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Towards a framework for designing


onstraint solvers and solver


ollaborations

C. Castro, E. Monfroy

In this paper, we propose a strategy language for designing 
onstraint solvers and

s
hemes of solver 
ollaborations. Solvers are seen as bri
ks that 
an be integrated when


reating more 
omplex solvers that 
an be
ome themselves new bri
ks to 
ompose new

solvers. These bri
ks are glued together using operators of our language. A pattern of

operators 
an be used to 
reate solvers and 
ollaborations for solving di�erent types of


onstraints. We illustrate the use of this language by des
ribing some well-known te
h-

niques for propagation-based solvers, optimization problems, and 
ollaboration of solvers

(symboli
/numeri
 
ooperation, linear/non-linear 
ollaboration, lo
al 
onsisten
y 
ombi-

nation).

1. Introdu
tion

In the last twenty years, 
onstraint programming has emerged as a new pro-

gramming paradigm. In this alternative approa
h, the programming pro
ess

is merely a spe
i�
ation of a set of requirements (i.e., the 
onstraints), a solu-

tion for whi
h will be generated using some general or domain spe
i�
 te
h-

niques and me
hanisms (i.e., the 
onstraint solvers). Numerous algorithms

have been developed for solving 
onstraints and the resulting te
hnology has

been su

essfully applied to solving real-life problems.

The design and implementation of these 
onstraint solvers is generally

an expensive and tedious task, and thus, the idea of reusing solvers \of the

shelves" is very interesting and promising [26℄. However, that also implies

that we must have some tools to integrate/
ombine them. Another key-point

is that some problems 
annot be ta
kled or eÆ
iently solved with a single

solver. Hen
e, we de�nitely realize the interest in integrating and making


ooperate several solvers [16, 6, 19, 25, 23℄. This is 
alled 
ollaboration of

solvers [24℄. In order to make solvers 
ollaborate, the need for powerful

strategy languages to 
ontrol their integration and appli
ation has been

well re
ognized [21, 22, 2℄.

However, the existing approa
hes are generally not generi
 enough: they


onsider �xed domains (linear 
onstraints [6℄, non-linear 
onstraints over

real numbers [23, 19, 4℄), �xed strategies, or �xed s
heme of 
ollaboration

(sequential [23, 4℄, asyn
hronous [19℄). In the language BA

L

I, 
ollaborations
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are spe
i�ed using 
ontrol primitives and the 
onstraint system is a param-

eter. Although BA

L

I is more generi
 and 
exible, the 
ontrol 
apabilities for

spe
ifying strategies are not always �ne enough [22℄: the 
ontrol is based on

a \set of 
onstraints", not at the level of 
onstraints taken separately. In the

system COLETTE [11, 12℄, a solver is viewed as a strategy that spe
i�es the

order of appli
ation of elementary operations expressed by transformation

rules. In this framework, di�erent domains mainly mean the de�nition of

di�erent transformation rules, and di�erent heuristi
s mean di�erent strate-

gies. However, the granularity of 
ontrol is too low to really 
onsider solver


ollaborations.

Extending the ideas of BA

L

I and COLETTE, we 
onsider 
ollaborations

of solvers as strategies that spe
ify the order of appli
ation of solvers. In [9℄,

we proposed a strategy language for designing elementary 
onstraint solvers

and we exemplify its use by spe
ifying several solvers (su
h as solvers for


onstraints over �nite domains and real numbers). In [10℄ we presented the

appli
ation of our language to prototyping the 
onstraint solving s
hemes via


ollaboration of solvers. In this paper, we show that designing solvers and


ollaborations are intrinsi
ally linked and related. For example, the same

strategy 
an be used to write a solver or to express a 
ollaboration. In fa
t,

the basi
 solvers are bri
ks that 
an be used to design more 
omplex solvers

and 
ollaborations whi
h then be
ome other bri
ks. They 
an be re-used,

assembled together through strategies, used in higher 
ollaborations, ... The

glue between these bri
ks (i.e., patterns of solvers and strategies, or assembly

of operators) 
an be instantiated for di�erent domains of 
onstraints and dif-

ferent strategies of resolution. In this paper, these te
hniques are illustrated

by numerous examples over di�erent domains: generi
 propagation-based

solvers (and instantiation for �nite domains and real interval 
onstraints),

and 
ollaboration of solvers (optimization problems, symboli
-numeri
 
oop-

eration, linear/non-linear 
ollaboration, lo
al 
onsisten
y 
ombination). For

ea
h of these solvers/
ollaborations, we simulate the standard te
hniques,

and we also propose improvements in terms of strategies.

The main motivation for this work is to propose a general framework in

whi
h one 
an design the 
omponent 
onstraint solvers, as well as solver 
ol-

laborations. This approa
h makes sense, sin
e the design of 
onstraint solvers

and the design of 
ollaborations require similar methods (strategies are often

the same: don't-
are, �xed-point, iteration, parallel, 
on
urrent, ...). In other

words, we propose a language for writing the 
omponent solvers and design-

ing 
ollaborations of several solvers at the same level. Key points in this work

are the 
on
epts of 
onstraint �lters, separators, and sorters. These notions

allow one to manage 
onstraints with high-level me
hanisms. Furthermore,

they help des
ribing synta
ti
al transformations and manipulations that are
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generally hidden in the implementation of the 
urrent solvers. These 
on-


epts are used to de�ne the strategy operators for applying solvers, su
h as

don't 
are me
hanism, best appli
ation of solvers, 
on
urrent solvers, par-

allel appli
ations, and operators for treating sub-problems. These operators

allow us to design solvers by 
ombining the basi
 fun
tions, as well as 
ol-

laborations of solvers by 
ombining the 
omponent solvers.

This paper is organized as follows: in Se
tion 2, we use a very simple

example to informally present our language. In Se
tion 3, the basi
 de�ni-

tions are given and we introdu
e the notions of �lters and sorters. Se
tion 4

details the basi
 and 
omplex operators for applying solvers. In Se
tion 5,

we give a generi
 propagation-based solver together with some instantiations

for �nite domain 
onstraints and interval 
onstraints. Se
tion 6 introdu
e

optimization problems and some possible implementations using our lan-

guage. Se
tion 7 is devoted to di�erent forms of solver 
ollaborations: sym-

boli
/numeri
 
ooperation, linear/non-linear 
ollaboration, and lo
al 
on-

sisten
y 
ombination. Finally, in Se
tion 8, we 
on
lude this paper and give

some perspe
tives for further work.

2. An illustration of the language

Suppose that we want to design a solver for Constraint Satisfa
tion Problems

(CSPs) 
omposed of domain 
onstraints (de�ning the value a variable 
an

assume), and inequations over integer expressions. We are thus 
on
erned

with implementation of a solver for problems of the following type:

X � Y; Z � 40; Y � Z; Z 2 [2::130℄; Y 2 [50::100℄; X 2 [5::120℄:

Now, suppose that we have heard about a te
hnique of removing impos-

sible values from domains of variables using inequations. This te
hnique is

given as two proof rules that redu
e the sear
h spa
e without losing any

solution:

S1 =

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

X 2 [lb

X

::min(rb

X

; rb

Y

)℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

and

S2 =

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [max(lb

X

; lb

Y

)::rb

Y

℄

:

How to use these rules to design a solver? Su
h a te
hnique requires

Implementation of a me
hanism to mat
h the pattern of 
onstraints and

some strategy of appli
ations to eÆ
iently apply the rules iteratively until

a �xed-point is rea
hed. Our language proposes some help for doing so. A

possible solver for this type of 
onstraints using this te
hnique is d
S1S2:
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d
S1S2 = d
((S1;S2); �

D^
^Ds

)

?

