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Towards a framework for designing

onstraint solvers and solver

ollaborations

C. Castro, E. Monfroy

In this paper, we propose a strategy language for designing onstraint solvers and

shemes of solver ollaborations. Solvers are seen as briks that an be integrated when

reating more omplex solvers that an beome themselves new briks to ompose new

solvers. These briks are glued together using operators of our language. A pattern of

operators an be used to reate solvers and ollaborations for solving di�erent types of

onstraints. We illustrate the use of this language by desribing some well-known teh-

niques for propagation-based solvers, optimization problems, and ollaboration of solvers

(symboli/numeri ooperation, linear/non-linear ollaboration, loal onsisteny ombi-

nation).

1. Introdution

In the last twenty years, onstraint programming has emerged as a new pro-

gramming paradigm. In this alternative approah, the programming proess

is merely a spei�ation of a set of requirements (i.e., the onstraints), a solu-

tion for whih will be generated using some general or domain spei� teh-

niques and mehanisms (i.e., the onstraint solvers). Numerous algorithms

have been developed for solving onstraints and the resulting tehnology has

been suessfully applied to solving real-life problems.

The design and implementation of these onstraint solvers is generally

an expensive and tedious task, and thus, the idea of reusing solvers \of the

shelves" is very interesting and promising [26℄. However, that also implies

that we must have some tools to integrate/ombine them. Another key-point

is that some problems annot be takled or eÆiently solved with a single

solver. Hene, we de�nitely realize the interest in integrating and making

ooperate several solvers [16, 6, 19, 25, 23℄. This is alled ollaboration of

solvers [24℄. In order to make solvers ollaborate, the need for powerful

strategy languages to ontrol their integration and appliation has been

well reognized [21, 22, 2℄.

However, the existing approahes are generally not generi enough: they

onsider �xed domains (linear onstraints [6℄, non-linear onstraints over

real numbers [23, 19, 4℄), �xed strategies, or �xed sheme of ollaboration

(sequential [23, 4℄, asynhronous [19℄). In the language BA

L

I, ollaborations
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are spei�ed using ontrol primitives and the onstraint system is a param-

eter. Although BA

L

I is more generi and exible, the ontrol apabilities for

speifying strategies are not always �ne enough [22℄: the ontrol is based on

a \set of onstraints", not at the level of onstraints taken separately. In the

system COLETTE [11, 12℄, a solver is viewed as a strategy that spei�es the

order of appliation of elementary operations expressed by transformation

rules. In this framework, di�erent domains mainly mean the de�nition of

di�erent transformation rules, and di�erent heuristis mean di�erent strate-

gies. However, the granularity of ontrol is too low to really onsider solver

ollaborations.

Extending the ideas of BA

L

I and COLETTE, we onsider ollaborations

of solvers as strategies that speify the order of appliation of solvers. In [9℄,

we proposed a strategy language for designing elementary onstraint solvers

and we exemplify its use by speifying several solvers (suh as solvers for

onstraints over �nite domains and real numbers). In [10℄ we presented the

appliation of our language to prototyping the onstraint solving shemes via

ollaboration of solvers. In this paper, we show that designing solvers and

ollaborations are intrinsially linked and related. For example, the same

strategy an be used to write a solver or to express a ollaboration. In fat,

the basi solvers are briks that an be used to design more omplex solvers

and ollaborations whih then beome other briks. They an be re-used,

assembled together through strategies, used in higher ollaborations, ... The

glue between these briks (i.e., patterns of solvers and strategies, or assembly

of operators) an be instantiated for di�erent domains of onstraints and dif-

ferent strategies of resolution. In this paper, these tehniques are illustrated

by numerous examples over di�erent domains: generi propagation-based

solvers (and instantiation for �nite domains and real interval onstraints),

and ollaboration of solvers (optimization problems, symboli-numeri oop-

eration, linear/non-linear ollaboration, loal onsisteny ombination). For

eah of these solvers/ollaborations, we simulate the standard tehniques,

and we also propose improvements in terms of strategies.

The main motivation for this work is to propose a general framework in

whih one an design the omponent onstraint solvers, as well as solver ol-

laborations. This approah makes sense, sine the design of onstraint solvers

and the design of ollaborations require similar methods (strategies are often

the same: don't-are, �xed-point, iteration, parallel, onurrent, ...). In other

words, we propose a language for writing the omponent solvers and design-

ing ollaborations of several solvers at the same level. Key points in this work

are the onepts of onstraint �lters, separators, and sorters. These notions

allow one to manage onstraints with high-level mehanisms. Furthermore,

they help desribing syntatial transformations and manipulations that are
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generally hidden in the implementation of the urrent solvers. These on-

epts are used to de�ne the strategy operators for applying solvers, suh as

don't are mehanism, best appliation of solvers, onurrent solvers, par-

allel appliations, and operators for treating sub-problems. These operators

allow us to design solvers by ombining the basi funtions, as well as ol-

laborations of solvers by ombining the omponent solvers.

This paper is organized as follows: in Setion 2, we use a very simple

example to informally present our language. In Setion 3, the basi de�ni-

tions are given and we introdue the notions of �lters and sorters. Setion 4

details the basi and omplex operators for applying solvers. In Setion 5,

we give a generi propagation-based solver together with some instantiations

for �nite domain onstraints and interval onstraints. Setion 6 introdue

optimization problems and some possible implementations using our lan-

guage. Setion 7 is devoted to di�erent forms of solver ollaborations: sym-

boli/numeri ooperation, linear/non-linear ollaboration, and loal on-

sisteny ombination. Finally, in Setion 8, we onlude this paper and give

some perspetives for further work.

2. An illustration of the language

Suppose that we want to design a solver for Constraint Satisfation Problems

(CSPs) omposed of domain onstraints (de�ning the value a variable an

assume), and inequations over integer expressions. We are thus onerned

with implementation of a solver for problems of the following type:

X � Y; Z � 40; Y � Z; Z 2 [2::130℄; Y 2 [50::100℄; X 2 [5::120℄:

Now, suppose that we have heard about a tehnique of removing impos-

sible values from domains of variables using inequations. This tehnique is

given as two proof rules that redue the searh spae without losing any

solution:

S1 =

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

X 2 [lb

X

::min(rb

X

; rb

Y

)℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

and

S2 =

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [max(lb

X

; lb

Y

)::rb

Y

℄

:

How to use these rules to design a solver? Suh a tehnique requires

Implementation of a mehanism to math the pattern of onstraints and

some strategy of appliations to eÆiently apply the rules iteratively until

a �xed-point is reahed. Our language proposes some help for doing so. A

possible solver for this type of onstraints using this tehnique is dS1S2:
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dS1S2 = d((S1;S2); �

D^^Ds

)

?

