
Joint NCC & IIS Bull., Comp. S
ien
e, 16 (2001), 1{27

 2001 NCC Publisher

Towards a framework for designing

onstraint solvers and solver

ollaborations

C. Castro, E. Monfroy

In this paper, we propose a strategy language for designing
onstraint solvers and

s
hemes of solver
ollaborations. Solvers are seen as bri
ks that
an be integrated when

reating more
omplex solvers that
an be
ome themselves new bri
ks to
ompose new

solvers. These bri
ks are glued together using operators of our language. A pattern of

operators
an be used to
reate solvers and
ollaborations for solving di�erent types of

onstraints. We illustrate the use of this language by des
ribing some well-known te
h-

niques for propagation-based solvers, optimization problems, and
ollaboration of solvers

(symboli
/numeri

ooperation, linear/non-linear
ollaboration, lo
al
onsisten
y
ombi-

nation).

1. Introdu
tion

In the last twenty years,
onstraint programming has emerged as a new pro-

gramming paradigm. In this alternative approa
h, the programming pro
ess

is merely a spe
i�
ation of a set of requirements (i.e., the
onstraints), a solu-

tion for whi
h will be generated using some general or domain spe
i�
 te
h-

niques and me
hanisms (i.e., the
onstraint solvers). Numerous algorithms

have been developed for solving
onstraints and the resulting te
hnology has

been su

essfully applied to solving real-life problems.

The design and implementation of these
onstraint solvers is generally

an expensive and tedious task, and thus, the idea of reusing solvers \of the

shelves" is very interesting and promising [26℄. However, that also implies

that we must have some tools to integrate/
ombine them. Another key-point

is that some problems
annot be ta
kled or eÆ
iently solved with a single

solver. Hen
e, we de�nitely realize the interest in integrating and making

ooperate several solvers [16, 6, 19, 25, 23℄. This is
alled
ollaboration of

solvers [24℄. In order to make solvers
ollaborate, the need for powerful

strategy languages to
ontrol their integration and appli
ation has been

well re
ognized [21, 22, 2℄.

However, the existing approa
hes are generally not generi
 enough: they

onsider �xed domains (linear
onstraints [6℄, non-linear
onstraints over

real numbers [23, 19, 4℄), �xed strategies, or �xed s
heme of
ollaboration

(sequential [23, 4℄, asyn
hronous [19℄). In the language BA

L

I,
ollaborations

2 C. Castro, E. Monfroy

are spe
i�ed using
ontrol primitives and the
onstraint system is a param-

eter. Although BA

L

I is more generi
 and
exible, the
ontrol
apabilities for

spe
ifying strategies are not always �ne enough [22℄: the
ontrol is based on

a \set of
onstraints", not at the level of
onstraints taken separately. In the

system COLETTE [11, 12℄, a solver is viewed as a strategy that spe
i�es the

order of appli
ation of elementary operations expressed by transformation

rules. In this framework, di�erent domains mainly mean the de�nition of

di�erent transformation rules, and di�erent heuristi
s mean di�erent strate-

gies. However, the granularity of
ontrol is too low to really
onsider solver

ollaborations.

Extending the ideas of BA

L

I and COLETTE, we
onsider
ollaborations

of solvers as strategies that spe
ify the order of appli
ation of solvers. In [9℄,

we proposed a strategy language for designing elementary
onstraint solvers

and we exemplify its use by spe
ifying several solvers (su
h as solvers for

onstraints over �nite domains and real numbers). In [10℄ we presented the

appli
ation of our language to prototyping the
onstraint solving s
hemes via

ollaboration of solvers. In this paper, we show that designing solvers and

ollaborations are intrinsi
ally linked and related. For example, the same

strategy
an be used to write a solver or to express a
ollaboration. In fa
t,

the basi
 solvers are bri
ks that
an be used to design more
omplex solvers

and
ollaborations whi
h then be
ome other bri
ks. They
an be re-used,

assembled together through strategies, used in higher
ollaborations, ... The

glue between these bri
ks (i.e., patterns of solvers and strategies, or assembly

of operators)
an be instantiated for di�erent domains of
onstraints and dif-

ferent strategies of resolution. In this paper, these te
hniques are illustrated

by numerous examples over di�erent domains: generi
 propagation-based

solvers (and instantiation for �nite domains and real interval
onstraints),

and
ollaboration of solvers (optimization problems, symboli
-numeri

oop-

eration, linear/non-linear
ollaboration, lo
al
onsisten
y
ombination). For

ea
h of these solvers/
ollaborations, we simulate the standard te
hniques,

and we also propose improvements in terms of strategies.

The main motivation for this work is to propose a general framework in

whi
h one
an design the
omponent
onstraint solvers, as well as solver
ol-

laborations. This approa
h makes sense, sin
e the design of
onstraint solvers

and the design of
ollaborations require similar methods (strategies are often

the same: don't-
are, �xed-point, iteration, parallel,
on
urrent, ...). In other

words, we propose a language for writing the
omponent solvers and design-

ing
ollaborations of several solvers at the same level. Key points in this work

are the
on
epts of
onstraint �lters, separators, and sorters. These notions

allow one to manage
onstraints with high-level me
hanisms. Furthermore,

they help des
ribing synta
ti
al transformations and manipulations that are

Towards a framework for designing
onstraint solvers 3

generally hidden in the implementation of the
urrent solvers. These
on-

epts are used to de�ne the strategy operators for applying solvers, su
h as

don't
are me
hanism, best appli
ation of solvers,
on
urrent solvers, par-

allel appli
ations, and operators for treating sub-problems. These operators

allow us to design solvers by
ombining the basi
 fun
tions, as well as
ol-

laborations of solvers by
ombining the
omponent solvers.

This paper is organized as follows: in Se
tion 2, we use a very simple

example to informally present our language. In Se
tion 3, the basi
 de�ni-

tions are given and we introdu
e the notions of �lters and sorters. Se
tion 4

details the basi
 and
omplex operators for applying solvers. In Se
tion 5,

we give a generi
 propagation-based solver together with some instantiations

for �nite domain
onstraints and interval
onstraints. Se
tion 6 introdu
e

optimization problems and some possible implementations using our lan-

guage. Se
tion 7 is devoted to di�erent forms of solver
ollaborations: sym-

boli
/numeri

ooperation, linear/non-linear
ollaboration, and lo
al
on-

sisten
y
ombination. Finally, in Se
tion 8, we
on
lude this paper and give

some perspe
tives for further work.

2. An illustration of the language

Suppose that we want to design a solver for Constraint Satisfa
tion Problems

(CSPs)
omposed of domain
onstraints (de�ning the value a variable
an

assume), and inequations over integer expressions. We are thus
on
erned

with implementation of a solver for problems of the following type:

X � Y; Z � 40; Y � Z; Z 2 [2::130℄; Y 2 [50::100℄; X 2 [5::120℄:

Now, suppose that we have heard about a te
hnique of removing impos-

sible values from domains of variables using inequations. This te
hnique is

given as two proof rules that redu
e the sear
h spa
e without losing any

solution:

S1 =

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

X 2 [lb

X

::min(rb

X

; rb

Y

)℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

and

S2 =

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [lb

Y

::rb

Y

℄

X 2 [lb

X

::rb

X

℄ ^ X � Y ^ Y 2 [max(lb

X

; lb

Y

)::rb

Y

℄

:

How to use these rules to design a solver? Su
h a te
hnique requires

Implementation of a me
hanism to mat
h the pattern of
onstraints and

some strategy of appli
ations to eÆ
iently apply the rules iteratively until

a �xed-point is rea
hed. Our language proposes some help for doing so. A

possible solver for this type of
onstraints using this te
hnique is d
S1S2:

4 C. Castro, E. Monfroy

d
S1S2 = d
((S1;S2); �

D^
^Ds

)

?