:

In our language, �

D^
^Ds

is a �lter (de�ned in Se
tion 3) that will sele
t the


onstraints of the problem that mat
h the head of the rule. S1 and S2 are

solvers. d
, \;", and \?" are operators for applying solvers. The expression

d
S1S2 means:

1. �nd parts of the 
onstraint that meet our needs, i.e., 
onstraints on

whi
h S1 and S2 
an apply. This is performed using the �lter �

D^
^Ds

,

2. sele
t randomly (sele
tion indi
ated by d
) one of these 
onstraints,

3. apply �rst S1 on the sele
ted 
onstraint, then S2 on the result of S1

(sequential appli
ation of solvers indi
ated by \;"),

4. iterate Items 1, 2, and 3 until a �xed-point is rea
hed (the \?"), i.e., S1

and S2 
annot modify the 
onstraint anymore. The result 
ontains the

same solutions as the input, but the sear
h spa
e has been redu
ed.

Now, 
onsider that we have heard about some strategy for �nite domains

that speeds up redu
tion of the sear
h spa
e. This strategy is 
alled MinDom:

redu
tion of the smallest domain �rst 
an lead to qui
ker elimination of some

bran
hes of the sear
h spa
e. We 
an easily integrate this strategy using our

language:

bestS1S2 = best((S1;S2);�

Dom

; �

D^
^Ds

)

?

:

This time we use a sorter (�

Dom

is des
ribed in Example 4) that will \order"

possible appli
ations of S1 and S2. The meaning of the expression bestS1S2

is:

1. �nd parts of the 
onstraint that meet our needs (�

D^
^Ds

),

2. sele
t the \best" (w.r.t. to the MinDom strategy) possible appli
a-

tion. This is performed by �

Dom

that returns the 
andidate with the

smallest domain,

3. apply S1 on the sele
ted 
onstraint, then S2,

4. iterate Items 1, 2, and 3 until a �xed-point is rea
hed (the \?").

The result is the same as the previous one, but this time we use a strategy

that speeds up resolution.

So far, we 
an \qui
kly" redu
e the sear
h spa
e. But we need to 
omplete

our solver to provide the user with solutions. To this end, we need to 
onsider

di�erent bran
hes of the sear
h tree separately. Consider a fun
tion split that

takes as input a domain 
onstraint, and returns a disjun
tion of domains

when possible (this solver is formally de�ned in Se
tion 5). Roughly, this

fun
tion is:
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split(X 2 D) = X 2 D

1

_X 2 D

2

:

We 
an now 
reate a 
omplete solver (i.e., a solver that not only redu
es the

sear
h spa
e but also extra
ts solutions):

SolverS1S2 = (bestS1S2; d
(split; �

D

))

?

:

SolverS1S2 �rst redu
es 
ompletely the sear
h spa
e using bestS1S2. Then,


reate a disjun
tion of a domain 
onstraint (the domain 
onstraint is �ltered

by �

D

and splitted by the fun
tion split). The pro
ess redu
tion-split is

iterated on ea
h sub-spa
e until no more split and redu
tion are possible.

The result is a disjun
tion of possible assignments of variables, i.e., the

solutions.

We have informally presented some operators and notions of our lan-

guage. Some more 
omplex operators (based on parallelism or 
on
urren
y)

are also provided. The next se
tions will formally des
ribe the language and

some more 
omplex examples.

3. Framework

In this se
tion, we present the basi
 
omponents of our framework, i.e.,

sorters and �lters. We �rst need some de�nitions �xing our framework.

3.1. Constraints and solvers

De�nition 1 (Constraint System). A 
onstraint system is a 4-tuple (�;

D;V;L) where

� � is a �rst-order signature given by a set of fun
tion symbols F

�

, and

a set of predi
ate symbols P

�

,

� D is a �-stru
ture (its domain being denoted by jDj),

� V is an in�nite denumerable set of variables, and

� L is a set of 
onstraints: a non-empty set of (�;V)-atomi
 formulae,


alled atomi
 
onstraints, 
losed under 
onjun
tion and disjun
tion.

The unsatis�able 
onstraint is denoted by ? and the true 
onstraint

is denoted by >. The set of atomi
 
onstraints is denoted by L

At

.

An assignment is a mapping � : V ! jDj. The set of all assignments is

denoted by ASS

V

D

. An assignment � extends uniquely to a homomorphism

� : T (�;V) ! jDj. The set of solutions of a 
onstraint 
 2 L is the set

Sol

D

(
) of assignments � 2 ASS

V

D

su
h that �(
) holds. A 
onstraint 


is valid in D (denoted by D j= 
) if Sol

D

(
) = ASS

V

D

. We use Var(
) to

denote the set of variables from V o

urring in the 
onstraint 
. We 
an now

introdu
e the notion of a solver.
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De�nition 2 (Solver). A solver for a 
onstraint system (�;D;V;L) is a


omputable fun
tion S : L ! L su
h that

1. 8C 2 L; Sol

D

(S(C)) � Sol

D

(C) (
orre
tness property);

2. 8C 2 L; Sol

D

(C) � Sol

D

(S(C)) (
ompleteness property).

A 
onstraint C is in the solved form with respe
t to S, if S(C) = C.

Given a solver S over a 
onstraint system (�;D;V;L), we extend S

to a 
onstraint system (�;D;V;L

0

), where L � L

0

, in the following way:

8 C 2 L

0

n L, S(C) = C. We say that a 
onstraint C is in the solved form

with respe
t to S, if S(C) = C.

Example 1. Consider the 
onstraint system (�;D;V;L) su
h that the 
on-

straint symbols (i.e., the predi
ate symbols) 
 of arity n and 2 are in �, jDj

is �nite. Constraints of the form X 2 D are 
alled domain 
onstraints, and

they are widely used in CSPs: the set D (
alled the domain of X) spe
i�es

the values of jDj the variable X 
an take.

Consider now the Lo
alConsisten
y fun
tion that takes as input the

following pattern of 
onstraints

x

i

2 D

i

^ 
(x

1

; : : : ; x

i

; : : : ; x

n

) ^ x

1

2 D

1

^ : : : ^ x

i�1

2 D

i�1

^ x

i+1

2 D

i+1

^ : : : ^ x

n

2 D

n

and returns

x

i

2 D

0

i

^ 
(x

1

; : : : ; x

i

; : : : ; x

n

) ^ x

1

2 D

1

^ : : : ^ x

i�1

2 D

i�1

^ x

i+1

2 D

i+1

^ : : : ^ x

n

2 D

n

;

where

D

0

i

= fv

i

2 D

i

j (9 v

1

2 D

1

; : : : ;9v

i�1

2 D

i�1

;

9v

i+1

2 D

i+1

; : : : ;9v

n

2 D

n

) : 
(v

1

; : : : ; v

i

; : : : ; v

n

)g:

Then, Lo
alConsisten
y is a solver, i.e., it removes impossible values from

the domain of x

i

using the 
onstraint 
, but preserves solutions of 
. This

solver 
an be eÆ
iently implemented for several standard 
onstraints, su
h as

= and � over �nite domains (i.e., generally, integers that 
an be represented

in a 
omputer). Lo
alConsisten
y is used in Se
tion 5.1.

3.2. Synta
ti
al forms and sub-
onstraints

On the previous example, we have seen that a solver 
annot always be ap-

plied on a \
omplete" 
onstraint but only on a part of it (S

�


ould be

applied only on a spe
ial pattern of 
onstraints). Thus, to de�ne spe
i�


parts of a 
onstraint, we introdu
e the notions of a synta
ti
al form and a

sub-
onstraint.
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De�nition 3 (Synta
ti
al Forms and Sub-
onstraints). We say that

C

0

is a synta
ti
al form of C, denoted by C

0

� C, if C

0

= C modulo the

asso
iativity and 
ommutativity of ^ and _, and the distributivity of ^ on

_ and of _ on ^

1

. We say that C

0

2 L is a sub-
onstraint of C, denoted by

C

[C

0

℄

, if

� C = C

0

,

� or 9C

1

2 L; ! 2 f^;_g; C = C

1

!C

0

,

� or 9C

1

2 L; ! 2 f^;_g; C = C

0

!C

1

,

� or 9C

1

; C

2

2 L; ! 2 f^;_g; C = C

1

!C

2

and (C

1

[C

0

℄

or C

2

[C

0

℄

).

A 
ouple (C

00

; C

0

) su
h that C

00

is a sub-
onstraint of C

0

and C

0

� C

is 
alled an appli
ant of C. We denote by SF(C) the �nite set of all the

synta
ti
al forms of a 
onstraint C: SF(C) = fC

0

jC

0

� Cg

2

. We denote by

LA the set of all the lists of appli
ants, and by LC the set of all the lists of


onstraints. Generally, we will use LA (respe
tively LC) to denote a list of

appli
ants (respe
tively 
onstraints). We denote by P(L�L) the power-set

of all the sets of 
ouples of 
onstraints. Atom(C) denotes the set of atomi



onstraints that o

ur in C: f
j
 2 L

At

and C

[
℄

g.

3.3. Filters and sorters

We now de�ne the basi
 
omponents of our strategy language: �lters to

sele
t spe
i�
 parts of a 
onstraint, and sorters to 
lassify the elements of

a list w.r.t. a given ordering. These transformations are generally hidden in

the implementation of solvers.

We introdu
e the notion of a �lter for two main reasons. A solver 
an, in

general, be applied on several parts of a 
onstraint [11℄. Se
ond, when dealing

with solver 
ollaborations, in general, a single solver is not able to treat the


omplete 
onstraint [21℄. In both 
ases, we want to identify the sub-parts of

the 
onstraint that the solver is a
tually able to handle. The usefulness of

�lters is 
lear when, for example, we want to manipulate only the domain


onstraints like X 2 D

X

from a set of 
onstraints C in order to 
arry out

enumeration. Also, when one is interested in verifying the lo
al 
onsisten
y

(su
h as in the solver of Example 1), it is ne
essary to sele
t sub-
onstraints.

In this 
ase, a sub-
onstraint is the 
onjun
tion of a domain 
onstraint, an

atomi
 
onstraint, and a 
onjun
tion of domain 
onstraints, i.e., an atomi



onstraint, and all the domain 
onstraints of the variables o

urring in it

(see �lter of Example 2).

1

We 
onsider that \=" is purely synta
ti
.

2

The ACD theory de�nes a �nite set of quotient 
lasses that we 
an e�e
tively �lter.
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On
e we have identi�ed di�erent parts of the 
onstraint on whi
h a given

solver 
an be applied, we generally want to sele
t some of them based on

a given 
riterion, i.e., the best of these parts in order to \optimize" the

appli
ation of the solver. Thus, we introdu
e the notion of a sorter asso
iated

with the 
on
ept of a strategy.

For example, when solving 
onstraints, we sometimes are interested in


hoosing a variable that 
an take the minimum or the maximum number of

values. If we suppose that we 
an already sele
t all the domain 
onstraints

like X 2 D

X

from a set of 
onstraints C using the notion of a �lter, we 
an

easily imagine a sorter to implement the minimum or the maximum domain


riterion (see the sorter of Example 4).

De�nition 4 (Filter). Let (�;D;V;L) be a 
onstraint system. Then, a

�lter � on (�;D;V;L) is a 
omputable fun
tion � : L ! P(L�L) su
h that

8C 2 L; �(C) = f(Cf

i

; C

i

); : : : ; (Cf

n

; C

n

)g;

where 8i 2 [1; n℄; C � C

i

(C

i

is a synta
ti
al form of C), and C

i

[Cf

i

℄

(Cf

i

is

a sub-
onstraint of C

i

).

The elements of �(C) are 
alled 
andidates. We de�ne the �lter Id whi
h

returns the initial set of 
onstraints. Given the �lters � and �

0

on (�;D;V;

L), we say that

� � is sele
tive if 8C 2 L; �(C) = f(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)g su
h that

8i; j 2 [1; : : : ; n℄� [1; : : : ; n℄; i 6= j; Atom(Cf

i

) \Atom(Cf

j

) = ;;

� � is stable if 8C 2 L; �(C) = f(Cf

1

; C

0

); : : : ; (Cf

n

; C

0

)g;

� � and �

0

are disjoint if 8C 2 L; �(C) = f(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)g;

and �

0

(C) = f(Cf

0

1

; C

0

1

); : : : ; (Cf

0

m

; C

0

m

)g; s.t. 8(i; j) 2 [1; : : : ; n℄ �

[1; : : : ;m℄; Atom(Cf

i

) \Atom(Cf

0

j

) = ;.

Property 1. Let �

1

and �

2

be two �lters on (�;D;V;L). Then, �

1

;�

2

de�ned by

8C 2 L; �

1

;�

2

(C) = �

1

(C) \ �

2

(C)

is a �lter on (�;D;V;L).

Property 1 enables one to design 
omplex �lters using more basi
 �lters.

Example 2. We de�ne a simple �lter for the domain 
onstraints

8C 2 L; �

D

(C) = f(
; C)jC

[
℄

and 9X 2 V; 
 = (X 2 D

X

)g:

The �lter �

D

is stable and sele
tive. We denote by L

Dom

the elements of

L

At

resulting from the appli
ation of this �lter. We will use this notation in

other examples.
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Example 3. We now 
onsider patterns of 
onstraints (su
h as in the solver

of Example 1). The utility of this �lter will be 
lari�ed in Se
tion 5. We want

to �lter sub-
onstraints that are the 
onjun
tion of a domain 
onstraint, an

atomi
 
onstraint, and a 
onjun
tion of domain 
onstraints, i.e., an atomi



onstraint, and all the domain 
onstraints of the variables o

urring in it.

8C 2 L; �

D^
^Ds

(C) � L

2

and �

D^
^Ds

(C) is de�ned as follows:

1. Patterns:

(C

00

; C

0

) 2 �

D^
^Ds

(C)) C

00

= (X 2 D

X

)

^ 


V

Y 2Var(
)nfXg

Y 2 D

Y

^ 
 2 L

At

n L

Dom

^C

0

2 SF (C)

^C

0

[C

00

℄

^X 2 Var(
):

2. Context-free:

((C

0

; C

1

) 2 �

D^
^Ds

(C) ^ (C

0

; C

2

) 2 �

D^
^Ds

(C)) ) C

1

= C

2

.

3. Commutative-free:

(X 2 D

X

^ 
 ^ C

00

1

; C

1

) 2 �

D^
^Ds

(C)

^ (X 2 D

X

^ 
 ^ C

00

2

; C

2

) 2 �

D^
^Ds

(C)

�

) C

00

1

� C

00

2

.

Item 1 requires that elements of �

D^
^Ds

(C) have some synta
ti
al prop-

erties, i.e., form a pattern of 
onstraints; in Item 2, we do not want to


onsider several times the same sub-
onstraints issued from di�erent syn-

ta
ti
al forms of C; and �nally, in Item 3, we spe
ify that the ordering of

the 
onjun
tion of domain 
onstraints is not relevant.

Item 2 and 3 are not mandatory, but they redu
e the number of appli-


ants. This de�nition does not provide uniqueness of the �lter. Depending

on our needs, we 
an 
onsider (1) adding the requirements to de�ne one set

of appli
ants per 
onstraint, (2) removing Item 2 and 3, or (3) sele
ting one

of the sets 
orresponding to the de�nition.

For example, 
onsider the problem of solving CSPs and a fun
tion S (or

a transformation rule) whi
h redu
es the domain of one variable using one


onstraint. Then, for ea
h 
onstraint of the CSP and ea
h variable of this


onstraint, we 
an 
onsider a possible appli
ation of S.

De�nition 5 (Sorter). A sorter Sorter, w.r.t. a partial ordering �, for a


onstraint system (�;D;V;L) is a 
omputable fun
tion Sorter :� �P(L�

L)! LA, su
h that 8f(Cf

i

1

; C

i

1

); : : : ; (Cf

i

n

; C

i

n

)g 2 P(L � L)

1. Sorter(�; f(Cf

i

1

; C

i

1

); : : : ; (Cf

i

n

; C

i

n

)g) = [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄;

2. 8k 2 [1; : : : ; n℄;9j 2 [1; : : : ; n℄; Cf

i

j

= Cf

k

and C

i

j

= C

k

;
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3. 8j 2 [1; : : : ; n� 1℄; Cf

j

� Cf

j+1

.

Remark 1. We assume that a sorter is deterministi
, i.e., if L is a set of

appli
ants, ea
h appli
ation of Sorter on L will always return the same list

of appli
ants.

Example 4 (MaxDom and MinDom sorters). The �

Dom

ordering is

based on the width of the domain 
onstraint

3

. For atomi
 domain 
on-

straints, �

Dom

is straight-forward, but we may need to 
onsider this order-

ing for more 
omplex 
onstraints (e.g., patterns of 
onstraints issued from

�lters). We de�ne the fun
tion !, the width of a 
onstraint, as follows:

� if 
 2 L

Dom

and 
 = X 2 D then !(
) = width(D),

� if 
 2 L

At

n L

Dom

then !(
) = �1,

� if C = 
 ^ C

0

or C = 
 _C

0

then !(C) = !(
).

�

Dom

is now de�ned by

8C;C

0

2 L; C �

Dom

C

0

if !(C) � !(C

0

):

The sorter MinDom (respe
tively, MaxDom) is de�ned by the�

Dom

ordering

(respe
tively, �

Dom

, the reverse ordering of �

Dom

).

4. The language

In this se
tion, we de�ne the operators of our strategy language. They are

used to apply solvers to sele
ted parts of 
onstraints. Most of the operators

are based on the same me
hanism when applied to a 
onstraint C:

1. A set SC of 
andidates is built using the �lter � on C.

2. The set SC is sorted using the partial order �. We obtain LC, a sorted

list of 
andidates.

3. The solver S is applied to one (e.g., the \best" w.r.t. �) or several

elements of LC.

4. Ea
h o

urren
e of the sub-
onstraint(s) modi�ed by S is repla
ed

(substituted) in its 
orresponding (w.r.t. 
andidates) synta
ti
al form

of C.

In the following, we 
onsider a given 
onstraint system (�;D;V;L),

solvers S

1

; : : : ; S

n

, �lters �

1

; : : : ; �

n

, and partial orders �

1

; : : : ;�

n

. We de-

note by Cf


0

7! 


00

g the substitution of the sub-
onstraint 


0

of C by 


00

.

Note that a substitution applies to every o

urren
e of a sub-
onstraint.

3

For interval domains, width(D) 
an be the di�eren
e between the upper and the lower

bound. On the other hand, for domains that are sets of elements, the width 
an be de�ned

as the 
ardinality of the set. In every 
ase, width is a numeri
 value.
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4.1. Basi
 operators

These operators are analogous to fun
tion 
ompositions and allow us to de-

sign solvers by 
ombining the \basi
" fun
tions (non-de
omposable solvers),

or to 
reate solver 
ollaborations by 
ombining 
omponent solvers. Consider

two solvers S

i

and S

j

. Then, for all C 2 L

� S

0

i

(C) = C (Identity),

� S

i

;S

j

(C) = S

j

(S

i

(C)) (solver 
on
atenation),

� S

n

i

(C) = S

n�1

i

;S

i

(C) if n > 0 (solver iteration),

� S

?

i

(C) = S

n

i

(C) su
h that S

n+1

i

(C) = S

n

i

(C) (solver �xed-point),

� (S

i

; S

j

)(C) = S

i

(C) or S

j

(C) (solver don't-
are).

Property 2. Let S

i

and S

j

be two solvers. Then, S

i

;S

j

, S

n

i

, S

?

i

, and (S

i

; S

j

)

are solvers.

4.2. Best and random appli
ations of solvers

The following two operators apply solvers to spe
i�
 
omponents of 
on-

straints.

Don't 
are appli
ation of a solver: the d
 operator restri
ts the use of

the solver S

i

to one randomly 
hosen sub-
onstraint of a synta
ti
al form of

C (obtained using the �lter �).

8C 2 L;d
(S

i

; �)(C) = C

0

;

where

� [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄ = �(C) ;

� if there exists i 2 [1; : : : ; n℄ su
h that S

i

(Cf

i

) 6= Cf

i

, then C

0

=

C

i

fCf

i

7! S

i

(Cf

i

)g, otherwise C

0

= C.

Best appli
ation of a solver: the best operator restri
ts the use of the

solver S

i

to the best (w.r.t. the partial order �) sub-
onstraint of a synta
-

ti
al form of C (obtained using the �lter �) that S

i

is able to modify.

8C 2 L;best(S

i

;�; �)(C) = C

0

;

where

� [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄ = Sorter(�; �(C)) ;

� if there exists i 2 [1; : : : ; n℄; su
h that S

i

(Cf

i

) 6= Cf

i

; and 8j 2

[1; : : : ; n℄ (S

i

(Cf

j

) 6= Cf

j

) i � j) then C

0

= C

i

fCf

i

7! S

i

(Cf

i

)g,

otherwise C

0

= C.
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4.3. Con
urrent and parallel appli
ations of solvers

These two operators manage several solvers. The �rst one sele
ts the result

of one solver depending on a required 
onstraint property, the se
ond one


omposes the resulting 
onstraints based on the results of ea
h solver. A


onstraint property p on a 
onstraint system (�;D;V;L) is a fun
tion from


onstraints to Booleans (i.e., p : L ! Boolean).

Con
urrent appli
ation of solvers: the p

 operator applies one of the

solvers S

i

on
e and returns a 
onstraint that veri�es the property p.

8C 2 L;p

(p; [S

1

;�

1

; �

1

℄; : : : ; [S

n

;�

n

; �

n

℄)(C) = C

0

;

where

� for all i 2 [1; : : : ; n℄ [(Cf

i;1

; C

i;1

); : : : ; (Cf

i;m

i

; C

i;m

i

)℄ = Sorter(�

i

;

�

i

(C)) ;

� if there exists (i; j) 2 [1; : : : ; n℄ � [1; : : : ;m

i

℄ su
h that p(S

i

(Cf

i;j

)),

and S

i

(Cf

i;j

) 6= Cf

i;j

, then C

0

= C

i;j

fCf

i;j

7! S

i

(Cf

i;j

)g, otherwise

C

0

= C.

Parallel appli
ations of solvers: we assume the �lters �

1

; : : : ; �

n

to be

stable and pairwise disjoint. The bp operator applies n solvers S

1

; : : : ; S

n

on n sub-
onstraints of one synta
ti
al form of a 
onstraint.

8C 2 L; bp([S

1

;�

1

; �

1

℄; : : : ; [S

n

;�

n

; �

n

℄)(C) = C

0

;

where

� for all i 2 [1; : : : ; n℄ [(Cf

i;1

; C

00

); : : : ; (Cf

i;m

i

; C

00

)℄ = Sorter(�

i

; �

i

(C));

� for all i 2 [1; : : : ; n℄, if there exists j 2 [1; : : : ;m

i

℄, s.t. S

i

(Cf

i

j

) 6= Cf

i

j

,

and for all k < j, S

i

(Cf

i

k

) = Cf

i

k

, then �

i

= fCf

i;i

j

7! S

i

(Cf

i;i

j

)g,

else �

i

= ;;

� C

0

= C

00

�, where � =

S

i2[1;:::;n℄

�

i

.

4.4. Asso
iating sub-problems with distin
t solvers

Finally, we present two operators to apply a solver on ea
h 
omponent of a


onjun
tion or disjun
tion of 
onstraints. The result is obtained by 
onjun
-

tion or disjun
tion of the resulting 
onstraints, respe
tively. These operators

enable parallel 
omputation, and standard OR parallel 
omputation.

To this end, the notion of a separator is introdu
ed. It 
an be seen as

a pre-pro
essing for parallel 
omputation. Separators are mainly de�ned to

manipulate the elements of 
onjun
tions and disjun
tions of 
onstraints as
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elements of lists

4

. Ea
h element of the list will then be treated separately

but in parallel before gathering (
onjun
tion or disjun
tion) all the results.

De�nition 6 (Separators). A ^ separator Æ is a fun
tion Æ : L ! LC

su
h that

8 C 2 L; 9n 2 N ; Æ(C) = [C

1

; : : : ; C

n

℄ where C � C

1

^ : : : ^ C

n

:

Similarly, a _ separator Æ is a fun
tion Æ : L ! LC su
h that

8 C 2 L; 9n 2 N ; Æ(C) = [C

1

; : : : ; C

n

℄ where C � C

1

_ : : : _ C

n

:

Example 5. Consider a disjun
tive problem in whi
h variables 
an assume

several domains. This is a standard 
ase when representing at on
e the explo-

ration of several bran
hes of a sear
h spa
e. Then, we would like to be able

to 
onsider every bran
h of the sear
h spa
e (see Se
tion 5 for illustration).

Thus, we 
onsider a _ separator named CSP

_

, de�ned by

8C 2 L; CSP

_

(C) = [C

1

; : : : ; C

n

℄;

su
h that C � C

1

_ : : : _C

n

and

8

>

<

>

:

C

1

= X 2 D

1

X

^ C

0

.

.

.

.

.

.

.

.

.

C

n

= X 2 D

n

X

^ C

0

.

Conjun
tive sub-problems: the ^ p operator applies (in parallel) the

solver S

i

to several 
onjun
ts (determined by Æ

^

) of the 
onstraint C and the

�nal result is obtained by 
onjun
tion of the results 
omputed in parallel:

8C 2 L;^ p(S

i

; Æ

^

)(C) = C

0

;

where

� [C

1

; : : : ; C

n

℄ = Æ

^

(C),

� C

0

= S

i

(C

1

) ^ : : : ^ S

i

(C

n

).

Disjun
tive sub-problems: the _ p operator is analogous to ^ p, but

Æ

_

determines disjun
ts, and the �nal result is the disjun
tion of the results


omputed in parallel:

8C 2 L;_ p(S

i

; Æ

_

)(C) = C

0

;

where

4

Lists enable us to sort and explore the sear
h tree in a deterministi
 way. This is

parti
ularly important when we 
onsider sequential implementations, i.e., the bran
hes

are pro
essed sequentially. In su
h 
ases, the use of sets leads to non-deterministi
 sear
h.
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� [C

1

; : : : ; C

n

℄ = Æ

_

(C),

� C

0

= S

i

(C

1

) _ : : : _ S

i

(C

n

).

In spite of its simpli
ity, the following property is essential, sin
e it allows

us to manipulate the basi
 fun
tions and solvers at the same level, and thus

to 
reate solvers and solver 
ollaborations with the same strategy language.

Property 3. Consider n solvers S

1

; : : : ; S

n

, n �lters �

1

; : : : ; �

n

, n partial

orders �

1

; : : : ;�

n

, a 
onstraint property p, and separators Æ

^

and Æ

_

. Then,

d
(S

i

; �), best(S

i

;�; �), p

( p; (S

1

;�

1

; �

1

) ; : : : ; (S

n

;�

n

; �

n

)), bp((S

1

;�

1

;

�

1

) ; : : : ; (S

n

;�

n

; �

n

)) (assuming �

1

; : : : ; �

n

to be stable and pairwise dis-

joint), ^ p(S

i

; Æ

^

), and _ p(S

i

; Æ

_

) are solvers.

5. A generi
 propagation-based solver

A CSP is given by a set of 
onstraints together with a set of domain 
on-

straints, one for ea
h variable of the problem. Constraint propagation is a

widely re
ognized 
on
ept aimed to redu
e a CSP into an equivalent but

simpler one (meaning the sear
h spa
e is redu
ed, but no solution is lost) by

narrowing the domains of variables until a �xed-point is rea
hed. However,


onstraint propagation must be interleaved with a splitting me
hanism in

order to 
ompose a 
omplete solver, i.e., a solver able not only to redu
e the

problem, but also to extra
t solutions. This me
hanism works by splitting

the domain of a variable into (sub)domains.

The redu
tion pro
ess is performed by domain redu
tion fun
tions in

the s
heme of K. R. Apt [1℄, and by narrowing operators in the framework

of F. Benhamou [5℄. These redu
tion fun
tions or narrowing operators are

managed by a propagator (su
h as a set for a don't 
are appli
ation, or a

list, e.g., for a MinDom strategy) that 
omposes the redu
tion strategy. We

now present an implementation of these two frameworks using our strategy

language. Then we instantiate this generi
 solver to solve CSPs over �nite

domains and interval real numbers.

Redu
tion: We �rst 
onsider g narrow, a generi
 redu
tion solver that

takes as input a domain 
onstraint (the domain of the variable to be re-

du
ed), a 
onstraint (the information used to redu
e the variable), and the

domain 
onstraint of the variables o

uring in the 
onstraint (this informa-

tion is required for most, if not for all, narrowing operators). This solver

requires the �

D^
^Ds

�lter of Example 3. The d
 g narrow is the don't-
are


omplete redu
tion of a CSP:

d
 g narrow = d
(g narrow; �

D^
^Ds

)

?

:
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The MaxD g narrow uses the �

Dom

sorter de�ned in Example 4 and im-

plements the MaxDom redu
tion strategy:

MaxD g narrow = best(g narrow;�

Dom

; �

D^
^Ds

)

?

:

Splitting me
hanism: We 
onsider the g split generi
 solver whi
h trans-

forms a domain 
onstraint into a disjun
tion of two domain 
onstraints if

the width of the domain is greater than or equal to a \minimal" width �.

For 
ontinuous domains, � generally represents the smallest di�eren
e that


an be 
omputed between two numbers. For dis
rete domains, � is generally

set to 1. The solver g split : L ! L is de�ned as follows, using the fun
tion

! that gives the width of a 
onstraint (see Example 4). For all 
 = X 2 D

from L,

� if 
 2 L

Dom

su
h that width(
) � �, then

g split(
) = X 2 D

0

_X 2 D

00

; where D = D

0

[D

00

5

;

� otherwise, g split(
) = 
.

The following solver splits a randomly 
hosen domain,

d
 g split = d
(g split; �

D

);

whereas MaxD g split splits the biggest 
urrent domain of the CSP:

MaxD g split = best(g split;�

Dom

; �

D

):

Note that in both split solvers, we use the �

D

�lter de�ned in Example 2.

Generi
 propagation-based solvers: Here we give some generi
 solvers

implementing the standard strategies. Note that, using other operators, �l-

ters, and sorters, we 
an easily design other standard and non-standard

strategies. The �rst solver

d
 g prop = (d
 g narrow ; d
 g split)

?

represents a basi
 strategy in whi
h no spe
i�
 sele
tion (for redu
tion and

splitting) is performed. On the other hand,

MaxD g prop = (MaxD g narrow ; MaxD g split)

?

is a 
omplete propagation-based solver implementing a MaxDom strategy.

Note that we similarly obtain a MinD g prop solver by repla
ing the �

Dom

5

Generally we also enfor
e it with D

0

\D

00

= ;.
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sorter by the �

Dom

sorter. The solving pro
ess is neither depth-�rst, nor

breadth-�rst, but MaxDom �rst, i.e., we redu
e one bran
h, and then we

eventually 
hoose another bran
h (the one with the biggest domain) to ex-

plore.

We are now 
on
erned with a homogeneous exploration of bran
hes. We


onsider the _ separator CSP

_

de�ned in Example 5. We now get another

generi
 solver:

MaxD _ g prop = _ p(MaxD g narrow ; MaxD g split; CSP

_

)

?

:

Depending on the implementation of the _ p operator, we will obtain a

depth-�rst sear
h (sequential implementation) or a parallel exploration of

every bran
hes (parallel implementation).

Using Æ

V ar

, a ^ separator whi
h splits a set of 
onstraints into n variable-

disjoint subsets of 
onstraints, the appli
ation of MaxD g prop 
an be im-

proved when solving CSPs that 
an be de
omposed:

Sp MaxD g prop = ^ p(MaxD g prop; Æ

V ar

):

In this way, we are solving several CSPs in parallel. An obvious advantage

is to deal with simpler problems. The solution to the original problem will

be in the union of the solutions to all subproblems.

In the next sub-se
tions, we instantiate the generi
 solvers g narrow

and g split in order to obtain solvers over �nite domains and interval real

numbers.

5.1. Solving 
onstraints over �nite domains

A CSP P over �nite domains is any 
onjun
tion of formulae of the form:

^

x

i

2X

(x

i

2 D

x

i

) ^ C;

where a domain 
onstraint x

i

2 D

x

i

is 
reated for ea
h variable x

i

o

urring

in the 
onstraint C, D

x

i

being a �nite set of values.

First, we just have to instantiate the g narrow generi
 solver with the

solver Lo
alConsisten
y des
ribed in Example 1. d
 g narrow and

MaxD g narrow be
omes two solvers that enfor
e ar
-
onsisten
y [18℄.

Se
ond, we instantiate g split with � = 1, and width(D) = 
ard(D),

when D is a domain, and we enfor
e that D

0

\D

00

= ;.

With these instantiations, d
 g prop be
omes a �nite domain 
onstraint

solver that implements the standard full lookahead strategy [17℄. Now, if we
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onsiderMinD g prop instead of d
 g prop, then we obtain a full lookahead

strategy 
ombined with a MinDom strategy (i.e., a standard strategy for

�nite domains aimed to �nd qui
kly in
onsisten
ies in the set of 
onstraints).

However, we 
an 
onsider some more spe
i�
 �nite domain strategies,

like the forward 
he
king [17℄. This heuristi
, when enfor
ing lo
al 
onsis-

ten
y, takes into a

ount just the 
onstraints that are dire
tly related to the

splitted variable. We 
onsider another �lter �

D^
^C^Ds

: this �lter returns

a domain 
onstraint D over a variable X, a 
onstraint 
 that 
ontains X,

all the 
onstraints (the 
onjun
tion C) that 
ontain X (ex
ept 
), and all

the domain 
onstraints of the variables that appear in 
 ^ C. We also 
on-

sider an extension g split

0

of the instantiation of the solver g split that is

applied on the result of the �lter �

D^
^C^Ds

. When applied to a 
onstraint

D ^ 
 ^C ^Ds, g split

0

returns g split(D) ^ 
 ^C ^Ds. We 
an formulate

Forward Che
king using d
 g narrow instantiated with Lo
alConsisten
y

as follows:

ForwardChe
king =

d
 g narrow ; d
((g split

0

; d
 g narrow); �

D^
^C^Ds

)

�

:

We 
an obviously 
onsider full lookahead and forward 
he
king strategies us-

ing a MinDom strategy: to this end, we just have to 
onsiderMinD g narrow

and MinD g split instead of d
 g narrow and d
 g split respe
tively. We


an also 
onsider Sp MaxD g prop to separate the problem into sub-prob-

lems and to 
reate numerous new strategies using the same solvers but dif-

ferent strategy operators of our language.

5.2. Solving 
onstraints over real numbers

We now design solvers for non-linear 
onstraints over real interval arithmeti
.

In the following, a CSP P is any 
onjun
tion of formulae of the form

^

x

i

2X

(x

i

2 D

x

i

) ^ C;

where a domain 
onstraint x

i

2 D

x

i

is 
reated for ea
h variable x

i

o

urring

in the set of 
onstraints C,D

x

i

being an interval of real numbers. Constraints

are equalities, inequalities, and inequations of non-linear terms built over

intervals of real numbers and the fun
tion symbols +;�; �; =,^ , sin, and 
os.

Consider the fun
tion b 
 whi
h, given a non-linear 
onstraint 
 2 L

At

n

L

Dom

, the domain D of a variable X 2 Var(
), and the domains of the

other variables of Var(
), returns a smaller domain for X su
h that 
 is

box-
onsistent [28℄ with respe
t to X

6

.

6

Computing b 
 generally 
onsists in applying the interval Newton method 
ombined

with a \lo
al" splitting me
hanism to push the left and right bounds of the interval.
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We now de�ne the solver drf : L ! L. For all C 2 L, we 
ompute

drf(C) depending on the synta
ti
al form of C:

� if C = X 2 D

X

^ 
 ^

V

Y 2Var(
)nfXg

Y 2 D

Y

, where 
 2 L

At

n L

Dom

,

then

drf(C) = X 2 D

0

X

^ 
 ^

^

Y 2Var(
)nfXg

Y 2 D

Y

;

where D

0

X

= b 
(
;D

X

; fD

Y

jY 2 Var(
) n fXgg),

� otherwise, drf(C) = C.

We instantiate the solver g narrow by the solver drf . d
 g narrow be-


omes a solver that enfor
es box-
onsisten
y of a set of non-linear 
on-

straints, i.e., ea
h 
onstraint is box-
onsitent with respe
t to ea
h of its vari-

ables. MaxD g narrow enfor
es box-
onsisten
y using a MaxDom strategy

(i.e., a standard strategy for numeri
 real number solver).

In order to isolate solutions, we need to instantiate g split. We take

� = 10

�8

, the pre
ision of 
omputation of solutions. The width fun
tion is

instantiated by: for all intervals I = [a; b℄, !(I) = b� a. Finally, we enfor
e

that D

0

\D

00

= ;. Thus, d
 g prop be
omes a solver that returns solutions

with a pre
ision of 8 de
imals.

MaxD _ g prop be
omes a similar solver that separately explores every

bran
h. On the other hand, Sp MaxD g prop 
reates disjoint sub-problems

before any redu
tion.

6. Optimization problems over �nite domains

We now 
on
entrate on an extension of a CSP 
alled Constraint Satisfa
-

tion Optimization Problem (CSOP). CSOP 
onsists in �nding an optimal

(i.e., maximal or minimal) value for a given fun
tion, su
h that a set of 
on-

straints is satis�ed [27℄. The work of Bo
kmayr and Kasper [7℄ explains the

approa
h generally used by the 
onstraint solving 
ommunity to deal with

this problem. In this se
tion, we �rst explain two approa
hes for solving

CSOPs, and then we show how they 
an be 
ombined using our strategy

language.

A CSOP 
an be des
ribed by a tuple hP; f; lb; ubi representing a CSP,

an optimization fun
tion, and the lower and upper bounds of this fun
tion.

Without loss of generality, we 
onsider the 
ase of minimization of a fun
tion

f over integers. To deal with this problem, we 
onsider two approa
hes, both

of them requiring an initial step verifying that Sol(C ^ f � ub) 6= ;, i.e.,

there exists a solution to the 
onstraint C satisfying the additional 
onstraint

f � ub.
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The �rst approa
h 
onsists in applying the following rule until it 
annot

be applied any more:

hP; f; lb; ubi ! hP; f; lb; �(f)i if � 2 Sol(C ^ f < ub):

Ea
h iteration of this rule tries to de
rease the upper bound ub by at

least one unit until an unsatis�able problem is obtained. That is why we


all this te
hnique satis�ability to unsatis�ability. The minimum value of

the fun
tion f represents the upper bound of the last su

essful appli
ation

of this rule. Thus, we de�ne the solver MinSatToUnsat implementing this

approa
h. We do not detail here this de�nition, but it is obvious that for

solving CSPs, as needed by this approa
h, we 
an use the solvers de�ned in

Se
tion 5.1.

The se
ond approa
h applies the following rules until they 
annot be

applied any more:

hP; f; lb; ubi ! hP; f; lb; �(f)i if � 2 Sol(C ^ f <

(lb+ub)

2

);

hP; f; lb; ubi ! hP; f;

(lb+ub)

2

; ubi if lb 6= ub

and Sol(C ^ f <

(lb+ub)

2

) = ;:

The �rst rule tries to �nd a new value for the upper bound ub and

redu
es, at least in half, the range of possible values of the fun
tion f ea
h

time a new solution is obtained

7

. The se
ond rule similarly updates the lower

bound lb in the opposite situation. We 
all this approa
h binary splitting and

de�ne the solver MinSplitting implementing it.

Con
erning the behavior of these strategies, we 
an note that the strategy

MinSatToUnsat is very slow for rea
hing the minimal value of f , when it

is lo
ated far from the initial upper bound. On the other hand, applying the

strategy MinSplitting, the same situation happens when the minimal value

of f is 
lose to the initial upper bound. Sin
e it is not evident where the

optimal solution is lo
ated, an a priori 
hoi
e between these approa
hes is

generally impossible. To improve the performan
e of these two basi
 solvers,

we 
an make them 
ollaborate in order to pro�t from the advantages of both

of them, and to avoid their drawba
ks.

A �rst s
heme of 
ooperation is expressed by the strategy SeqOpt:

SeqOpt = (MinSatToUnsat;MinSplitting)

?

:

With the strategy SeqOpt, both solvers are exe
uted sequentially. Its obvi-

ous disadvantage is that it leaves a solver ina
tive, while the other one is

working. Moreover, due to the exponential 
omplexity of the problem under

7

Of 
ourse, we 
an think of di�erent ratios, thus, the �rst approa
h 
an be seen as a

parti
ular 
ase of the se
ond one.
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onsideration, the whole pro
ess 
ould be blo
ked if one solver 
annot �nd

a solution. To avoid this situation, we 
an run them 
on
urrently, updating

the 
urrent solution as soon as a new one is available, and stopping the other

solver.

ParOpt = p

(first; [MinSatToUnsat;None; Id℄;

[MinSplitting;None; Id℄)

?

:

We do not �lter the initial set of 
onstraints and so we do not have any

sorter. In this 
ase, we are interested in the solver that will be faster, that is

why we use the �rst property

8

. With this strategy, a solver never waits for a

solution 
oming from the other one. In the worst 
ase (i.e., all solutions are

read from the same elementary solver until the �nal solution is obtained),

the performan
e of the ParOpt solver is the same as if one of the elementary

solvers ran independently.

7. Solver 
ollaborations

7.1. Combining symboli
 and numeri
al methods

Here we 
onsider the systems of non-linear 
onstraints and two solvers.

Gr�obner bases 
omputation [8℄ (i.e., the gb solver) transforms a set of mul-

tivariate polynomial equalities into a normal form from whi
h solutions


an be derived easier than from the initial set. The se
ond solver, int, is

a propagation-based numeri
al solver over the real numbers (e.g., one of the

solvers presented in Se
tion 5.2). We assume that every 
onstraint of the

CSPs we 
onsider 
an be pro
essed by int.

It is generally very eÆ
ient to pre-pro
ess a CSP with symboli
 rewrit-

ing te
hniques before applying a propagation-based solver. In fa
t, the pre-

pro
essing may add redundant 
onstraints (in order to speed-up propaga-

tion), simplify 
onstraints, dedu
e some univariate 
onstraints (whose so-

lutions 
an easily be extra
ted by propagation), and redu
e the variable

dependen
y problem.

Thus, we 
onsider s
, a simple 
ollaboration where Gr�obner bases 
om-

putation pre-pro
esses the equality 
onstraints before the interval solver is

applied on the whole CSP:

s
 = d
(gb; �

=

); int;

where the �lter �

=

sele
ts equalities of polynomials.

Consider, for example, the following problem:

8

Here, sin
e we 
onsider parallel 
omputation, we extend the properties of 
onstraints

to the properties of 
onstraints and 
omputations.
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x

3

� x � y

2

+ 2 = 0 ^ x

2

� y

2

+ 2 = 0 ^ y > 0:

Most of the solvers based on propagation require splitting to isolate the

solutions of this CSP. However, using gb (with a lexi
ographi
 order x � y),

the problem be
omes

y

2

� 3 = 0 ^ � 1 + x = 0 ^ y > 0

and int 
an easily isolate solutions without a requirement of splitting (whi
h

is expensive as it in
reases the 
ombinatori
s of the problem).

However, as stressed in [4℄, Gr�obner bases 
omputation may require too

mu
h memory and be very time 
onsuming 
ompared to the speed-up they

introdu
e. Thus, in [4℄ the authors propose a trade-o� between pruning and


omputation time: gb is applied on subsets of the initial CSP, and the union

of the resulting bases and the 
onstraints that are not rewritten (su
h as

inequalities, and equalities of non-polynomial expressions) forms the input of

the propagation-based solver. We 
an des
ribe this 
ollaboration as follows:

^ p(d
(gb; �

=

); Æ

part

); int;

where Æ

part

is the ^ separator 
orresponding to the partitioning of the

initial system introdu
ed in [4℄.

7.2. The solver 
ollaborations of C

o

SA




C

o

SA




[23℄ is a 
onstraint logi
 programming system for non-linear polyno-

mial equalities and inequalities. The solving me
hanism of C

o

SA





onsists of

�ve heterogeneous solvers working in a distributed environment and 
oop-

erating through a 
lient/server ar
hite
ture:

� 
hr lin [14℄, implemented with CHRs, for solving linear 
onstraints

(equalities and inequalities),

� gb [13℄ for 
omputing Gr�obner bases, it is to be noti
ed that this solver

is itself based on a 
lient/server ar
hite
ture,

� maple uni for 
omputing roots of a univariate polynomial equality, i.e.,

maple uni extra
ts solutions from one equation, not from a set of equa-

tions,

� maple exp for simplifying and transforming 
onstraints (both this solver

and the previous one are Maple [15℄ programs), and

� e
l for testing 
losed inequalities using ECL

i

PS

e

[20℄ features.
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C

o

SA




uses several solving strategies, and thus, these solvers 
ooperate

in three 
ollaborations: S

in


, S

fin

and S

0

fin

. We now fo
us on how these 
ol-

laborations 
ould be des
ribed in a simple way using our language. The 
ol-

laborations of C

o

SA




are thus 
lari�ed: 1) every 
onstraint 
annot be treated

by all the solvers, and using �lters, we 
an make it 
lear and formalized;

2) distributed appli
ations are impli
it and form a part of the primitive

semanti
s; 3) it be
omes 
lear where improvements/strategies 
an be inte-

grated.

S

in


is the in
remental (in the sense of C

o

SA




) 
ollaboration, i.e., it is

applied as soon as a new 
onstraint is added to the store. maple exp trans-

forms (e.g., expands polynomials and simpli�es arithmeti
 expressions) all


onstraints so eq lin 
an propagate information and simplify the set of linear

equations (equalities and inequalities) �ltered by �

=;<;lin

:

S

in


= maple exp ; d
(eq lin; �

=;<;lin

):

S

fin

is one of the �nal solvers of C

o

SA




. It is applied on
e to the remaining


onstraints. First, 
onstraints are simpli�ed again by maple exp, sin
e S

in


may transform 
onstraints in a syntax gb 
annot understand. After 
om-

puting Gr�obner bases of the set of non-linear polynomial equalities (�ltered

by �

=

), variables are eliminated (by maple uni) one by one from univari-

ate polynomials (�ltered by �

=;uni

), solutions are propagated, and linearized

equations are solved (eq lin). This pro
ess terminates when all variable have

been eliminated or when there is no more univariate polynomial:

S

fin

= maple exp ; d
(gb; �

=

) ;

d
(maple uni; �

=;uni

);d
(eq lin; �

=;<;lin

)

?

:

Here, we 
an see the 
exibility and the simpli
ity of our 
ontrol lan-

guage. In C

o

SA




, the S

fin


ollaboration is �xed. From its des
ription in our

language, we 
an noti
e that maple uni is applied by a don't 
are primitive.

Some strategies 
an easily be introdu
ed to improve the 
ollaboration. In

fa
t, maple uni 
ould be applied with a \best" primitive, ordering possible


andidates with respe
t to the in
reasing degree of univariate polynomial

equations (with a �

degree

sorter). Using best(maple uni;�

degree

; �

=;uni

),

variables 
ould be eliminated from the lower degree equations �rst, and

thus less arithmeti
 errors/roundings 
ould be propagated to the system

(and that is a weak point of C

o

SA




). Con
erning gb and eq lin, a \best"

primitive would not help sin
e these solvers 
onsider the \maximal" set of

�ltered 
onstraints.

S

0

fin

is an alternative to S

fin

whi
h is more eÆ
ient when eliminations

of non-linear variables do not linearize any other 
onstraint and only ground

inequalities have to be 
he
ked by e
l:
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S

0

fin

= maple exp ; d
(gb; �

=

) ;

d
(maple uni; �

=;uni

)

?

; d
(e
l; �

<;ground

)

?

:

Again, better strategies 
an be introdu
ed in C

o

SA




, sin
e ground inequalities


an be 
he
ked simultaneously. Using Æ

one

, a ^ separator that splits a set

of n 
onstraints into n singletons of atomi
 
onstraints, the appli
ation of

e
l is improved:

^ p(d
(e
l; �

<;ground

); Æ

one

):

Note that we still need a �lter for e
l, sin
e Æ

one

does not perform any

�ltering.

As mentioned in [22℄, the �rst solvers of S

fin

and S

0

fin


an be \fa
tor-

ized":

S

00

fin

=maple exp ; d
(gb; �

=

) ;

p

( first;

[(d
(maple uni; �

=;uni

);d
(eq lin; �

=;<;lin

))

?

; None; Id℄;

[d
(maple uni; �

=;uni

)

?

;d
(e
l; �

<;ground

))

?

; None; Id℄:

The remaining parts of the 
ollaborations are exe
uted 
on
urrently. No

�ltering is needed (Id for both sub-
ollaborations), and thus we do not have

any sorter (None), sin
e there is only one 
andidate after �ltering, i.e., the

initial set of 
onstraints. We do not impose any property on the result, and

we are interested in the sub-
ollaboration that will be faster (�rst property).

Note that improvements for applying e
l and maple uni still hold in S

00

fin

.

7.3. Combining 
onsisten
ies

Box 
onsisten
y [3℄ is a lo
al 
onsisten
y notion for interval 
onstraints that

relies on bounds of domains of variables: it is generally implemented as

a (lo
al) splitting of domains 
ombined with the interval Newton method

for determining 
onsistent bounds of an interval. Hull 
onsisten
y is another

notion of 
onsisten
y, stronger than box 
onsisten
y. However, it 
an only be

applied on primitive 
onstraints that are either part of the original CSP, or

are obtained by de
omposing the 
onstraints of the CSP. Then, the redu
tion

of the \de
omposed" CSP is weaker, but also faster. The idea of [3℄ is to


ombine these to 
onsisten
ies in order to redu
e the 
omputation time for

enfor
ing box 
onsisten
y.

Let us 
onsider Hull and Box, two solvers that respe
tively enfor
e hull

and box 
onsisten
y of a CSP. Then, the 
ombination of [3℄ 
an be des
ribed

by

(HullC ; BoxC)

?

:

Sin
e we 
an de�ne both solvers and 
ollaborations in our language, we now

spe
ify the HullC and BoxC solvers:
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BoxC = d
(Box
; �

:p

)

?

and HullC = d
(Hull
; �

p

)

?

;

where �

p

(respe
tively, �

:p

) �lters one primitive (respe
tively non-primitive)


onstraint together with the domain 
onstraints (e.g., x 2 [a; b℄) asso
iated

with ea
h of its variables

9

, Box
 (respe
tively Hull
) is a 
omponent solver

that, given a 
onstraint 
, enfor
es box (respe
tively, hull) 
onsisten
y of 


w.r.t. ea
h of its variables.

We 
an also 
onsider some inner strategies, su
h as redu
ing the variable

with the largest domain. Then, Hull and Box are de�ned as follows:

BoxC = best(Box
;�

Dom

; �

:p

)

?

HullC = best(Hull
;�

Dom

; �

p

)

?

;

where \�

Dom

" sele
ts the 
andidate with the largest domain (see the sorter

of Example 4).

Note that we 
ould on
e again de
ompose these solvers into solvers

that enfor
e box (or hull) 
onsisten
y of one 
onstraint with respe
t to one

variable. Des
ribing these solvers at this level, we are 
lose to the generi


propagation-based solver presented in Se
tion 5: only the �lter is di�erent.

Thus, we 
ould imagine a more generi
 solver where the �lter would also be

a parameter. Then, solvers presented in Se
tion 5 and in this se
tion would

be designed using the same pattern of operators of our language.

Note also that (Hull ; Box)

?


an represent the solver int 
onsidered

in Se
tion 7.1. We 
ould also think about some other des
ription of Hull

and Box (e.g., using parallel appli
ation of solvers), but then we would not

respe
t anymore the original 
ombination of [3℄.

8. Con
lusion

We have presented a strategy language for solving 
onstraint satisfa
tion

problems using solvers and 
ollaboration of solvers. A key point in this

work is the introdu
tion of the 
on
epts of 
onstraint �lters, separators,

and sorters. These notions allow one to manage 
onstraints with high-level

me
hanisms. Furthermore, they help des
ribing synta
ti
al transformations

and manipulations generally hidden in the implementation of the 
urrent

solvers. These 
on
epts are then used to de�ne strategy operators for ap-

plying solvers. These operators allow us to design solvers by 
ombining the

basi
 fun
tions, and 
ollaborations of solvers by 
ombining the 
omponent

solvers. This language 
an be seen as a Lego game, where bri
ks are basi


solvers. These bri
ks are used to design more 
omplex solvers and 
ollabora-

tions. They 
an be re-used, assembled together through strategies, used in

9

�

p

is similar to �

D^
^Ds

(see Example 3) ex
ept that atomi
 
onstraints are for
ed

to be primitive 
onstraints.



Towards a framework for designing 
onstraint solvers 25

higher 
ollaborations, ... Patterns of solvers and strategies (i.e., assembling

of operators) 
an be instantiated for di�erent domains of 
onstraints and

di�erent strategies of resolution.

The language is illustrated by several examples of 
onstraints of di�er-

ent types and by de�ning solvers of di�erent nature, su
h as well-known

te
hniques for solving CSPs over �nite domains and non-linear 
onstraints

over real domains, a generi
 propagation-based solver, optimization prob-

lems, 
ollaboration of solvers (symboli
-numeri
 
ooperation, simulation of

C

o

SA




, 
ombination of lo
al 
onsisten
ies). For ea
h example, we have dis-


ussed standard strategies and proposed new strategies that 
larify the use

of our language. For la
k of spa
e, we did not present other solvers that

we have already designed using our language, su
h as Gaussian elimination

(and some standard strategies), and Gr�obner bases 
omputation.

We are 
urrently working on the implementation of this language in order

to evaluate the real appli
ability of this framework. We are 
on�dent that

su
h a language 
an help exploring and testing new strategies. From a more

theoreti
al point of view, we 
onsider as further work veri�
ation of the

termination properties of the strategy operators.
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