:

In our language, �

D^^Ds

is a �lter (de�ned in Setion 3) that will selet the

onstraints of the problem that math the head of the rule. S1 and S2 are

solvers. d, \;", and \?" are operators for applying solvers. The expression

dS1S2 means:

1. �nd parts of the onstraint that meet our needs, i.e., onstraints on

whih S1 and S2 an apply. This is performed using the �lter �

D^^Ds

,

2. selet randomly (seletion indiated by d) one of these onstraints,

3. apply �rst S1 on the seleted onstraint, then S2 on the result of S1

(sequential appliation of solvers indiated by \;"),

4. iterate Items 1, 2, and 3 until a �xed-point is reahed (the \?"), i.e., S1

and S2 annot modify the onstraint anymore. The result ontains the

same solutions as the input, but the searh spae has been redued.

Now, onsider that we have heard about some strategy for �nite domains

that speeds up redution of the searh spae. This strategy is alled MinDom:

redution of the smallest domain �rst an lead to quiker elimination of some

branhes of the searh spae. We an easily integrate this strategy using our

language:

bestS1S2 = best((S1;S2);�

Dom

; �

D^^Ds

)

?

:

This time we use a sorter (�

Dom

is desribed in Example 4) that will \order"

possible appliations of S1 and S2. The meaning of the expression bestS1S2

is:

1. �nd parts of the onstraint that meet our needs (�

D^^Ds

),

2. selet the \best" (w.r.t. to the MinDom strategy) possible applia-

tion. This is performed by �

Dom

that returns the andidate with the

smallest domain,

3. apply S1 on the seleted onstraint, then S2,

4. iterate Items 1, 2, and 3 until a �xed-point is reahed (the \?").

The result is the same as the previous one, but this time we use a strategy

that speeds up resolution.

So far, we an \quikly" redue the searh spae. But we need to omplete

our solver to provide the user with solutions. To this end, we need to onsider

di�erent branhes of the searh tree separately. Consider a funtion split that

takes as input a domain onstraint, and returns a disjuntion of domains

when possible (this solver is formally de�ned in Setion 5). Roughly, this

funtion is:
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split(X 2 D) = X 2 D

1

_X 2 D

2

:

We an now reate a omplete solver (i.e., a solver that not only redues the

searh spae but also extrats solutions):

SolverS1S2 = (bestS1S2; d(split; �

D

))

?

:

SolverS1S2 �rst redues ompletely the searh spae using bestS1S2. Then,

reate a disjuntion of a domain onstraint (the domain onstraint is �ltered

by �

D

and splitted by the funtion split). The proess redution-split is

iterated on eah sub-spae until no more split and redution are possible.

The result is a disjuntion of possible assignments of variables, i.e., the

solutions.

We have informally presented some operators and notions of our lan-

guage. Some more omplex operators (based on parallelism or onurreny)

are also provided. The next setions will formally desribe the language and

some more omplex examples.

3. Framework

In this setion, we present the basi omponents of our framework, i.e.,

sorters and �lters. We �rst need some de�nitions �xing our framework.

3.1. Constraints and solvers

De�nition 1 (Constraint System). A onstraint system is a 4-tuple (�;

D;V;L) where

� � is a �rst-order signature given by a set of funtion symbols F

�

, and

a set of prediate symbols P

�

,

� D is a �-struture (its domain being denoted by jDj),

� V is an in�nite denumerable set of variables, and

� L is a set of onstraints: a non-empty set of (�;V)-atomi formulae,

alled atomi onstraints, losed under onjuntion and disjuntion.

The unsatis�able onstraint is denoted by ? and the true onstraint

is denoted by >. The set of atomi onstraints is denoted by L

At

.

An assignment is a mapping � : V ! jDj. The set of all assignments is

denoted by ASS

V

D

. An assignment � extends uniquely to a homomorphism

� : T (�;V) ! jDj. The set of solutions of a onstraint  2 L is the set

Sol

D

() of assignments � 2 ASS

V

D

suh that �() holds. A onstraint 

is valid in D (denoted by D j= ) if Sol

D

() = ASS

V

D

. We use Var() to

denote the set of variables from V ourring in the onstraint . We an now

introdue the notion of a solver.
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De�nition 2 (Solver). A solver for a onstraint system (�;D;V;L) is a

omputable funtion S : L ! L suh that

1. 8C 2 L; Sol

D

(S(C)) � Sol

D

(C) (orretness property);

2. 8C 2 L; Sol

D

(C) � Sol

D

(S(C)) (ompleteness property).

A onstraint C is in the solved form with respet to S, if S(C) = C.

Given a solver S over a onstraint system (�;D;V;L), we extend S

to a onstraint system (�;D;V;L

0

), where L � L

0

, in the following way:

8 C 2 L

0

n L, S(C) = C. We say that a onstraint C is in the solved form

with respet to S, if S(C) = C.

Example 1. Consider the onstraint system (�;D;V;L) suh that the on-

straint symbols (i.e., the prediate symbols)  of arity n and 2 are in �, jDj

is �nite. Constraints of the form X 2 D are alled domain onstraints, and

they are widely used in CSPs: the set D (alled the domain of X) spei�es

the values of jDj the variable X an take.

Consider now the LoalConsisteny funtion that takes as input the

following pattern of onstraints

x

i

2 D

i

^ (x

1

; : : : ; x

i

; : : : ; x

n

) ^ x

1

2 D

1

^ : : : ^ x

i�1

2 D

i�1

^ x

i+1

2 D

i+1

^ : : : ^ x

n

2 D

n

and returns

x

i

2 D

0

i

^ (x

1

; : : : ; x

i

; : : : ; x

n

) ^ x

1

2 D

1

^ : : : ^ x

i�1

2 D

i�1

^ x

i+1

2 D

i+1

^ : : : ^ x

n

2 D

n

;

where

D

0

i

= fv

i

2 D

i

j (9 v

1

2 D

1

; : : : ;9v

i�1

2 D

i�1

;

9v

i+1

2 D

i+1

; : : : ;9v

n

2 D

n

) : (v

1

; : : : ; v

i

; : : : ; v

n

)g:

Then, LoalConsisteny is a solver, i.e., it removes impossible values from

the domain of x

i

using the onstraint , but preserves solutions of . This

solver an be eÆiently implemented for several standard onstraints, suh as

= and � over �nite domains (i.e., generally, integers that an be represented

in a omputer). LoalConsisteny is used in Setion 5.1.

3.2. Syntatial forms and sub-onstraints

On the previous example, we have seen that a solver annot always be ap-

plied on a \omplete" onstraint but only on a part of it (S

�

ould be

applied only on a speial pattern of onstraints). Thus, to de�ne spei�

parts of a onstraint, we introdue the notions of a syntatial form and a

sub-onstraint.
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De�nition 3 (Syntatial Forms and Sub-onstraints). We say that

C

0

is a syntatial form of C, denoted by C

0

� C, if C

0

= C modulo the

assoiativity and ommutativity of ^ and _, and the distributivity of ^ on

_ and of _ on ^

1

. We say that C

0

2 L is a sub-onstraint of C, denoted by

C

[C

0

℄

, if

� C = C

0

,

� or 9C

1

2 L; ! 2 f^;_g; C = C

1

!C

0

,

� or 9C

1

2 L; ! 2 f^;_g; C = C

0

!C

1

,

� or 9C

1

; C

2

2 L; ! 2 f^;_g; C = C

1

!C

2

and (C

1

[C

0

℄

or C

2

[C

0

℄

).

A ouple (C

00

; C

0

) suh that C

00

is a sub-onstraint of C

0

and C

0

� C

is alled an appliant of C. We denote by SF(C) the �nite set of all the

syntatial forms of a onstraint C: SF(C) = fC

0

jC

0

� Cg

2

. We denote by

LA the set of all the lists of appliants, and by LC the set of all the lists of

onstraints. Generally, we will use LA (respetively LC) to denote a list of

appliants (respetively onstraints). We denote by P(L�L) the power-set

of all the sets of ouples of onstraints. Atom(C) denotes the set of atomi

onstraints that our in C: fj 2 L

At

and C

[℄

g.

3.3. Filters and sorters

We now de�ne the basi omponents of our strategy language: �lters to

selet spei� parts of a onstraint, and sorters to lassify the elements of

a list w.r.t. a given ordering. These transformations are generally hidden in

the implementation of solvers.

We introdue the notion of a �lter for two main reasons. A solver an, in

general, be applied on several parts of a onstraint [11℄. Seond, when dealing

with solver ollaborations, in general, a single solver is not able to treat the

omplete onstraint [21℄. In both ases, we want to identify the sub-parts of

the onstraint that the solver is atually able to handle. The usefulness of

�lters is lear when, for example, we want to manipulate only the domain

onstraints like X 2 D

X

from a set of onstraints C in order to arry out

enumeration. Also, when one is interested in verifying the loal onsisteny

(suh as in the solver of Example 1), it is neessary to selet sub-onstraints.

In this ase, a sub-onstraint is the onjuntion of a domain onstraint, an

atomi onstraint, and a onjuntion of domain onstraints, i.e., an atomi

onstraint, and all the domain onstraints of the variables ourring in it

(see �lter of Example 2).

1

We onsider that \=" is purely syntati.

2

The ACD theory de�nes a �nite set of quotient lasses that we an e�etively �lter.
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One we have identi�ed di�erent parts of the onstraint on whih a given

solver an be applied, we generally want to selet some of them based on

a given riterion, i.e., the best of these parts in order to \optimize" the

appliation of the solver. Thus, we introdue the notion of a sorter assoiated

with the onept of a strategy.

For example, when solving onstraints, we sometimes are interested in

hoosing a variable that an take the minimum or the maximum number of

values. If we suppose that we an already selet all the domain onstraints

like X 2 D

X

from a set of onstraints C using the notion of a �lter, we an

easily imagine a sorter to implement the minimum or the maximum domain

riterion (see the sorter of Example 4).

De�nition 4 (Filter). Let (�;D;V;L) be a onstraint system. Then, a

�lter � on (�;D;V;L) is a omputable funtion � : L ! P(L�L) suh that

8C 2 L; �(C) = f(Cf

i

; C

i

); : : : ; (Cf

n

; C

n

)g;

where 8i 2 [1; n℄; C � C

i

(C

i

is a syntatial form of C), and C

i

[Cf

i

℄

(Cf

i

is

a sub-onstraint of C

i

).

The elements of �(C) are alled andidates. We de�ne the �lter Id whih

returns the initial set of onstraints. Given the �lters � and �

0

on (�;D;V;

L), we say that

� � is seletive if 8C 2 L; �(C) = f(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)g suh that

8i; j 2 [1; : : : ; n℄� [1; : : : ; n℄; i 6= j; Atom(Cf

i

) \Atom(Cf

j

) = ;;

� � is stable if 8C 2 L; �(C) = f(Cf

1

; C

0

); : : : ; (Cf

n

; C

0

)g;

� � and �

0

are disjoint if 8C 2 L; �(C) = f(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)g;

and �

0

(C) = f(Cf

0

1

; C

0

1

); : : : ; (Cf

0

m

; C

0

m

)g; s.t. 8(i; j) 2 [1; : : : ; n℄ �

[1; : : : ;m℄; Atom(Cf

i

) \Atom(Cf

0

j

) = ;.

Property 1. Let �

1

and �

2

be two �lters on (�;D;V;L). Then, �

1

;�

2

de�ned by

8C 2 L; �

1

;�

2

(C) = �

1

(C) \ �

2

(C)

is a �lter on (�;D;V;L).

Property 1 enables one to design omplex �lters using more basi �lters.

Example 2. We de�ne a simple �lter for the domain onstraints

8C 2 L; �

D

(C) = f(; C)jC

[℄

and 9X 2 V;  = (X 2 D

X

)g:

The �lter �

D

is stable and seletive. We denote by L

Dom

the elements of

L

At

resulting from the appliation of this �lter. We will use this notation in

other examples.
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Example 3. We now onsider patterns of onstraints (suh as in the solver

of Example 1). The utility of this �lter will be lari�ed in Setion 5. We want

to �lter sub-onstraints that are the onjuntion of a domain onstraint, an

atomi onstraint, and a onjuntion of domain onstraints, i.e., an atomi

onstraint, and all the domain onstraints of the variables ourring in it.

8C 2 L; �

D^^Ds

(C) � L

2

and �

D^^Ds

(C) is de�ned as follows:

1. Patterns:

(C

00

; C

0

) 2 �

D^^Ds

(C)) C

00

= (X 2 D

X

)

^ 

V

Y 2Var()nfXg

Y 2 D

Y

^  2 L

At

n L

Dom

^C

0

2 SF (C)

^C

0

[C

00

℄

^X 2 Var():

2. Context-free:

((C

0

; C

1

) 2 �

D^^Ds

(C) ^ (C

0

; C

2

) 2 �

D^^Ds

(C)) ) C

1

= C

2

.

3. Commutative-free:

(X 2 D

X

^  ^ C

00

1

; C

1

) 2 �

D^^Ds

(C)

^ (X 2 D

X

^  ^ C

00

2

; C

2

) 2 �

D^^Ds

(C)

�

) C

00

1

� C

00

2

.

Item 1 requires that elements of �

D^^Ds

(C) have some syntatial prop-

erties, i.e., form a pattern of onstraints; in Item 2, we do not want to

onsider several times the same sub-onstraints issued from di�erent syn-

tatial forms of C; and �nally, in Item 3, we speify that the ordering of

the onjuntion of domain onstraints is not relevant.

Item 2 and 3 are not mandatory, but they redue the number of appli-

ants. This de�nition does not provide uniqueness of the �lter. Depending

on our needs, we an onsider (1) adding the requirements to de�ne one set

of appliants per onstraint, (2) removing Item 2 and 3, or (3) seleting one

of the sets orresponding to the de�nition.

For example, onsider the problem of solving CSPs and a funtion S (or

a transformation rule) whih redues the domain of one variable using one

onstraint. Then, for eah onstraint of the CSP and eah variable of this

onstraint, we an onsider a possible appliation of S.

De�nition 5 (Sorter). A sorter Sorter, w.r.t. a partial ordering �, for a

onstraint system (�;D;V;L) is a omputable funtion Sorter :� �P(L�

L)! LA, suh that 8f(Cf

i

1

; C

i

1

); : : : ; (Cf

i

n

; C

i

n

)g 2 P(L � L)

1. Sorter(�; f(Cf

i

1

; C

i

1

); : : : ; (Cf

i

n

; C

i

n

)g) = [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄;

2. 8k 2 [1; : : : ; n℄;9j 2 [1; : : : ; n℄; Cf

i

j

= Cf

k

and C

i

j

= C

k

;
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3. 8j 2 [1; : : : ; n� 1℄; Cf

j

� Cf

j+1

.

Remark 1. We assume that a sorter is deterministi, i.e., if L is a set of

appliants, eah appliation of Sorter on L will always return the same list

of appliants.

Example 4 (MaxDom and MinDom sorters). The �

Dom

ordering is

based on the width of the domain onstraint

3

. For atomi domain on-

straints, �

Dom

is straight-forward, but we may need to onsider this order-

ing for more omplex onstraints (e.g., patterns of onstraints issued from

�lters). We de�ne the funtion !, the width of a onstraint, as follows:

� if  2 L

Dom

and  = X 2 D then !() = width(D),

� if  2 L

At

n L

Dom

then !() = �1,

� if C =  ^ C

0

or C =  _C

0

then !(C) = !().

�

Dom

is now de�ned by

8C;C

0

2 L; C �

Dom

C

0

if !(C) � !(C

0

):

The sorter MinDom (respetively, MaxDom) is de�ned by the�

Dom

ordering

(respetively, �

Dom

, the reverse ordering of �

Dom

).

4. The language

In this setion, we de�ne the operators of our strategy language. They are

used to apply solvers to seleted parts of onstraints. Most of the operators

are based on the same mehanism when applied to a onstraint C:

1. A set SC of andidates is built using the �lter � on C.

2. The set SC is sorted using the partial order �. We obtain LC, a sorted

list of andidates.

3. The solver S is applied to one (e.g., the \best" w.r.t. �) or several

elements of LC.

4. Eah ourrene of the sub-onstraint(s) modi�ed by S is replaed

(substituted) in its orresponding (w.r.t. andidates) syntatial form

of C.

In the following, we onsider a given onstraint system (�;D;V;L),

solvers S

1

; : : : ; S

n

, �lters �

1

; : : : ; �

n

, and partial orders �

1

; : : : ;�

n

. We de-

note by Cf

0

7! 

00

g the substitution of the sub-onstraint 

0

of C by 

00

.

Note that a substitution applies to every ourrene of a sub-onstraint.

3

For interval domains, width(D) an be the di�erene between the upper and the lower

bound. On the other hand, for domains that are sets of elements, the width an be de�ned

as the ardinality of the set. In every ase, width is a numeri value.



Towards a framework for designing onstraint solvers 11

4.1. Basi operators

These operators are analogous to funtion ompositions and allow us to de-

sign solvers by ombining the \basi" funtions (non-deomposable solvers),

or to reate solver ollaborations by ombining omponent solvers. Consider

two solvers S

i

and S

j

. Then, for all C 2 L

� S

0

i

(C) = C (Identity),

� S

i

;S

j

(C) = S

j

(S

i

(C)) (solver onatenation),

� S

n

i

(C) = S

n�1

i

;S

i

(C) if n > 0 (solver iteration),

� S

?

i

(C) = S

n

i

(C) suh that S

n+1

i

(C) = S

n

i

(C) (solver �xed-point),

� (S

i

; S

j

)(C) = S

i

(C) or S

j

(C) (solver don't-are).

Property 2. Let S

i

and S

j

be two solvers. Then, S

i

;S

j

, S

n

i

, S

?

i

, and (S

i

; S

j

)

are solvers.

4.2. Best and random appliations of solvers

The following two operators apply solvers to spei� omponents of on-

straints.

Don't are appliation of a solver: the d operator restrits the use of

the solver S

i

to one randomly hosen sub-onstraint of a syntatial form of

C (obtained using the �lter �).

8C 2 L;d(S

i

; �)(C) = C

0

;

where

� [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄ = �(C) ;

� if there exists i 2 [1; : : : ; n℄ suh that S

i

(Cf

i

) 6= Cf

i

, then C

0

=

C

i

fCf

i

7! S

i

(Cf

i

)g, otherwise C

0

= C.

Best appliation of a solver: the best operator restrits the use of the

solver S

i

to the best (w.r.t. the partial order �) sub-onstraint of a synta-

tial form of C (obtained using the �lter �) that S

i

is able to modify.

8C 2 L;best(S

i

;�; �)(C) = C

0

;

where

� [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄ = Sorter(�; �(C)) ;

� if there exists i 2 [1; : : : ; n℄; suh that S

i

(Cf

i

) 6= Cf

i

; and 8j 2

[1; : : : ; n℄ (S

i

(Cf

j

) 6= Cf

j

) i � j) then C

0

= C

i

fCf

i

7! S

i

(Cf

i

)g,

otherwise C

0

= C.
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4.3. Conurrent and parallel appliations of solvers

These two operators manage several solvers. The �rst one selets the result

of one solver depending on a required onstraint property, the seond one

omposes the resulting onstraints based on the results of eah solver. A

onstraint property p on a onstraint system (�;D;V;L) is a funtion from

onstraints to Booleans (i.e., p : L ! Boolean).

Conurrent appliation of solvers: the p operator applies one of the

solvers S

i

one and returns a onstraint that veri�es the property p.

8C 2 L;p(p; [S

1

;�

1

; �

1

℄; : : : ; [S

n

;�

n

; �

n

℄)(C) = C

0

;

where

� for all i 2 [1; : : : ; n℄ [(Cf

i;1

; C

i;1

); : : : ; (Cf

i;m

i

; C

i;m

i

)℄ = Sorter(�

i

;

�

i

(C)) ;

� if there exists (i; j) 2 [1; : : : ; n℄ � [1; : : : ;m

i

℄ suh that p(S

i

(Cf

i;j

)),

and S

i

(Cf

i;j

) 6= Cf

i;j

, then C

0

= C

i;j

fCf

i;j

7! S

i

(Cf

i;j

)g, otherwise

C

0

= C.

Parallel appliations of solvers: we assume the �lters �

1

; : : : ; �

n

to be

stable and pairwise disjoint. The bp operator applies n solvers S

1

; : : : ; S

n

on n sub-onstraints of one syntatial form of a onstraint.

8C 2 L; bp([S

1

;�

1

; �

1

℄; : : : ; [S

n

;�

n

; �

n

℄)(C) = C

0

;

where

� for all i 2 [1; : : : ; n℄ [(Cf

i;1

; C

00

); : : : ; (Cf

i;m

i

; C

00

)℄ = Sorter(�

i

; �

i

(C));

� for all i 2 [1; : : : ; n℄, if there exists j 2 [1; : : : ;m

i

℄, s.t. S

i

(Cf

i

j

) 6= Cf

i

j

,

and for all k < j, S

i

(Cf

i

k

) = Cf

i

k

, then �

i

= fCf

i;i

j

7! S

i

(Cf

i;i

j

)g,

else �

i

= ;;

� C

0

= C

00

�, where � =

S

i2[1;:::;n℄

�

i

.

4.4. Assoiating sub-problems with distint solvers

Finally, we present two operators to apply a solver on eah omponent of a

onjuntion or disjuntion of onstraints. The result is obtained by onjun-

tion or disjuntion of the resulting onstraints, respetively. These operators

enable parallel omputation, and standard OR parallel omputation.

To this end, the notion of a separator is introdued. It an be seen as

a pre-proessing for parallel omputation. Separators are mainly de�ned to

manipulate the elements of onjuntions and disjuntions of onstraints as
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elements of lists

4

. Eah element of the list will then be treated separately

but in parallel before gathering (onjuntion or disjuntion) all the results.

De�nition 6 (Separators). A ^ separator Æ is a funtion Æ : L ! LC

suh that

8 C 2 L; 9n 2 N ; Æ(C) = [C

1

; : : : ; C

n

℄ where C � C

1

^ : : : ^ C

n

:

Similarly, a _ separator Æ is a funtion Æ : L ! LC suh that

8 C 2 L; 9n 2 N ; Æ(C) = [C

1

; : : : ; C

n

℄ where C � C

1

_ : : : _ C

n

:

Example 5. Consider a disjuntive problem in whih variables an assume

several domains. This is a standard ase when representing at one the explo-

ration of several branhes of a searh spae. Then, we would like to be able

to onsider every branh of the searh spae (see Setion 5 for illustration).

Thus, we onsider a _ separator named CSP

_

, de�ned by

8C 2 L; CSP

_

(C) = [C

1

; : : : ; C

n

℄;

suh that C � C

1

_ : : : _C

n

and

8

>

<

>

:

C

1

= X 2 D

1

X

^ C

0

.

.

.

.

.

.

.

.

.

C

n

= X 2 D

n

X

^ C

0

.

Conjuntive sub-problems: the ^ p operator applies (in parallel) the

solver S

i

to several onjunts (determined by Æ

^

) of the onstraint C and the

�nal result is obtained by onjuntion of the results omputed in parallel:

8C 2 L;^ p(S

i

; Æ

^

)(C) = C

0

;

where

� [C

1

; : : : ; C

n

℄ = Æ

^

(C),

� C

0

= S

i

(C

1

) ^ : : : ^ S

i

(C

n

).

Disjuntive sub-problems: the _ p operator is analogous to ^ p, but

Æ

_

determines disjunts, and the �nal result is the disjuntion of the results

omputed in parallel:

8C 2 L;_ p(S

i

; Æ

_

)(C) = C

0

;

where

4

Lists enable us to sort and explore the searh tree in a deterministi way. This is

partiularly important when we onsider sequential implementations, i.e., the branhes

are proessed sequentially. In suh ases, the use of sets leads to non-deterministi searh.
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� [C

1

; : : : ; C

n

℄ = Æ

_

(C),

� C

0

= S

i

(C

1

) _ : : : _ S

i

(C

n

).

In spite of its simpliity, the following property is essential, sine it allows

us to manipulate the basi funtions and solvers at the same level, and thus

to reate solvers and solver ollaborations with the same strategy language.

Property 3. Consider n solvers S

1

; : : : ; S

n

, n �lters �

1

; : : : ; �

n

, n partial

orders �

1

; : : : ;�

n

, a onstraint property p, and separators Æ

^

and Æ

_

. Then,

d(S

i

; �), best(S

i

;�; �), p( p; (S

1

;�

1

; �

1

) ; : : : ; (S

n

;�

n

; �

n

)), bp((S

1

;�

1

;

�

1

) ; : : : ; (S

n

;�

n

; �

n

)) (assuming �

1

; : : : ; �

n

to be stable and pairwise dis-

joint), ^ p(S

i

; Æ

^

), and _ p(S

i

; Æ

_

) are solvers.

5. A generi propagation-based solver

A CSP is given by a set of onstraints together with a set of domain on-

straints, one for eah variable of the problem. Constraint propagation is a

widely reognized onept aimed to redue a CSP into an equivalent but

simpler one (meaning the searh spae is redued, but no solution is lost) by

narrowing the domains of variables until a �xed-point is reahed. However,

onstraint propagation must be interleaved with a splitting mehanism in

order to ompose a omplete solver, i.e., a solver able not only to redue the

problem, but also to extrat solutions. This mehanism works by splitting

the domain of a variable into (sub)domains.

The redution proess is performed by domain redution funtions in

the sheme of K. R. Apt [1℄, and by narrowing operators in the framework

of F. Benhamou [5℄. These redution funtions or narrowing operators are

managed by a propagator (suh as a set for a don't are appliation, or a

list, e.g., for a MinDom strategy) that omposes the redution strategy. We

now present an implementation of these two frameworks using our strategy

language. Then we instantiate this generi solver to solve CSPs over �nite

domains and interval real numbers.

Redution: We �rst onsider g narrow, a generi redution solver that

takes as input a domain onstraint (the domain of the variable to be re-

dued), a onstraint (the information used to redue the variable), and the

domain onstraint of the variables ouring in the onstraint (this informa-

tion is required for most, if not for all, narrowing operators). This solver

requires the �

D^^Ds

�lter of Example 3. The d g narrow is the don't-are

omplete redution of a CSP:

d g narrow = d(g narrow; �

D^^Ds

)

?

:
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The MaxD g narrow uses the �

Dom

sorter de�ned in Example 4 and im-

plements the MaxDom redution strategy:

MaxD g narrow = best(g narrow;�

Dom

; �

D^^Ds

)

?

:

Splitting mehanism: We onsider the g split generi solver whih trans-

forms a domain onstraint into a disjuntion of two domain onstraints if

the width of the domain is greater than or equal to a \minimal" width �.

For ontinuous domains, � generally represents the smallest di�erene that

an be omputed between two numbers. For disrete domains, � is generally

set to 1. The solver g split : L ! L is de�ned as follows, using the funtion

! that gives the width of a onstraint (see Example 4). For all  = X 2 D

from L,

� if  2 L

Dom

suh that width() � �, then

g split() = X 2 D

0

_X 2 D

00

; where D = D

0

[D

00

5

;

� otherwise, g split() = .

The following solver splits a randomly hosen domain,

d g split = d(g split; �

D

);

whereas MaxD g split splits the biggest urrent domain of the CSP:

MaxD g split = best(g split;�

Dom

; �

D

):

Note that in both split solvers, we use the �

D

�lter de�ned in Example 2.

Generi propagation-based solvers: Here we give some generi solvers

implementing the standard strategies. Note that, using other operators, �l-

ters, and sorters, we an easily design other standard and non-standard

strategies. The �rst solver

d g prop = (d g narrow ; d g split)

?

represents a basi strategy in whih no spei� seletion (for redution and

splitting) is performed. On the other hand,

MaxD g prop = (MaxD g narrow ; MaxD g split)

?

is a omplete propagation-based solver implementing a MaxDom strategy.

Note that we similarly obtain a MinD g prop solver by replaing the �

Dom

5

Generally we also enfore it with D

0

\D

00

= ;.
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sorter by the �

Dom

sorter. The solving proess is neither depth-�rst, nor

breadth-�rst, but MaxDom �rst, i.e., we redue one branh, and then we

eventually hoose another branh (the one with the biggest domain) to ex-

plore.

We are now onerned with a homogeneous exploration of branhes. We

onsider the _ separator CSP

_

de�ned in Example 5. We now get another

generi solver:

MaxD _ g prop = _ p(MaxD g narrow ; MaxD g split; CSP

_

)

?

:

Depending on the implementation of the _ p operator, we will obtain a

depth-�rst searh (sequential implementation) or a parallel exploration of

every branhes (parallel implementation).

Using Æ

V ar

, a ^ separator whih splits a set of onstraints into n variable-

disjoint subsets of onstraints, the appliation of MaxD g prop an be im-

proved when solving CSPs that an be deomposed:

Sp MaxD g prop = ^ p(MaxD g prop; Æ

V ar

):

In this way, we are solving several CSPs in parallel. An obvious advantage

is to deal with simpler problems. The solution to the original problem will

be in the union of the solutions to all subproblems.

In the next sub-setions, we instantiate the generi solvers g narrow

and g split in order to obtain solvers over �nite domains and interval real

numbers.

5.1. Solving onstraints over �nite domains

A CSP P over �nite domains is any onjuntion of formulae of the form:

^

x

i

2X

(x

i

2 D

x

i

) ^ C;

where a domain onstraint x

i

2 D

x

i

is reated for eah variable x

i

ourring

in the onstraint C, D

x

i

being a �nite set of values.

First, we just have to instantiate the g narrow generi solver with the

solver LoalConsisteny desribed in Example 1. d g narrow and

MaxD g narrow beomes two solvers that enfore ar-onsisteny [18℄.

Seond, we instantiate g split with � = 1, and width(D) = ard(D),

when D is a domain, and we enfore that D

0

\D

00

= ;.

With these instantiations, d g prop beomes a �nite domain onstraint

solver that implements the standard full lookahead strategy [17℄. Now, if we
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onsiderMinD g prop instead of d g prop, then we obtain a full lookahead

strategy ombined with a MinDom strategy (i.e., a standard strategy for

�nite domains aimed to �nd quikly inonsistenies in the set of onstraints).

However, we an onsider some more spei� �nite domain strategies,

like the forward heking [17℄. This heuristi, when enforing loal onsis-

teny, takes into aount just the onstraints that are diretly related to the

splitted variable. We onsider another �lter �

D^^C^Ds

: this �lter returns

a domain onstraint D over a variable X, a onstraint  that ontains X,

all the onstraints (the onjuntion C) that ontain X (exept ), and all

the domain onstraints of the variables that appear in  ^ C. We also on-

sider an extension g split

0

of the instantiation of the solver g split that is

applied on the result of the �lter �

D^^C^Ds

. When applied to a onstraint

D ^  ^C ^Ds, g split

0

returns g split(D) ^  ^C ^Ds. We an formulate

Forward Cheking using d g narrow instantiated with LoalConsisteny

as follows:

ForwardCheking =

d g narrow ; d((g split

0

; d g narrow); �

D^^C^Ds

)

�

:

We an obviously onsider full lookahead and forward heking strategies us-

ing a MinDom strategy: to this end, we just have to onsiderMinD g narrow

and MinD g split instead of d g narrow and d g split respetively. We

an also onsider Sp MaxD g prop to separate the problem into sub-prob-

lems and to reate numerous new strategies using the same solvers but dif-

ferent strategy operators of our language.

5.2. Solving onstraints over real numbers

We now design solvers for non-linear onstraints over real interval arithmeti.

In the following, a CSP P is any onjuntion of formulae of the form

^

x

i

2X

(x

i

2 D

x

i

) ^ C;

where a domain onstraint x

i

2 D

x

i

is reated for eah variable x

i

ourring

in the set of onstraints C,D

x

i

being an interval of real numbers. Constraints

are equalities, inequalities, and inequations of non-linear terms built over

intervals of real numbers and the funtion symbols +;�; �; =,^ , sin, and os.

Consider the funtion b  whih, given a non-linear onstraint  2 L

At

n

L

Dom

, the domain D of a variable X 2 Var(), and the domains of the

other variables of Var(), returns a smaller domain for X suh that  is

box-onsistent [28℄ with respet to X

6

.

6

Computing b  generally onsists in applying the interval Newton method ombined

with a \loal" splitting mehanism to push the left and right bounds of the interval.
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We now de�ne the solver drf : L ! L. For all C 2 L, we ompute

drf(C) depending on the syntatial form of C:

� if C = X 2 D

X

^  ^

V

Y 2Var()nfXg

Y 2 D

Y

, where  2 L

At

n L

Dom

,

then

drf(C) = X 2 D

0

X

^  ^

^

Y 2Var()nfXg

Y 2 D

Y

;

where D

0

X

= b (;D

X

; fD

Y

jY 2 Var() n fXgg),

� otherwise, drf(C) = C.

We instantiate the solver g narrow by the solver drf . d g narrow be-

omes a solver that enfores box-onsisteny of a set of non-linear on-

straints, i.e., eah onstraint is box-onsitent with respet to eah of its vari-

ables. MaxD g narrow enfores box-onsisteny using a MaxDom strategy

(i.e., a standard strategy for numeri real number solver).

In order to isolate solutions, we need to instantiate g split. We take

� = 10

�8

, the preision of omputation of solutions. The width funtion is

instantiated by: for all intervals I = [a; b℄, !(I) = b� a. Finally, we enfore

that D

0

\D

00

= ;. Thus, d g prop beomes a solver that returns solutions

with a preision of 8 deimals.

MaxD _ g prop beomes a similar solver that separately explores every

branh. On the other hand, Sp MaxD g prop reates disjoint sub-problems

before any redution.

6. Optimization problems over �nite domains

We now onentrate on an extension of a CSP alled Constraint Satisfa-

tion Optimization Problem (CSOP). CSOP onsists in �nding an optimal

(i.e., maximal or minimal) value for a given funtion, suh that a set of on-

straints is satis�ed [27℄. The work of Bokmayr and Kasper [7℄ explains the

approah generally used by the onstraint solving ommunity to deal with

this problem. In this setion, we �rst explain two approahes for solving

CSOPs, and then we show how they an be ombined using our strategy

language.

A CSOP an be desribed by a tuple hP; f; lb; ubi representing a CSP,

an optimization funtion, and the lower and upper bounds of this funtion.

Without loss of generality, we onsider the ase of minimization of a funtion

f over integers. To deal with this problem, we onsider two approahes, both

of them requiring an initial step verifying that Sol(C ^ f � ub) 6= ;, i.e.,

there exists a solution to the onstraint C satisfying the additional onstraint

f � ub.
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The �rst approah onsists in applying the following rule until it annot

be applied any more:

hP; f; lb; ubi ! hP; f; lb; �(f)i if � 2 Sol(C ^ f < ub):

Eah iteration of this rule tries to derease the upper bound ub by at

least one unit until an unsatis�able problem is obtained. That is why we

all this tehnique satis�ability to unsatis�ability. The minimum value of

the funtion f represents the upper bound of the last suessful appliation

of this rule. Thus, we de�ne the solver MinSatToUnsat implementing this

approah. We do not detail here this de�nition, but it is obvious that for

solving CSPs, as needed by this approah, we an use the solvers de�ned in

Setion 5.1.

The seond approah applies the following rules until they annot be

applied any more:

hP; f; lb; ubi ! hP; f; lb; �(f)i if � 2 Sol(C ^ f <

(lb+ub)

2

);

hP; f; lb; ubi ! hP; f;

(lb+ub)

2

; ubi if lb 6= ub

and Sol(C ^ f <

(lb+ub)

2

) = ;:

The �rst rule tries to �nd a new value for the upper bound ub and

redues, at least in half, the range of possible values of the funtion f eah

time a new solution is obtained

7

. The seond rule similarly updates the lower

bound lb in the opposite situation. We all this approah binary splitting and

de�ne the solver MinSplitting implementing it.

Conerning the behavior of these strategies, we an note that the strategy

MinSatToUnsat is very slow for reahing the minimal value of f , when it

is loated far from the initial upper bound. On the other hand, applying the

strategy MinSplitting, the same situation happens when the minimal value

of f is lose to the initial upper bound. Sine it is not evident where the

optimal solution is loated, an a priori hoie between these approahes is

generally impossible. To improve the performane of these two basi solvers,

we an make them ollaborate in order to pro�t from the advantages of both

of them, and to avoid their drawbaks.

A �rst sheme of ooperation is expressed by the strategy SeqOpt:

SeqOpt = (MinSatToUnsat;MinSplitting)

?

:

With the strategy SeqOpt, both solvers are exeuted sequentially. Its obvi-

ous disadvantage is that it leaves a solver inative, while the other one is

working. Moreover, due to the exponential omplexity of the problem under

7

Of ourse, we an think of di�erent ratios, thus, the �rst approah an be seen as a

partiular ase of the seond one.
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onsideration, the whole proess ould be bloked if one solver annot �nd

a solution. To avoid this situation, we an run them onurrently, updating

the urrent solution as soon as a new one is available, and stopping the other

solver.

ParOpt = p(first; [MinSatToUnsat;None; Id℄;

[MinSplitting;None; Id℄)

?

:

We do not �lter the initial set of onstraints and so we do not have any

sorter. In this ase, we are interested in the solver that will be faster, that is

why we use the �rst property

8

. With this strategy, a solver never waits for a

solution oming from the other one. In the worst ase (i.e., all solutions are

read from the same elementary solver until the �nal solution is obtained),

the performane of the ParOpt solver is the same as if one of the elementary

solvers ran independently.

7. Solver ollaborations

7.1. Combining symboli and numerial methods

Here we onsider the systems of non-linear onstraints and two solvers.

Gr�obner bases omputation [8℄ (i.e., the gb solver) transforms a set of mul-

tivariate polynomial equalities into a normal form from whih solutions

an be derived easier than from the initial set. The seond solver, int, is

a propagation-based numerial solver over the real numbers (e.g., one of the

solvers presented in Setion 5.2). We assume that every onstraint of the

CSPs we onsider an be proessed by int.

It is generally very eÆient to pre-proess a CSP with symboli rewrit-

ing tehniques before applying a propagation-based solver. In fat, the pre-

proessing may add redundant onstraints (in order to speed-up propaga-

tion), simplify onstraints, dedue some univariate onstraints (whose so-

lutions an easily be extrated by propagation), and redue the variable

dependeny problem.

Thus, we onsider s, a simple ollaboration where Gr�obner bases om-

putation pre-proesses the equality onstraints before the interval solver is

applied on the whole CSP:

s = d(gb; �

=

); int;

where the �lter �

=

selets equalities of polynomials.

Consider, for example, the following problem:

8

Here, sine we onsider parallel omputation, we extend the properties of onstraints

to the properties of onstraints and omputations.
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x

3

� x � y

2

+ 2 = 0 ^ x

2

� y

2

+ 2 = 0 ^ y > 0:

Most of the solvers based on propagation require splitting to isolate the

solutions of this CSP. However, using gb (with a lexiographi order x � y),

the problem beomes

y

2

� 3 = 0 ^ � 1 + x = 0 ^ y > 0

and int an easily isolate solutions without a requirement of splitting (whih

is expensive as it inreases the ombinatoris of the problem).

However, as stressed in [4℄, Gr�obner bases omputation may require too

muh memory and be very time onsuming ompared to the speed-up they

introdue. Thus, in [4℄ the authors propose a trade-o� between pruning and

omputation time: gb is applied on subsets of the initial CSP, and the union

of the resulting bases and the onstraints that are not rewritten (suh as

inequalities, and equalities of non-polynomial expressions) forms the input of

the propagation-based solver. We an desribe this ollaboration as follows:

^ p(d(gb; �

=

); Æ

part

); int;

where Æ

part

is the ^ separator orresponding to the partitioning of the

initial system introdued in [4℄.

7.2. The solver ollaborations of C

o

SA



C

o

SA



[23℄ is a onstraint logi programming system for non-linear polyno-

mial equalities and inequalities. The solving mehanism of C

o

SA



onsists of

�ve heterogeneous solvers working in a distributed environment and oop-

erating through a lient/server arhiteture:

� hr lin [14℄, implemented with CHRs, for solving linear onstraints

(equalities and inequalities),

� gb [13℄ for omputing Gr�obner bases, it is to be notied that this solver

is itself based on a lient/server arhiteture,

� maple uni for omputing roots of a univariate polynomial equality, i.e.,

maple uni extrats solutions from one equation, not from a set of equa-

tions,

� maple exp for simplifying and transforming onstraints (both this solver

and the previous one are Maple [15℄ programs), and

� el for testing losed inequalities using ECL

i

PS

e

[20℄ features.



22 C. Castro, E. Monfroy

C

o

SA



uses several solving strategies, and thus, these solvers ooperate

in three ollaborations: S

in

, S

fin

and S

0

fin

. We now fous on how these ol-

laborations ould be desribed in a simple way using our language. The ol-

laborations of C

o

SA



are thus lari�ed: 1) every onstraint annot be treated

by all the solvers, and using �lters, we an make it lear and formalized;

2) distributed appliations are impliit and form a part of the primitive

semantis; 3) it beomes lear where improvements/strategies an be inte-

grated.

S

in

is the inremental (in the sense of C

o

SA



) ollaboration, i.e., it is

applied as soon as a new onstraint is added to the store. maple exp trans-

forms (e.g., expands polynomials and simpli�es arithmeti expressions) all

onstraints so eq lin an propagate information and simplify the set of linear

equations (equalities and inequalities) �ltered by �

=;<;lin

:

S

in

= maple exp ; d(eq lin; �

=;<;lin

):

S

fin

is one of the �nal solvers of C

o

SA



. It is applied one to the remaining

onstraints. First, onstraints are simpli�ed again by maple exp, sine S

in

may transform onstraints in a syntax gb annot understand. After om-

puting Gr�obner bases of the set of non-linear polynomial equalities (�ltered

by �

=

), variables are eliminated (by maple uni) one by one from univari-

ate polynomials (�ltered by �

=;uni

), solutions are propagated, and linearized

equations are solved (eq lin). This proess terminates when all variable have

been eliminated or when there is no more univariate polynomial:

S

fin

= maple exp ; d(gb; �

=

) ;

d(maple uni; �

=;uni

);d(eq lin; �

=;<;lin

)

?

:

Here, we an see the exibility and the simpliity of our ontrol lan-

guage. In C

o

SA



, the S

fin

ollaboration is �xed. From its desription in our

language, we an notie that maple uni is applied by a don't are primitive.

Some strategies an easily be introdued to improve the ollaboration. In

fat, maple uni ould be applied with a \best" primitive, ordering possible

andidates with respet to the inreasing degree of univariate polynomial

equations (with a �

degree

sorter). Using best(maple uni;�

degree

; �

=;uni

),

variables ould be eliminated from the lower degree equations �rst, and

thus less arithmeti errors/roundings ould be propagated to the system

(and that is a weak point of C

o

SA



). Conerning gb and eq lin, a \best"

primitive would not help sine these solvers onsider the \maximal" set of

�ltered onstraints.

S

0

fin

is an alternative to S

fin

whih is more eÆient when eliminations

of non-linear variables do not linearize any other onstraint and only ground

inequalities have to be heked by el:
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S

0

fin

= maple exp ; d(gb; �

=

) ;

d(maple uni; �

=;uni

)

?

; d(el; �

<;ground

)

?

:

Again, better strategies an be introdued in C

o

SA



, sine ground inequalities

an be heked simultaneously. Using Æ

one

, a ^ separator that splits a set

of n onstraints into n singletons of atomi onstraints, the appliation of

el is improved:

^ p(d(el; �

<;ground

); Æ

one

):

Note that we still need a �lter for el, sine Æ

one

does not perform any

�ltering.

As mentioned in [22℄, the �rst solvers of S

fin

and S

0

fin

an be \fator-

ized":

S

00

fin

=maple exp ; d(gb; �

=

) ;

p( first;

[(d(maple uni; �

=;uni

);d(eq lin; �

=;<;lin

))

?

; None; Id℄;

[d(maple uni; �

=;uni

)

?

;d(el; �

<;ground

))

?

; None; Id℄:

The remaining parts of the ollaborations are exeuted onurrently. No

�ltering is needed (Id for both sub-ollaborations), and thus we do not have

any sorter (None), sine there is only one andidate after �ltering, i.e., the

initial set of onstraints. We do not impose any property on the result, and

we are interested in the sub-ollaboration that will be faster (�rst property).

Note that improvements for applying el and maple uni still hold in S

00

fin

.

7.3. Combining onsistenies

Box onsisteny [3℄ is a loal onsisteny notion for interval onstraints that

relies on bounds of domains of variables: it is generally implemented as

a (loal) splitting of domains ombined with the interval Newton method

for determining onsistent bounds of an interval. Hull onsisteny is another

notion of onsisteny, stronger than box onsisteny. However, it an only be

applied on primitive onstraints that are either part of the original CSP, or

are obtained by deomposing the onstraints of the CSP. Then, the redution

of the \deomposed" CSP is weaker, but also faster. The idea of [3℄ is to

ombine these to onsistenies in order to redue the omputation time for

enforing box onsisteny.

Let us onsider Hull and Box, two solvers that respetively enfore hull

and box onsisteny of a CSP. Then, the ombination of [3℄ an be desribed

by

(HullC ; BoxC)

?

:

Sine we an de�ne both solvers and ollaborations in our language, we now

speify the HullC and BoxC solvers:
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BoxC = d(Box; �

:p

)

?

and HullC = d(Hull; �

p

)

?

;

where �

p

(respetively, �

:p

) �lters one primitive (respetively non-primitive)

onstraint together with the domain onstraints (e.g., x 2 [a; b℄) assoiated

with eah of its variables

9

, Box (respetively Hull) is a omponent solver

that, given a onstraint , enfores box (respetively, hull) onsisteny of 

w.r.t. eah of its variables.

We an also onsider some inner strategies, suh as reduing the variable

with the largest domain. Then, Hull and Box are de�ned as follows:

BoxC = best(Box;�

Dom

; �

:p

)

?

HullC = best(Hull;�

Dom

; �

p

)

?

;

where \�

Dom

" selets the andidate with the largest domain (see the sorter

of Example 4).

Note that we ould one again deompose these solvers into solvers

that enfore box (or hull) onsisteny of one onstraint with respet to one

variable. Desribing these solvers at this level, we are lose to the generi

propagation-based solver presented in Setion 5: only the �lter is di�erent.

Thus, we ould imagine a more generi solver where the �lter would also be

a parameter. Then, solvers presented in Setion 5 and in this setion would

be designed using the same pattern of operators of our language.

Note also that (Hull ; Box)

?

an represent the solver int onsidered

in Setion 7.1. We ould also think about some other desription of Hull

and Box (e.g., using parallel appliation of solvers), but then we would not

respet anymore the original ombination of [3℄.

8. Conlusion

We have presented a strategy language for solving onstraint satisfation

problems using solvers and ollaboration of solvers. A key point in this

work is the introdution of the onepts of onstraint �lters, separators,

and sorters. These notions allow one to manage onstraints with high-level

mehanisms. Furthermore, they help desribing syntatial transformations

and manipulations generally hidden in the implementation of the urrent

solvers. These onepts are then used to de�ne strategy operators for ap-

plying solvers. These operators allow us to design solvers by ombining the

basi funtions, and ollaborations of solvers by ombining the omponent

solvers. This language an be seen as a Lego game, where briks are basi

solvers. These briks are used to design more omplex solvers and ollabora-

tions. They an be re-used, assembled together through strategies, used in

9

�

p

is similar to �

D^^Ds

(see Example 3) exept that atomi onstraints are fored

to be primitive onstraints.
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higher ollaborations, ... Patterns of solvers and strategies (i.e., assembling

of operators) an be instantiated for di�erent domains of onstraints and

di�erent strategies of resolution.

The language is illustrated by several examples of onstraints of di�er-

ent types and by de�ning solvers of di�erent nature, suh as well-known

tehniques for solving CSPs over �nite domains and non-linear onstraints

over real domains, a generi propagation-based solver, optimization prob-

lems, ollaboration of solvers (symboli-numeri ooperation, simulation of

C

o

SA



, ombination of loal onsistenies). For eah example, we have dis-

ussed standard strategies and proposed new strategies that larify the use

of our language. For lak of spae, we did not present other solvers that

we have already designed using our language, suh as Gaussian elimination

(and some standard strategies), and Gr�obner bases omputation.

We are urrently working on the implementation of this language in order

to evaluate the real appliability of this framework. We are on�dent that

suh a language an help exploring and testing new strategies. From a more

theoretial point of view, we onsider as further work veri�ation of the

termination properties of the strategy operators.
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