:

In our language, �

D^
^Ds

is a �lter (de�ned in Se
tion 3) that will sele
t the

onstraints of the problem that mat
h the head of the rule. S1 and S2 are

solvers. d
, \;", and \?" are operators for applying solvers. The expression

d
S1S2 means:

1. �nd parts of the
onstraint that meet our needs, i.e.,
onstraints on

whi
h S1 and S2
an apply. This is performed using the �lter �

D^
^Ds

,

2. sele
t randomly (sele
tion indi
ated by d
) one of these
onstraints,

3. apply �rst S1 on the sele
ted
onstraint, then S2 on the result of S1

(sequential appli
ation of solvers indi
ated by \;"),

4. iterate Items 1, 2, and 3 until a �xed-point is rea
hed (the \?"), i.e., S1

and S2
annot modify the
onstraint anymore. The result
ontains the

same solutions as the input, but the sear
h spa
e has been redu
ed.

Now,
onsider that we have heard about some strategy for �nite domains

that speeds up redu
tion of the sear
h spa
e. This strategy is
alled MinDom:

redu
tion of the smallest domain �rst
an lead to qui
ker elimination of some

bran
hes of the sear
h spa
e. We
an easily integrate this strategy using our

language:

bestS1S2 = best((S1;S2);�

Dom

; �

D^
^Ds

)

?

:

This time we use a sorter (�

Dom

is des
ribed in Example 4) that will \order"

possible appli
ations of S1 and S2. The meaning of the expression bestS1S2

is:

1. �nd parts of the
onstraint that meet our needs (�

D^
^Ds

),

2. sele
t the \best" (w.r.t. to the MinDom strategy) possible appli
a-

tion. This is performed by �

Dom

that returns the
andidate with the

smallest domain,

3. apply S1 on the sele
ted
onstraint, then S2,

4. iterate Items 1, 2, and 3 until a �xed-point is rea
hed (the \?").

The result is the same as the previous one, but this time we use a strategy

that speeds up resolution.

So far, we
an \qui
kly" redu
e the sear
h spa
e. But we need to
omplete

our solver to provide the user with solutions. To this end, we need to
onsider

di�erent bran
hes of the sear
h tree separately. Consider a fun
tion split that

takes as input a domain
onstraint, and returns a disjun
tion of domains

when possible (this solver is formally de�ned in Se
tion 5). Roughly, this

fun
tion is:

Towards a framework for designing
onstraint solvers 5

split(X 2 D) = X 2 D

1

_X 2 D

2

:

We
an now
reate a
omplete solver (i.e., a solver that not only redu
es the

sear
h spa
e but also extra
ts solutions):

SolverS1S2 = (bestS1S2; d
(split; �

D

))

?

:

SolverS1S2 �rst redu
es
ompletely the sear
h spa
e using bestS1S2. Then,

reate a disjun
tion of a domain
onstraint (the domain
onstraint is �ltered

by �

D

and splitted by the fun
tion split). The pro
ess redu
tion-split is

iterated on ea
h sub-spa
e until no more split and redu
tion are possible.

The result is a disjun
tion of possible assignments of variables, i.e., the

solutions.

We have informally presented some operators and notions of our lan-

guage. Some more
omplex operators (based on parallelism or
on
urren
y)

are also provided. The next se
tions will formally des
ribe the language and

some more
omplex examples.

3. Framework

In this se
tion, we present the basi

omponents of our framework, i.e.,

sorters and �lters. We �rst need some de�nitions �xing our framework.

3.1. Constraints and solvers

De�nition 1 (Constraint System). A
onstraint system is a 4-tuple (�;

D;V;L) where

� � is a �rst-order signature given by a set of fun
tion symbols F

�

, and

a set of predi
ate symbols P

�

,

� D is a �-stru
ture (its domain being denoted by jDj),

� V is an in�nite denumerable set of variables, and

� L is a set of
onstraints: a non-empty set of (�;V)-atomi
 formulae,

alled atomi

onstraints,
losed under
onjun
tion and disjun
tion.

The unsatis�able
onstraint is denoted by ? and the true
onstraint

is denoted by >. The set of atomi

onstraints is denoted by L

At

.

An assignment is a mapping � : V ! jDj. The set of all assignments is

denoted by ASS

V

D

. An assignment � extends uniquely to a homomorphism

� : T (�;V) ! jDj. The set of solutions of a
onstraint
 2 L is the set

Sol

D

(
) of assignments � 2 ASS

V

D

su
h that �(
) holds. A
onstraint

is valid in D (denoted by D j=
) if Sol

D

(
) = ASS

V

D

. We use Var(
) to

denote the set of variables from V o

urring in the
onstraint
. We
an now

introdu
e the notion of a solver.

6 C. Castro, E. Monfroy

De�nition 2 (Solver). A solver for a
onstraint system (�;D;V;L) is a

omputable fun
tion S : L ! L su
h that

1. 8C 2 L; Sol

D

(S(C)) � Sol

D

(C) (
orre
tness property);

2. 8C 2 L; Sol

D

(C) � Sol

D

(S(C)) (
ompleteness property).

A
onstraint C is in the solved form with respe
t to S, if S(C) = C.

Given a solver S over a
onstraint system (�;D;V;L), we extend S

to a
onstraint system (�;D;V;L

0

), where L � L

0

, in the following way:

8 C 2 L

0

n L, S(C) = C. We say that a
onstraint C is in the solved form

with respe
t to S, if S(C) = C.

Example 1. Consider the
onstraint system (�;D;V;L) su
h that the
on-

straint symbols (i.e., the predi
ate symbols)
 of arity n and 2 are in �, jDj

is �nite. Constraints of the form X 2 D are
alled domain
onstraints, and

they are widely used in CSPs: the set D (
alled the domain of X) spe
i�es

the values of jDj the variable X
an take.

Consider now the Lo
alConsisten
y fun
tion that takes as input the

following pattern of
onstraints

x

i

2 D

i

^
(x

1

; : : : ; x

i

; : : : ; x

n

) ^ x

1

2 D

1

^ : : : ^ x

i�1

2 D

i�1

^ x

i+1

2 D

i+1

^ : : : ^ x

n

2 D

n

and returns

x

i

2 D

0

i

^
(x

1

; : : : ; x

i

; : : : ; x

n

) ^ x

1

2 D

1

^ : : : ^ x

i�1

2 D

i�1

^ x

i+1

2 D

i+1

^ : : : ^ x

n

2 D

n

;

where

D

0

i

= fv

i

2 D

i

j (9 v

1

2 D

1

; : : : ;9v

i�1

2 D

i�1

;

9v

i+1

2 D

i+1

; : : : ;9v

n

2 D

n

) :
(v

1

; : : : ; v

i

; : : : ; v

n

)g:

Then, Lo
alConsisten
y is a solver, i.e., it removes impossible values from

the domain of x

i

using the
onstraint
, but preserves solutions of
. This

solver
an be eÆ
iently implemented for several standard
onstraints, su
h as

= and � over �nite domains (i.e., generally, integers that
an be represented

in a
omputer). Lo
alConsisten
y is used in Se
tion 5.1.

3.2. Synta
ti
al forms and sub-
onstraints

On the previous example, we have seen that a solver
annot always be ap-

plied on a \
omplete"
onstraint but only on a part of it (S

�

ould be

applied only on a spe
ial pattern of
onstraints). Thus, to de�ne spe
i�

parts of a
onstraint, we introdu
e the notions of a synta
ti
al form and a

sub-
onstraint.

Towards a framework for designing
onstraint solvers 7

De�nition 3 (Synta
ti
al Forms and Sub-
onstraints). We say that

C

0

is a synta
ti
al form of C, denoted by C

0

� C, if C

0

= C modulo the

asso
iativity and
ommutativity of ^ and _, and the distributivity of ^ on

_ and of _ on ^

1

. We say that C

0

2 L is a sub-
onstraint of C, denoted by

C

[C

0

℄

, if

� C = C

0

,

� or 9C

1

2 L; ! 2 f^;_g; C = C

1

!C

0

,

� or 9C

1

2 L; ! 2 f^;_g; C = C

0

!C

1

,

� or 9C

1

; C

2

2 L; ! 2 f^;_g; C = C

1

!C

2

and (C

1

[C

0

℄

or C

2

[C

0

℄

).

A
ouple (C

00

; C

0

) su
h that C

00

is a sub-
onstraint of C

0

and C

0

� C

is
alled an appli
ant of C. We denote by SF(C) the �nite set of all the

synta
ti
al forms of a
onstraint C: SF(C) = fC

0

jC

0

� Cg

2

. We denote by

LA the set of all the lists of appli
ants, and by LC the set of all the lists of

onstraints. Generally, we will use LA (respe
tively LC) to denote a list of

appli
ants (respe
tively
onstraints). We denote by P(L�L) the power-set

of all the sets of
ouples of
onstraints. Atom(C) denotes the set of atomi

onstraints that o

ur in C: f
j
 2 L

At

and C

[
℄

g.

3.3. Filters and sorters

We now de�ne the basi

omponents of our strategy language: �lters to

sele
t spe
i�
 parts of a
onstraint, and sorters to
lassify the elements of

a list w.r.t. a given ordering. These transformations are generally hidden in

the implementation of solvers.

We introdu
e the notion of a �lter for two main reasons. A solver
an, in

general, be applied on several parts of a
onstraint [11℄. Se
ond, when dealing

with solver
ollaborations, in general, a single solver is not able to treat the

omplete
onstraint [21℄. In both
ases, we want to identify the sub-parts of

the
onstraint that the solver is a
tually able to handle. The usefulness of

�lters is
lear when, for example, we want to manipulate only the domain

onstraints like X 2 D

X

from a set of
onstraints C in order to
arry out

enumeration. Also, when one is interested in verifying the lo
al
onsisten
y

(su
h as in the solver of Example 1), it is ne
essary to sele
t sub-
onstraints.

In this
ase, a sub-
onstraint is the
onjun
tion of a domain
onstraint, an

atomi

onstraint, and a
onjun
tion of domain
onstraints, i.e., an atomi

onstraint, and all the domain
onstraints of the variables o

urring in it

(see �lter of Example 2).

1

We
onsider that \=" is purely synta
ti
.

2

The ACD theory de�nes a �nite set of quotient
lasses that we
an e�e
tively �lter.

8 C. Castro, E. Monfroy

On
e we have identi�ed di�erent parts of the
onstraint on whi
h a given

solver
an be applied, we generally want to sele
t some of them based on

a given
riterion, i.e., the best of these parts in order to \optimize" the

appli
ation of the solver. Thus, we introdu
e the notion of a sorter asso
iated

with the
on
ept of a strategy.

For example, when solving
onstraints, we sometimes are interested in

hoosing a variable that
an take the minimum or the maximum number of

values. If we suppose that we
an already sele
t all the domain
onstraints

like X 2 D

X

from a set of
onstraints C using the notion of a �lter, we
an

easily imagine a sorter to implement the minimum or the maximum domain

riterion (see the sorter of Example 4).

De�nition 4 (Filter). Let (�;D;V;L) be a
onstraint system. Then, a

�lter � on (�;D;V;L) is a
omputable fun
tion � : L ! P(L�L) su
h that

8C 2 L; �(C) = f(Cf

i

; C

i

); : : : ; (Cf

n

; C

n

)g;

where 8i 2 [1; n℄; C � C

i

(C

i

is a synta
ti
al form of C), and C

i

[Cf

i

℄

(Cf

i

is

a sub-
onstraint of C

i

).

The elements of �(C) are
alled
andidates. We de�ne the �lter Id whi
h

returns the initial set of
onstraints. Given the �lters � and �

0

on (�;D;V;

L), we say that

� � is sele
tive if 8C 2 L; �(C) = f(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)g su
h that

8i; j 2 [1; : : : ; n℄� [1; : : : ; n℄; i 6= j; Atom(Cf

i

) \Atom(Cf

j

) = ;;

� � is stable if 8C 2 L; �(C) = f(Cf

1

; C

0

); : : : ; (Cf

n

; C

0

)g;

� � and �

0

are disjoint if 8C 2 L; �(C) = f(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)g;

and �

0

(C) = f(Cf

0

1

; C

0

1

); : : : ; (Cf

0

m

; C

0

m

)g; s.t. 8(i; j) 2 [1; : : : ; n℄ �

[1; : : : ;m℄; Atom(Cf

i

) \Atom(Cf

0

j

) = ;.

Property 1. Let �

1

and �

2

be two �lters on (�;D;V;L). Then, �

1

;�

2

de�ned by

8C 2 L; �

1

;�

2

(C) = �

1

(C) \ �

2

(C)

is a �lter on (�;D;V;L).

Property 1 enables one to design
omplex �lters using more basi
 �lters.

Example 2. We de�ne a simple �lter for the domain
onstraints

8C 2 L; �

D

(C) = f(
; C)jC

[
℄

and 9X 2 V;
 = (X 2 D

X

)g:

The �lter �

D

is stable and sele
tive. We denote by L

Dom

the elements of

L

At

resulting from the appli
ation of this �lter. We will use this notation in

other examples.

Towards a framework for designing
onstraint solvers 9

Example 3. We now
onsider patterns of
onstraints (su
h as in the solver

of Example 1). The utility of this �lter will be
lari�ed in Se
tion 5. We want

to �lter sub-
onstraints that are the
onjun
tion of a domain
onstraint, an

atomi

onstraint, and a
onjun
tion of domain
onstraints, i.e., an atomi

onstraint, and all the domain
onstraints of the variables o

urring in it.

8C 2 L; �

D^
^Ds

(C) � L

2

and �

D^
^Ds

(C) is de�ned as follows:

1. Patterns:

(C

00

; C

0

) 2 �

D^
^Ds

(C)) C

00

= (X 2 D

X

)

^

V

Y 2Var(
)nfXg

Y 2 D

Y

^
 2 L

At

n L

Dom

^C

0

2 SF (C)

^C

0

[C

00

℄

^X 2 Var(
):

2. Context-free:

((C

0

; C

1

) 2 �

D^
^Ds

(C) ^ (C

0

; C

2

) 2 �

D^
^Ds

(C))) C

1

= C

2

.

3. Commutative-free:

(X 2 D

X

^
 ^ C

00

1

; C

1

) 2 �

D^
^Ds

(C)

^ (X 2 D

X

^
 ^ C

00

2

; C

2

) 2 �

D^
^Ds

(C)

�

) C

00

1

� C

00

2

.

Item 1 requires that elements of �

D^
^Ds

(C) have some synta
ti
al prop-

erties, i.e., form a pattern of
onstraints; in Item 2, we do not want to

onsider several times the same sub-
onstraints issued from di�erent syn-

ta
ti
al forms of C; and �nally, in Item 3, we spe
ify that the ordering of

the
onjun
tion of domain
onstraints is not relevant.

Item 2 and 3 are not mandatory, but they redu
e the number of appli-

ants. This de�nition does not provide uniqueness of the �lter. Depending

on our needs, we
an
onsider (1) adding the requirements to de�ne one set

of appli
ants per
onstraint, (2) removing Item 2 and 3, or (3) sele
ting one

of the sets
orresponding to the de�nition.

For example,
onsider the problem of solving CSPs and a fun
tion S (or

a transformation rule) whi
h redu
es the domain of one variable using one

onstraint. Then, for ea
h
onstraint of the CSP and ea
h variable of this

onstraint, we
an
onsider a possible appli
ation of S.

De�nition 5 (Sorter). A sorter Sorter, w.r.t. a partial ordering �, for a

onstraint system (�;D;V;L) is a
omputable fun
tion Sorter :� �P(L�

L)! LA, su
h that 8f(Cf

i

1

; C

i

1

); : : : ; (Cf

i

n

; C

i

n

)g 2 P(L � L)

1. Sorter(�; f(Cf

i

1

; C

i

1

); : : : ; (Cf

i

n

; C

i

n

)g) = [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄;

2. 8k 2 [1; : : : ; n℄;9j 2 [1; : : : ; n℄; Cf

i

j

= Cf

k

and C

i

j

= C

k

;

10 C. Castro, E. Monfroy

3. 8j 2 [1; : : : ; n� 1℄; Cf

j

� Cf

j+1

.

Remark 1. We assume that a sorter is deterministi
, i.e., if L is a set of

appli
ants, ea
h appli
ation of Sorter on L will always return the same list

of appli
ants.

Example 4 (MaxDom and MinDom sorters). The �

Dom

ordering is

based on the width of the domain
onstraint

3

. For atomi
 domain
on-

straints, �

Dom

is straight-forward, but we may need to
onsider this order-

ing for more
omplex
onstraints (e.g., patterns of
onstraints issued from

�lters). We de�ne the fun
tion !, the width of a
onstraint, as follows:

� if
 2 L

Dom

and
 = X 2 D then !(
) = width(D),

� if
 2 L

At

n L

Dom

then !(
) = �1,

� if C =
 ^ C

0

or C =
 _C

0

then !(C) = !(
).

�

Dom

is now de�ned by

8C;C

0

2 L; C �

Dom

C

0

if !(C) � !(C

0

):

The sorter MinDom (respe
tively, MaxDom) is de�ned by the�

Dom

ordering

(respe
tively, �

Dom

, the reverse ordering of �

Dom

).

4. The language

In this se
tion, we de�ne the operators of our strategy language. They are

used to apply solvers to sele
ted parts of
onstraints. Most of the operators

are based on the same me
hanism when applied to a
onstraint C:

1. A set SC of
andidates is built using the �lter � on C.

2. The set SC is sorted using the partial order �. We obtain LC, a sorted

list of
andidates.

3. The solver S is applied to one (e.g., the \best" w.r.t. �) or several

elements of LC.

4. Ea
h o

urren
e of the sub-
onstraint(s) modi�ed by S is repla
ed

(substituted) in its
orresponding (w.r.t.
andidates) synta
ti
al form

of C.

In the following, we
onsider a given
onstraint system (�;D;V;L),

solvers S

1

; : : : ; S

n

, �lters �

1

; : : : ; �

n

, and partial orders �

1

; : : : ;�

n

. We de-

note by Cf

0

7!

00

g the substitution of the sub-
onstraint

0

of C by

00

.

Note that a substitution applies to every o

urren
e of a sub-
onstraint.

3

For interval domains, width(D)
an be the di�eren
e between the upper and the lower

bound. On the other hand, for domains that are sets of elements, the width
an be de�ned

as the
ardinality of the set. In every
ase, width is a numeri
 value.

Towards a framework for designing
onstraint solvers 11

4.1. Basi
 operators

These operators are analogous to fun
tion
ompositions and allow us to de-

sign solvers by
ombining the \basi
" fun
tions (non-de
omposable solvers),

or to
reate solver
ollaborations by
ombining
omponent solvers. Consider

two solvers S

i

and S

j

. Then, for all C 2 L

� S

0

i

(C) = C (Identity),

� S

i

;S

j

(C) = S

j

(S

i

(C)) (solver
on
atenation),

� S

n

i

(C) = S

n�1

i

;S

i

(C) if n > 0 (solver iteration),

� S

?

i

(C) = S

n

i

(C) su
h that S

n+1

i

(C) = S

n

i

(C) (solver �xed-point),

� (S

i

; S

j

)(C) = S

i

(C) or S

j

(C) (solver don't-
are).

Property 2. Let S

i

and S

j

be two solvers. Then, S

i

;S

j

, S

n

i

, S

?

i

, and (S

i

; S

j

)

are solvers.

4.2. Best and random appli
ations of solvers

The following two operators apply solvers to spe
i�

omponents of
on-

straints.

Don't
are appli
ation of a solver: the d
 operator restri
ts the use of

the solver S

i

to one randomly
hosen sub-
onstraint of a synta
ti
al form of

C (obtained using the �lter �).

8C 2 L;d
(S

i

; �)(C) = C

0

;

where

� [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄ = �(C) ;

� if there exists i 2 [1; : : : ; n℄ su
h that S

i

(Cf

i

) 6= Cf

i

, then C

0

=

C

i

fCf

i

7! S

i

(Cf

i

)g, otherwise C

0

= C.

Best appli
ation of a solver: the best operator restri
ts the use of the

solver S

i

to the best (w.r.t. the partial order �) sub-
onstraint of a synta
-

ti
al form of C (obtained using the �lter �) that S

i

is able to modify.

8C 2 L;best(S

i

;�; �)(C) = C

0

;

where

� [(Cf

1

; C

1

); : : : ; (Cf

n

; C

n

)℄ = Sorter(�; �(C)) ;

� if there exists i 2 [1; : : : ; n℄; su
h that S

i

(Cf

i

) 6= Cf

i

; and 8j 2

[1; : : : ; n℄ (S

i

(Cf

j

) 6= Cf

j

) i � j) then C

0

= C

i

fCf

i

7! S

i

(Cf

i

)g,

otherwise C

0

= C.

12 C. Castro, E. Monfroy

4.3. Con
urrent and parallel appli
ations of solvers

These two operators manage several solvers. The �rst one sele
ts the result

of one solver depending on a required
onstraint property, the se
ond one

omposes the resulting
onstraints based on the results of ea
h solver. A

onstraint property p on a
onstraint system (�;D;V;L) is a fun
tion from

onstraints to Booleans (i.e., p : L ! Boolean).

Con
urrent appli
ation of solvers: the p

 operator applies one of the

solvers S

i

on
e and returns a
onstraint that veri�es the property p.

8C 2 L;p

(p; [S

1

;�

1

; �

1

℄; : : : ; [S

n

;�

n

; �

n

℄)(C) = C

0

;

where

� for all i 2 [1; : : : ; n℄ [(Cf

i;1

; C

i;1

); : : : ; (Cf

i;m

i

; C

i;m

i

)℄ = Sorter(�

i

;

�

i

(C)) ;

� if there exists (i; j) 2 [1; : : : ; n℄ � [1; : : : ;m

i

℄ su
h that p(S

i

(Cf

i;j

)),

and S

i

(Cf

i;j

) 6= Cf

i;j

, then C

0

= C

i;j

fCf

i;j

7! S

i

(Cf

i;j

)g, otherwise

C

0

= C.

Parallel appli
ations of solvers: we assume the �lters �

1

; : : : ; �

n

to be

stable and pairwise disjoint. The bp operator applies n solvers S

1

; : : : ; S

n

on n sub-
onstraints of one synta
ti
al form of a
onstraint.

8C 2 L; bp([S

1

;�

1

; �

1

℄; : : : ; [S

n

;�

n

; �

n

℄)(C) = C

0

;

where

� for all i 2 [1; : : : ; n℄ [(Cf

i;1

; C

00

); : : : ; (Cf

i;m

i

; C

00

)℄ = Sorter(�

i

; �

i

(C));

� for all i 2 [1; : : : ; n℄, if there exists j 2 [1; : : : ;m

i

℄, s.t. S

i

(Cf

i

j

) 6= Cf

i

j

,

and for all k < j, S

i

(Cf

i

k

) = Cf

i

k

, then �

i

= fCf

i;i

j

7! S

i

(Cf

i;i

j

)g,

else �

i

= ;;

� C

0

= C

00

�, where � =

S

i2[1;:::;n℄

�

i

.

4.4. Asso
iating sub-problems with distin
t solvers

Finally, we present two operators to apply a solver on ea
h
omponent of a

onjun
tion or disjun
tion of
onstraints. The result is obtained by
onjun
-

tion or disjun
tion of the resulting
onstraints, respe
tively. These operators

enable parallel
omputation, and standard OR parallel
omputation.

To this end, the notion of a separator is introdu
ed. It
an be seen as

a pre-pro
essing for parallel
omputation. Separators are mainly de�ned to

manipulate the elements of
onjun
tions and disjun
tions of
onstraints as

Towards a framework for designing
onstraint solvers 13

elements of lists

4

. Ea
h element of the list will then be treated separately

but in parallel before gathering (
onjun
tion or disjun
tion) all the results.

De�nition 6 (Separators). A ^ separator Æ is a fun
tion Æ : L ! LC

su
h that

8 C 2 L; 9n 2 N ; Æ(C) = [C

1

; : : : ; C

n

℄ where C � C

1

^ : : : ^ C

n

:

Similarly, a _ separator Æ is a fun
tion Æ : L ! LC su
h that

8 C 2 L; 9n 2 N ; Æ(C) = [C

1

; : : : ; C

n

℄ where C � C

1

_ : : : _ C

n

:

Example 5. Consider a disjun
tive problem in whi
h variables
an assume

several domains. This is a standard
ase when representing at on
e the explo-

ration of several bran
hes of a sear
h spa
e. Then, we would like to be able

to
onsider every bran
h of the sear
h spa
e (see Se
tion 5 for illustration).

Thus, we
onsider a _ separator named CSP

_

, de�ned by

8C 2 L; CSP

_

(C) = [C

1

; : : : ; C

n

℄;

su
h that C � C

1

_ : : : _C

n

and

8

>

<

>

:

C

1

= X 2 D

1

X

^ C

0

.

.

.

.

.

.

.

.

.

C

n

= X 2 D

n

X

^ C

0

.

Conjun
tive sub-problems: the ^ p operator applies (in parallel) the

solver S

i

to several
onjun
ts (determined by Æ

^

) of the
onstraint C and the

�nal result is obtained by
onjun
tion of the results
omputed in parallel:

8C 2 L;^ p(S

i

; Æ

^

)(C) = C

0

;

where

� [C

1

; : : : ; C

n

℄ = Æ

^

(C),

� C

0

= S

i

(C

1

) ^ : : : ^ S

i

(C

n

).

Disjun
tive sub-problems: the _ p operator is analogous to ^ p, but

Æ

_

determines disjun
ts, and the �nal result is the disjun
tion of the results

omputed in parallel:

8C 2 L;_ p(S

i

; Æ

_

)(C) = C

0

;

where

4

Lists enable us to sort and explore the sear
h tree in a deterministi
 way. This is

parti
ularly important when we
onsider sequential implementations, i.e., the bran
hes

are pro
essed sequentially. In su
h
ases, the use of sets leads to non-deterministi
 sear
h.

14 C. Castro, E. Monfroy

� [C

1

; : : : ; C

n

℄ = Æ

_

(C),

� C

0

= S

i

(C

1

) _ : : : _ S

i

(C

n

).

In spite of its simpli
ity, the following property is essential, sin
e it allows

us to manipulate the basi
 fun
tions and solvers at the same level, and thus

to
reate solvers and solver
ollaborations with the same strategy language.

Property 3. Consider n solvers S

1

; : : : ; S

n

, n �lters �

1

; : : : ; �

n

, n partial

orders �

1

; : : : ;�

n

, a
onstraint property p, and separators Æ

^

and Æ

_

. Then,

d
(S

i

; �), best(S

i

;�; �), p

(p; (S

1

;�

1

; �

1

) ; : : : ; (S

n

;�

n

; �

n

)), bp((S

1

;�

1

;

�

1

) ; : : : ; (S

n

;�

n

; �

n

)) (assuming �

1

; : : : ; �

n

to be stable and pairwise dis-

joint), ^ p(S

i

; Æ

^

), and _ p(S

i

; Æ

_

) are solvers.

5. A generi
 propagation-based solver

A CSP is given by a set of
onstraints together with a set of domain
on-

straints, one for ea
h variable of the problem. Constraint propagation is a

widely re
ognized
on
ept aimed to redu
e a CSP into an equivalent but

simpler one (meaning the sear
h spa
e is redu
ed, but no solution is lost) by

narrowing the domains of variables until a �xed-point is rea
hed. However,

onstraint propagation must be interleaved with a splitting me
hanism in

order to
ompose a
omplete solver, i.e., a solver able not only to redu
e the

problem, but also to extra
t solutions. This me
hanism works by splitting

the domain of a variable into (sub)domains.

The redu
tion pro
ess is performed by domain redu
tion fun
tions in

the s
heme of K. R. Apt [1℄, and by narrowing operators in the framework

of F. Benhamou [5℄. These redu
tion fun
tions or narrowing operators are

managed by a propagator (su
h as a set for a don't
are appli
ation, or a

list, e.g., for a MinDom strategy) that
omposes the redu
tion strategy. We

now present an implementation of these two frameworks using our strategy

language. Then we instantiate this generi
 solver to solve CSPs over �nite

domains and interval real numbers.

Redu
tion: We �rst
onsider g narrow, a generi
 redu
tion solver that

takes as input a domain
onstraint (the domain of the variable to be re-

du
ed), a
onstraint (the information used to redu
e the variable), and the

domain
onstraint of the variables o

uring in the
onstraint (this informa-

tion is required for most, if not for all, narrowing operators). This solver

requires the �

D^
^Ds

�lter of Example 3. The d
 g narrow is the don't-
are

omplete redu
tion of a CSP:

d
 g narrow = d
(g narrow; �

D^
^Ds

)

?

:

Towards a framework for designing
onstraint solvers 15

The MaxD g narrow uses the �

Dom

sorter de�ned in Example 4 and im-

plements the MaxDom redu
tion strategy:

MaxD g narrow = best(g narrow;�

Dom

; �

D^
^Ds

)

?

:

Splitting me
hanism: We
onsider the g split generi
 solver whi
h trans-

forms a domain
onstraint into a disjun
tion of two domain
onstraints if

the width of the domain is greater than or equal to a \minimal" width �.

For
ontinuous domains, � generally represents the smallest di�eren
e that

an be
omputed between two numbers. For dis
rete domains, � is generally

set to 1. The solver g split : L ! L is de�ned as follows, using the fun
tion

! that gives the width of a
onstraint (see Example 4). For all
 = X 2 D

from L,

� if
 2 L

Dom

su
h that width(
) � �, then

g split(
) = X 2 D

0

_X 2 D

00

; where D = D

0

[D

00

5

;

� otherwise, g split(
) =
.

The following solver splits a randomly
hosen domain,

d
 g split = d
(g split; �

D

);

whereas MaxD g split splits the biggest
urrent domain of the CSP:

MaxD g split = best(g split;�

Dom

; �

D

):

Note that in both split solvers, we use the �

D

�lter de�ned in Example 2.

Generi
 propagation-based solvers: Here we give some generi
 solvers

implementing the standard strategies. Note that, using other operators, �l-

ters, and sorters, we
an easily design other standard and non-standard

strategies. The �rst solver

d
 g prop = (d
 g narrow ; d
 g split)

?

represents a basi
 strategy in whi
h no spe
i�
 sele
tion (for redu
tion and

splitting) is performed. On the other hand,

MaxD g prop = (MaxD g narrow ; MaxD g split)

?

is a
omplete propagation-based solver implementing a MaxDom strategy.

Note that we similarly obtain a MinD g prop solver by repla
ing the �

Dom

5

Generally we also enfor
e it with D

0

\D

00

= ;.

16 C. Castro, E. Monfroy

sorter by the �

Dom

sorter. The solving pro
ess is neither depth-�rst, nor

breadth-�rst, but MaxDom �rst, i.e., we redu
e one bran
h, and then we

eventually
hoose another bran
h (the one with the biggest domain) to ex-

plore.

We are now
on
erned with a homogeneous exploration of bran
hes. We

onsider the _ separator CSP

_

de�ned in Example 5. We now get another

generi
 solver:

MaxD _ g prop = _ p(MaxD g narrow ; MaxD g split; CSP

_

)

?

:

Depending on the implementation of the _ p operator, we will obtain a

depth-�rst sear
h (sequential implementation) or a parallel exploration of

every bran
hes (parallel implementation).

Using Æ

V ar

, a ^ separator whi
h splits a set of
onstraints into n variable-

disjoint subsets of
onstraints, the appli
ation of MaxD g prop
an be im-

proved when solving CSPs that
an be de
omposed:

Sp MaxD g prop = ^ p(MaxD g prop; Æ

V ar

):

In this way, we are solving several CSPs in parallel. An obvious advantage

is to deal with simpler problems. The solution to the original problem will

be in the union of the solutions to all subproblems.

In the next sub-se
tions, we instantiate the generi
 solvers g narrow

and g split in order to obtain solvers over �nite domains and interval real

numbers.

5.1. Solving
onstraints over �nite domains

A CSP P over �nite domains is any
onjun
tion of formulae of the form:

^

x

i

2X

(x

i

2 D

x

i

) ^ C;

where a domain
onstraint x

i

2 D

x

i

is
reated for ea
h variable x

i

o

urring

in the
onstraint C, D

x

i

being a �nite set of values.

First, we just have to instantiate the g narrow generi
 solver with the

solver Lo
alConsisten
y des
ribed in Example 1. d
 g narrow and

MaxD g narrow be
omes two solvers that enfor
e ar
-
onsisten
y [18℄.

Se
ond, we instantiate g split with � = 1, and width(D) =
ard(D),

when D is a domain, and we enfor
e that D

0

\D

00

= ;.

With these instantiations, d
 g prop be
omes a �nite domain
onstraint

solver that implements the standard full lookahead strategy [17℄. Now, if we

Towards a framework for designing
onstraint solvers 17

onsiderMinD g prop instead of d
 g prop, then we obtain a full lookahead

strategy
ombined with a MinDom strategy (i.e., a standard strategy for

�nite domains aimed to �nd qui
kly in
onsisten
ies in the set of
onstraints).

However, we
an
onsider some more spe
i�
 �nite domain strategies,

like the forward
he
king [17℄. This heuristi
, when enfor
ing lo
al
onsis-

ten
y, takes into a

ount just the
onstraints that are dire
tly related to the

splitted variable. We
onsider another �lter �

D^
^C^Ds

: this �lter returns

a domain
onstraint D over a variable X, a
onstraint
 that
ontains X,

all the
onstraints (the
onjun
tion C) that
ontain X (ex
ept
), and all

the domain
onstraints of the variables that appear in
 ^ C. We also
on-

sider an extension g split

0

of the instantiation of the solver g split that is

applied on the result of the �lter �

D^
^C^Ds

. When applied to a
onstraint

D ^
 ^C ^Ds, g split

0

returns g split(D) ^
 ^C ^Ds. We
an formulate

Forward Che
king using d
 g narrow instantiated with Lo
alConsisten
y

as follows:

ForwardChe
king =

d
 g narrow ; d
((g split

0

; d
 g narrow); �

D^
^C^Ds

)

�

:

We
an obviously
onsider full lookahead and forward
he
king strategies us-

ing a MinDom strategy: to this end, we just have to
onsiderMinD g narrow

and MinD g split instead of d
 g narrow and d
 g split respe
tively. We

an also
onsider Sp MaxD g prop to separate the problem into sub-prob-

lems and to
reate numerous new strategies using the same solvers but dif-

ferent strategy operators of our language.

5.2. Solving
onstraints over real numbers

We now design solvers for non-linear
onstraints over real interval arithmeti
.

In the following, a CSP P is any
onjun
tion of formulae of the form

^

x

i

2X

(x

i

2 D

x

i

) ^ C;

where a domain
onstraint x

i

2 D

x

i

is
reated for ea
h variable x

i

o

urring

in the set of
onstraints C,D

x

i

being an interval of real numbers. Constraints

are equalities, inequalities, and inequations of non-linear terms built over

intervals of real numbers and the fun
tion symbols +;�; �; =,^ , sin, and
os.

Consider the fun
tion b
 whi
h, given a non-linear
onstraint
 2 L

At

n

L

Dom

, the domain D of a variable X 2 Var(
), and the domains of the

other variables of Var(
), returns a smaller domain for X su
h that
 is

box-
onsistent [28℄ with respe
t to X

6

.

6

Computing b
 generally
onsists in applying the interval Newton method
ombined

with a \lo
al" splitting me
hanism to push the left and right bounds of the interval.

18 C. Castro, E. Monfroy

We now de�ne the solver drf : L ! L. For all C 2 L, we
ompute

drf(C) depending on the synta
ti
al form of C:

� if C = X 2 D

X

^
 ^

V

Y 2Var(
)nfXg

Y 2 D

Y

, where
 2 L

At

n L

Dom

,

then

drf(C) = X 2 D

0

X

^
 ^

^

Y 2Var(
)nfXg

Y 2 D

Y

;

where D

0

X

= b
(
;D

X

; fD

Y

jY 2 Var(
) n fXgg),

� otherwise, drf(C) = C.

We instantiate the solver g narrow by the solver drf . d
 g narrow be-

omes a solver that enfor
es box-
onsisten
y of a set of non-linear
on-

straints, i.e., ea
h
onstraint is box-
onsitent with respe
t to ea
h of its vari-

ables. MaxD g narrow enfor
es box-
onsisten
y using a MaxDom strategy

(i.e., a standard strategy for numeri
 real number solver).

In order to isolate solutions, we need to instantiate g split. We take

� = 10

�8

, the pre
ision of
omputation of solutions. The width fun
tion is

instantiated by: for all intervals I = [a; b℄, !(I) = b� a. Finally, we enfor
e

that D

0

\D

00

= ;. Thus, d
 g prop be
omes a solver that returns solutions

with a pre
ision of 8 de
imals.

MaxD _ g prop be
omes a similar solver that separately explores every

bran
h. On the other hand, Sp MaxD g prop
reates disjoint sub-problems

before any redu
tion.

6. Optimization problems over �nite domains

We now
on
entrate on an extension of a CSP
alled Constraint Satisfa
-

tion Optimization Problem (CSOP). CSOP
onsists in �nding an optimal

(i.e., maximal or minimal) value for a given fun
tion, su
h that a set of
on-

straints is satis�ed [27℄. The work of Bo
kmayr and Kasper [7℄ explains the

approa
h generally used by the
onstraint solving
ommunity to deal with

this problem. In this se
tion, we �rst explain two approa
hes for solving

CSOPs, and then we show how they
an be
ombined using our strategy

language.

A CSOP
an be des
ribed by a tuple hP; f; lb; ubi representing a CSP,

an optimization fun
tion, and the lower and upper bounds of this fun
tion.

Without loss of generality, we
onsider the
ase of minimization of a fun
tion

f over integers. To deal with this problem, we
onsider two approa
hes, both

of them requiring an initial step verifying that Sol(C ^ f � ub) 6= ;, i.e.,

there exists a solution to the
onstraint C satisfying the additional
onstraint

f � ub.

Towards a framework for designing
onstraint solvers 19

The �rst approa
h
onsists in applying the following rule until it
annot

be applied any more:

hP; f; lb; ubi ! hP; f; lb; �(f)i if � 2 Sol(C ^ f < ub):

Ea
h iteration of this rule tries to de
rease the upper bound ub by at

least one unit until an unsatis�able problem is obtained. That is why we

all this te
hnique satis�ability to unsatis�ability. The minimum value of

the fun
tion f represents the upper bound of the last su

essful appli
ation

of this rule. Thus, we de�ne the solver MinSatToUnsat implementing this

approa
h. We do not detail here this de�nition, but it is obvious that for

solving CSPs, as needed by this approa
h, we
an use the solvers de�ned in

Se
tion 5.1.

The se
ond approa
h applies the following rules until they
annot be

applied any more:

hP; f; lb; ubi ! hP; f; lb; �(f)i if � 2 Sol(C ^ f <

(lb+ub)

2

);

hP; f; lb; ubi ! hP; f;

(lb+ub)

2

; ubi if lb 6= ub

and Sol(C ^ f <

(lb+ub)

2

) = ;:

The �rst rule tries to �nd a new value for the upper bound ub and

redu
es, at least in half, the range of possible values of the fun
tion f ea
h

time a new solution is obtained

7

. The se
ond rule similarly updates the lower

bound lb in the opposite situation. We
all this approa
h binary splitting and

de�ne the solver MinSplitting implementing it.

Con
erning the behavior of these strategies, we
an note that the strategy

MinSatToUnsat is very slow for rea
hing the minimal value of f , when it

is lo
ated far from the initial upper bound. On the other hand, applying the

strategy MinSplitting, the same situation happens when the minimal value

of f is
lose to the initial upper bound. Sin
e it is not evident where the

optimal solution is lo
ated, an a priori
hoi
e between these approa
hes is

generally impossible. To improve the performan
e of these two basi
 solvers,

we
an make them
ollaborate in order to pro�t from the advantages of both

of them, and to avoid their drawba
ks.

A �rst s
heme of
ooperation is expressed by the strategy SeqOpt:

SeqOpt = (MinSatToUnsat;MinSplitting)

?

:

With the strategy SeqOpt, both solvers are exe
uted sequentially. Its obvi-

ous disadvantage is that it leaves a solver ina
tive, while the other one is

working. Moreover, due to the exponential
omplexity of the problem under

7

Of
ourse, we
an think of di�erent ratios, thus, the �rst approa
h
an be seen as a

parti
ular
ase of the se
ond one.

20 C. Castro, E. Monfroy

onsideration, the whole pro
ess
ould be blo
ked if one solver
annot �nd

a solution. To avoid this situation, we
an run them
on
urrently, updating

the
urrent solution as soon as a new one is available, and stopping the other

solver.

ParOpt = p

(first; [MinSatToUnsat;None; Id℄;

[MinSplitting;None; Id℄)

?

:

We do not �lter the initial set of
onstraints and so we do not have any

sorter. In this
ase, we are interested in the solver that will be faster, that is

why we use the �rst property

8

. With this strategy, a solver never waits for a

solution
oming from the other one. In the worst
ase (i.e., all solutions are

read from the same elementary solver until the �nal solution is obtained),

the performan
e of the ParOpt solver is the same as if one of the elementary

solvers ran independently.

7. Solver
ollaborations

7.1. Combining symboli
 and numeri
al methods

Here we
onsider the systems of non-linear
onstraints and two solvers.

Gr�obner bases
omputation [8℄ (i.e., the gb solver) transforms a set of mul-

tivariate polynomial equalities into a normal form from whi
h solutions

an be derived easier than from the initial set. The se
ond solver, int, is

a propagation-based numeri
al solver over the real numbers (e.g., one of the

solvers presented in Se
tion 5.2). We assume that every
onstraint of the

CSPs we
onsider
an be pro
essed by int.

It is generally very eÆ
ient to pre-pro
ess a CSP with symboli
 rewrit-

ing te
hniques before applying a propagation-based solver. In fa
t, the pre-

pro
essing may add redundant
onstraints (in order to speed-up propaga-

tion), simplify
onstraints, dedu
e some univariate
onstraints (whose so-

lutions
an easily be extra
ted by propagation), and redu
e the variable

dependen
y problem.

Thus, we
onsider s
, a simple
ollaboration where Gr�obner bases
om-

putation pre-pro
esses the equality
onstraints before the interval solver is

applied on the whole CSP:

s
 = d
(gb; �

=

); int;

where the �lter �

=

sele
ts equalities of polynomials.

Consider, for example, the following problem:

8

Here, sin
e we
onsider parallel
omputation, we extend the properties of
onstraints

to the properties of
onstraints and
omputations.

Towards a framework for designing
onstraint solvers 21

x

3

� x � y

2

+ 2 = 0 ^ x

2

� y

2

+ 2 = 0 ^ y > 0:

Most of the solvers based on propagation require splitting to isolate the

solutions of this CSP. However, using gb (with a lexi
ographi
 order x � y),

the problem be
omes

y

2

� 3 = 0 ^ � 1 + x = 0 ^ y > 0

and int
an easily isolate solutions without a requirement of splitting (whi
h

is expensive as it in
reases the
ombinatori
s of the problem).

However, as stressed in [4℄, Gr�obner bases
omputation may require too

mu
h memory and be very time
onsuming
ompared to the speed-up they

introdu
e. Thus, in [4℄ the authors propose a trade-o� between pruning and

omputation time: gb is applied on subsets of the initial CSP, and the union

of the resulting bases and the
onstraints that are not rewritten (su
h as

inequalities, and equalities of non-polynomial expressions) forms the input of

the propagation-based solver. We
an des
ribe this
ollaboration as follows:

^ p(d
(gb; �

=

); Æ

part

); int;

where Æ

part

is the ^ separator
orresponding to the partitioning of the

initial system introdu
ed in [4℄.

7.2. The solver
ollaborations of C

o

SA

C

o

SA

[23℄ is a
onstraint logi
 programming system for non-linear polyno-

mial equalities and inequalities. The solving me
hanism of C

o

SA

onsists of

�ve heterogeneous solvers working in a distributed environment and
oop-

erating through a
lient/server ar
hite
ture:

�
hr lin [14℄, implemented with CHRs, for solving linear
onstraints

(equalities and inequalities),

� gb [13℄ for
omputing Gr�obner bases, it is to be noti
ed that this solver

is itself based on a
lient/server ar
hite
ture,

� maple uni for
omputing roots of a univariate polynomial equality, i.e.,

maple uni extra
ts solutions from one equation, not from a set of equa-

tions,

� maple exp for simplifying and transforming
onstraints (both this solver

and the previous one are Maple [15℄ programs), and

� e
l for testing
losed inequalities using ECL

i

PS

e

[20℄ features.

22 C. Castro, E. Monfroy

C

o

SA

uses several solving strategies, and thus, these solvers
ooperate

in three
ollaborations: S

in

, S

fin

and S

0

fin

. We now fo
us on how these
ol-

laborations
ould be des
ribed in a simple way using our language. The
ol-

laborations of C

o

SA

are thus
lari�ed: 1) every
onstraint
annot be treated

by all the solvers, and using �lters, we
an make it
lear and formalized;

2) distributed appli
ations are impli
it and form a part of the primitive

semanti
s; 3) it be
omes
lear where improvements/strategies
an be inte-

grated.

S

in

is the in
remental (in the sense of C

o

SA

)
ollaboration, i.e., it is

applied as soon as a new
onstraint is added to the store. maple exp trans-

forms (e.g., expands polynomials and simpli�es arithmeti
 expressions) all

onstraints so eq lin
an propagate information and simplify the set of linear

equations (equalities and inequalities) �ltered by �

=;<;lin

:

S

in

= maple exp ; d
(eq lin; �

=;<;lin

):

S

fin

is one of the �nal solvers of C

o

SA

. It is applied on
e to the remaining

onstraints. First,
onstraints are simpli�ed again by maple exp, sin
e S

in

may transform
onstraints in a syntax gb
annot understand. After
om-

puting Gr�obner bases of the set of non-linear polynomial equalities (�ltered

by �

=

), variables are eliminated (by maple uni) one by one from univari-

ate polynomials (�ltered by �

=;uni

), solutions are propagated, and linearized

equations are solved (eq lin). This pro
ess terminates when all variable have

been eliminated or when there is no more univariate polynomial:

S

fin

= maple exp ; d
(gb; �

=

) ;

d
(maple uni; �

=;uni

);d
(eq lin; �

=;<;lin

)

?

:

Here, we
an see the
exibility and the simpli
ity of our
ontrol lan-

guage. In C

o

SA

, the S

fin

ollaboration is �xed. From its des
ription in our

language, we
an noti
e that maple uni is applied by a don't
are primitive.

Some strategies
an easily be introdu
ed to improve the
ollaboration. In

fa
t, maple uni
ould be applied with a \best" primitive, ordering possible

andidates with respe
t to the in
reasing degree of univariate polynomial

equations (with a �

degree

sorter). Using best(maple uni;�

degree

; �

=;uni

),

variables
ould be eliminated from the lower degree equations �rst, and

thus less arithmeti
 errors/roundings
ould be propagated to the system

(and that is a weak point of C

o

SA

). Con
erning gb and eq lin, a \best"

primitive would not help sin
e these solvers
onsider the \maximal" set of

�ltered
onstraints.

S

0

fin

is an alternative to S

fin

whi
h is more eÆ
ient when eliminations

of non-linear variables do not linearize any other
onstraint and only ground

inequalities have to be
he
ked by e
l:

Towards a framework for designing
onstraint solvers 23

S

0

fin

= maple exp ; d
(gb; �

=

) ;

d
(maple uni; �

=;uni

)

?

; d
(e
l; �

<;ground

)

?

:

Again, better strategies
an be introdu
ed in C

o

SA

, sin
e ground inequalities

an be
he
ked simultaneously. Using Æ

one

, a ^ separator that splits a set

of n
onstraints into n singletons of atomi

onstraints, the appli
ation of

e
l is improved:

^ p(d
(e
l; �

<;ground

); Æ

one

):

Note that we still need a �lter for e
l, sin
e Æ

one

does not perform any

�ltering.

As mentioned in [22℄, the �rst solvers of S

fin

and S

0

fin

an be \fa
tor-

ized":

S

00

fin

=maple exp ; d
(gb; �

=

) ;

p

(first;

[(d
(maple uni; �

=;uni

);d
(eq lin; �

=;<;lin

))

?

; None; Id℄;

[d
(maple uni; �

=;uni

)

?

;d
(e
l; �

<;ground

))

?

; None; Id℄:

The remaining parts of the
ollaborations are exe
uted
on
urrently. No

�ltering is needed (Id for both sub-
ollaborations), and thus we do not have

any sorter (None), sin
e there is only one
andidate after �ltering, i.e., the

initial set of
onstraints. We do not impose any property on the result, and

we are interested in the sub-
ollaboration that will be faster (�rst property).

Note that improvements for applying e
l and maple uni still hold in S

00

fin

.

7.3. Combining
onsisten
ies

Box
onsisten
y [3℄ is a lo
al
onsisten
y notion for interval
onstraints that

relies on bounds of domains of variables: it is generally implemented as

a (lo
al) splitting of domains
ombined with the interval Newton method

for determining
onsistent bounds of an interval. Hull
onsisten
y is another

notion of
onsisten
y, stronger than box
onsisten
y. However, it
an only be

applied on primitive
onstraints that are either part of the original CSP, or

are obtained by de
omposing the
onstraints of the CSP. Then, the redu
tion

of the \de
omposed" CSP is weaker, but also faster. The idea of [3℄ is to

ombine these to
onsisten
ies in order to redu
e the
omputation time for

enfor
ing box
onsisten
y.

Let us
onsider Hull and Box, two solvers that respe
tively enfor
e hull

and box
onsisten
y of a CSP. Then, the
ombination of [3℄
an be des
ribed

by

(HullC ; BoxC)

?

:

Sin
e we
an de�ne both solvers and
ollaborations in our language, we now

spe
ify the HullC and BoxC solvers:

24 C. Castro, E. Monfroy

BoxC = d
(Box
; �

:p

)

?

and HullC = d
(Hull
; �

p

)

?

;

where �

p

(respe
tively, �

:p

) �lters one primitive (respe
tively non-primitive)

onstraint together with the domain
onstraints (e.g., x 2 [a; b℄) asso
iated

with ea
h of its variables

9

, Box
 (respe
tively Hull
) is a
omponent solver

that, given a
onstraint
, enfor
es box (respe
tively, hull)
onsisten
y of

w.r.t. ea
h of its variables.

We
an also
onsider some inner strategies, su
h as redu
ing the variable

with the largest domain. Then, