new portions of warm and cold water move
towards the front from the opposite sides. For the compensation of sinking
water, upstream flows are generated on the peripheries of the convective
cells. This is, in general, a scheme for the thermal bar phenomenon.
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Forel was the first who described the thermal bar in his monography
in 1895 [5]. His observations were carried out in lake Leman. Since his
paper, a lot of descriptions of the phenomenon in different lakes were made.
Tikhomirov [15, 16] analysed and generalized the majority of natural data.
A part of the review [1] is devoted to the description of the phenomenon
registered in Great Lakes. Theoretical studies were discussed in [20]. A few
laboratory experiments were also conducted in order to verify the theoretical
hypothesis, (see, for example, review in Kreiman [6]).

‘The thermal bar in Baikal causes the natural interest of the researches
because of the lake’s great depth [13, 14, 19]. The fact is that the tmd
decreases with the increase of pressure (or depth). If a lake is very deep,
the decrease of tmd is so significant that it might be essential for the condi-
tions which control convection. The data recently published by Shimaraev
et al [14] describe the observations of the spring thermal bar in lake Baikal
in June 1991. The thermal bar manifests itself via two temperature strat-
ification patterns: direct, in the nearshore, and inverse, in the offshore.
Analysing the temperature distribution, the authors make the conclusion
that the downward jet of cold water originates from the hypolimnion on
the open-lake side of the thermal bar. Moreover, they suppose that very
deep waters are renewed due to the mechanism of deep convection during
thé periods of migration of the thermal bar from shore to the center of the
lake. The hypothesis about the influence of deep convection on the renewal

- of deep waters in the lake was also discussed in [19].

Doubtless, that it is desirable to develop a mathematical model which
can help us to understand the phenomenon and check the validity of the
hypothesis. In the literature there are some numerical models devoted to

~the thermal bar in shallow lakes. The majority of them are two-dimensional
(2D) models ( see review in [2] and [1]). The use of 2D models is motivated
by the observational fact that the gradients normal to shore are much larger
than gradients parallel to shore. It is therefore assumed that no.major char-
- acteristic of the phenomenon is lost if the gradients parallel to shore are
entirely neglected. We also accept the 2D simplification taking into account
the possibility of numerical realization as well. The system of equations
describing convective motions is well-known, that is why the formulations
of the models developed by many autlors are similar and have minor dif-
ferences. As the essence of the phenomenon is connected with the special
behaviour of water density, it is obvious that the nonlinear equations of state
are exploited by all the models. | ' ‘ N

This paper reports the results of development and application of 2D
nonhydrostatic finite-difference model for the simulation of thermal bar in a
deep freshwater lake. The main difference of this model from other models
is that the compressibility of water is taken into account.
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2. A nonhydrostatic lake model

To simulate the motions with comparable horizontal and vertical scales in
natural objects, a nonhydrostatic model with rotation is employed [17, 18].
The system of equations expresses the balance laws of momentum, mass and
energy of the non-Boussinesq compressible fluid. The motion in a z— 2 plane
perpendicular to the front axis is governed by the momentum equations for
velocities u, v, and w in the z, y, and z directions
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The continuity equation for the compressible flow is in the form
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Heat is advected and diffused with time by the temperature conservation
equation
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The nonlinear equation of state supplements the system
P= P(P, T, SU) (6)

Here ! is the Coriolis parameter, which is prescribed as constant value af
a mean latitude of lake Baikal, p is pressure, p is density, A, v, u, vy are
turbulent momentum and thermal diffusivities in horizontal and vertical di-
rections, respectively, T is temperature, I" is adiabatic temperature gradient,

_aT
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T is absolute temperature, ¢p is specific heat at constant pressure, ¢ is a
source term which is responsible for the distributive heat income into the
nearsurface layers, Sp is salinity, « is the coefficient of thermal expansion.
The special conditions of the heat absorption in lake Baikal were studied
and parameterized by Zvonkova [21]. This parameterization is used in the
model. It is supposed that solar radiation is absorbed in water masses
according to the law ¢ = QB exp(—fz), where 8 is extinction coefficient,
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B is dimensional parameter, and Qg is the value of the solar radiation flux
at the surface.

The governing system of equations (1)-(6) is considered in the domain
D; = D x [0,], where D is the domain of spatial variables (z, z) and [0, 7]
is the time interval. '

The boundary and initial conditions are as follows:

at the lake surface z = 0:
Bu Tz ou 1, oT Q

UE.;:—F’ V'a_z'-"';a ”T‘a';:—;g: (7)

w=0, p=p.z,t);

at the bottom z = H(z):

u=v=w=0, g—;:ﬂ; (8)
at the lateral boundaries
v=v=w=0, %:0. (9)
Initial conditions in D at t = 0 are:
P = ‘Po(zs z), ¢=(u,v,w,T,p,p). (10)

Here @/3N represents the derivatives with respect to the conormal

a 0 0
3N = ,u,cos(n,a:)a + v¢ cos(n, 3)5? (11)

n is external vector normal to the boundary of the area, p, is air pressure,_
Tz, Ty are wind stresses in z and y directions, @ is heat flux on the lake
surface, ©°(z, y, 2) are the given functions, (¢ = u,v, w, T, p, p).

In the given model, the state equation adapted to the limnological prob-
lems is used [3]. Due to this, density is the function of temperature, pressure
and salinity. In this version of the model salinity is supposed to be the con-
stant value of 0.098 g/kg. But, to be more objective, it is worthy of mention
that the influence of salinity variations is not yet complitely understood.
The data show very small changes of salinity in the lake. The rivers’ in-
comes give the more pronounced difference of values. As the very sensitive
phase of the year temperature cycle is considered, when the temperatures
are close to those of maximum density and the variations are very small,
pressure and salinity must play more important roles than they do in other
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circumstances. Here we take into account only pressure variations, and the
salt influence will be the subject of further investigations.

There are some more parameters connected with the state equation.
They are the adiabatic temperature gradient, the coefficient of thermal ex-
pansion and the specific heat at a constant pressure. All of them, when
necessary, are calculated by the formulas given in [3], using the known val-
ues of temperature and pressure.

The problem of turbulence parameterization is really crucial for the sim-
ulation of the convective movement. Subgrid-scale turbulence is parameter-
ized in the model with the help of the second order diffusive operators. The
constant values were taken for the horizontal coefficients. The vertical ones
were specially chosen in each experiment in order to compare the results and
evaluate the sensitivity of the model. One way is to take the constant value
coefficients and the other one is to calculate them in the accordance with
some parameterization scheme. The parameterizations using the gradient

Richardson number
duy 2 dv\2
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where N? is the Brunt-Vaisala frequency
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are widespread in oceanic and lake applications, (see, for example, [9]). It is
known that as long as Ri remains greater than 0.25, turbulence is supressed.
If Riis less than this critical value, the instability of Kelvin—Helmgoltz type
occurs. For stable situations the variable coefficients can be defined as

Vo v

V=-—"—"-——+41w, VT:(I-{-aRi)

(I+aR)" + .

Here v, and vry are background dissipation parameters and vg,a and n are
adjustable parameters. Usually vy is correlated with a neutrally stable fluid.
If instability appears at some locations, v = vy there. There are some other
parameterization formulas which we also use for different scenarious.

The model region is a cavity with the horizontal scale of 20 km and non-
symmetric left and right bottom slopes. The maximum depth of the domain
is 960 m, which is greater than the mean depth of lake Baikal (736 m). The
region was covered by uniform grid in each direction. The grid with 49 levels
in the vertical direction is used. There are 501 points in z-direction. The
grid lengths are: in horizontal Az = 40 m, in vertical Az = 20 m, the time
step At = 60 sec. In the realization, the bottom slopes are approximated
by the linear segments parallel to the z and z axes. The chosen parameters
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of the domain D and discrete approximations of the model make it possi-
ble to describe the local fluid motions with the comparable scales in both
directions.

The numerical realization is based on the splitting technique and the
variational principle {7, 10]. According to the idea of splitting method, the
solution of the whole problem is replaced by the succesive solution of a set
of partial problems. Each of them is more simple than the original one. In
practice, there are many different splitting schemes. The scheme used was
described in [18] and is not given here. The fact that should be stressed
is the use of monotonic and transportive scheme for the advection-diffusion
stage [11] that is very important for the modelling of fronts. The second
essential thing is the non-iterative technique for the solution of the second
order partial differential equation for pressure.

3. Numerical experiments

A great number of numerical experiments were carried out with the help of
the model in order to check its ability to work and to estimate its sensitivity
to the change of the computational algorithm, approximations, parameters
and parameterization patterns. In the geophysical sense, numerical experi-
ments can be divided into two parts:

o generation of a thermal bar,

o dynamics of the developed thermal bar.

In the first case, the thermal bar is initiated from a winter temperature
distribution. In the second case initial data contain the temperature distri-
bution which .is usual for the thermal bar pattern.

The results of only one numerical experiment are presented here. The
choice is more or less arbitrary and it was dictated by the desire to illustrate
the possibilities of the model and to give an idea of the character of the
phenomenon. The other geophysical results will be generelized and discussed
in the next publications.

Spring heating of lake Baikal begins with a winter temperature distribu-
tion which is characterized by the vertical profile with the maximum at the
mid-depth. The temperature increases from the surface to some depth at
which the local temperature is equal to that of maximum density for this
depth. Below this depth, temperature slightly falls to the bottom. Such
temperature profile is chosen as the initial distribution for the horizontally
uniform temperature field in order to simulate the thermal bar generation.
In the second case, which is discussed here, the initial temperature field is
the same almost everywhere, except two parts of the domain near the left
and right boundaries, where the depth is less than or equal to 200 m. The
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constant temperature of 4° C from surface to bottom is taken in the left and
right nearshore regions. The initial pressure and density fields are adjusted
to one another on the background of the prescribed temperature and salt
distributions by means of the solution to the system of two equations. One
of them is the state equation and the other is the hydrostatic balance

on .
3, = 9P 12)

The system is solved by the forth-order Runge-Kutta scheme.

The model is driven from rest. This means that the components of
vector velocity are zero. The stationary uniform surface heat flux @ is
applied at the surface. The value is taken from the climatic data for June
[12]. Although, in practice, the natural behaviour should not be thought of
as independent of wind, it is one of the worthwhile exercises in the stage
of developing an understanding of the phenomenon to consider the lake’s
response in the absence of wind.

The other parameters were: vo = 50 cm?/s, vy = v, n=1,a = 5.

Representative results of the simulation of the developed thermal bar are
given in Figures 1 to 9. The main features of the simulated phenomenon are
discussed below.
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Figure 1. Spatial distrbution of currents (left panel) and temperature (right panel)
for the left part of the region after 4 hours
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Figure 2. The same as in the Figure 1 but for the right part of the region
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Figure 3. The currents associated with the thermal bar (t=4 hours)
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Figure 4. The same as in the Figure 1 but after 124 hours
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Figure 5. The same as in the Figure 2 but after 124 hours
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Figure 6. The temperature distrubution in the upper 200-m layer in the vicinity
of the thermal bar (t=168 hours)

The temperature field is characterized by the co-existence of “summer”,
“spring” and “winter” typical climatic vertical temperature patterns simul-
taneously.

In the nearshore, the temperature decreases with depth showing the
summer distribution. The isotherms are practically horizontal there that
testifies the predominance of horizontal advection in comparison with verti-
cal diffusion (Figures 4, 5, 8, 9).

The temperature front is placed in the intermediate zone (Figure 6). The
isotherms are mainly vertically oriented and the temperatures are close to
that of maximum density (3.6-4.0° C). As time elapses, the front configura-
tion changes in space. Sometimes the s-form profile can be seen when warm
water flows over cold water near the surface. Such configuration of front
was observed in laboratory experiments [6].

In the open-lake side the winter temperature distribution with the max-
imum at the mid-depth is conserved for a long time. Accumulation of heat
near the surface leads to the convective movement that results in the smooth-
ing out of the temperature in vertical. The presence of the internal waves
are seen everywhere.
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Figure 7. The circulation in the deep layers near the bottom (t=168 hours)

In all figures the temperature fields are displayed in the following way:
the contours of values less than or equal to 4° C — with the step of 0.05° C,
and the contours greater than 4° C — with the step of 1° C.

The pattern of currents associated with the thermal bar is a two-cell
structure with a powerful downward jet between the cells. The two counter-
rotating cells can be seen in all figures. As for the circulations in the cells,
intensities of currents in them differ from each other. The influence of the
lateral boundary and the bottom slope are expressed in the intensification
of the upwelling near the shore. The open-lake cell is less intensive and more
diffuse. It is interesting to analyse the jet behaviour. If it meets the bottom,
further movement continues along the slope, as it is in Figure 7. The jet
axis is displaced with time. Sometimes the spiral character of jet can be
observed. The main question is how deep the jet spreads. As it is seen
in Figures 7-9, the presence of the downward movement is distingwished
till great depth although the values of the vertical velocity decrease. To
compensate for the volume of sinking water, cold and warm currents move
to meet each other in the thin surface layer. It is here, that the u-component
of vector velocity reaches its maximum values. It is interesting to estimate
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Figure 8. The same as in the Figure 1 but after 264 hours
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the quantitative charactrstics of currents. It is important to evaluate the
vertical component of vector velocity as a measure of the intensity of vertical
redistribution of heat, oxygen and other chemical elements and pollutants.
Some quantitative estimates were made for the thermal bar observed in June
1991 [14]. The first one was obtained from the analyses of the temperature
series collected at the different depths. The temperature minimum appeared
some 30 hours later at a depth of 580 m than at a depth of 290 m. A simple
correlation between time and distance gave the value of 0.3 cm /s. The same
value was calculated from the theoretical formula for the vertical velocity in
the frontal zone [4]
_ gvd,s
T UpprEy

where B, is the width of the mixing zone, d, the difference of levels due to
increasing density. '

It seems strange but the values of vertical velocities calculated in the
model agree with the above-mentioned estimates.

The mean values in the ratio between the components of vector velocity
associated with the thermal bar were obtained in the model as w: u : v ~

1:10 : 20-100. Approximately the same order of values was observed in
June 1993 [8].

4. Conclusions

The motivation for the present study comes from the desire to construct a
numerical model which could be used as a means for the understanding of
the phenomenon. The model proposed is realized in such a way that the
integration for many time steps is possible. The stable realization in a wide
range of the input parameters is allowable. One of the main aims in the sim-
ulation of bar is the reproduction of temperature front and its propagation in
time and space. The numerical experiments show that the temperature f~_ nt
is not diffused too much. Certainly, it is a positive feature of the model. Ap-
plication of the monotonic and transportive schemes for advective-diffusive
operators excludes the occurence of non-physical solutions.

Numerous calculations show that the model is sensitive to the param-
eterization of turbulence. This is understandable because the underlaying
physics concerns with the nonlinear behaviour of the hydrodynamical system
in the near-critical state. The model gives the general pattern of the thermal
bar in a deep freshwater lake as a temperature front and two-cell convective
structure moving from shore to tue center of the lake. The movenemt of
the thermal bar is accompanied by the generation and development of the
internal waves on the background of stably stratified water strata in the
surroundings. The results obtained seems to be plausible and, inspite of
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the known limitations of 2D models, we intend to use this model in further
investigations.
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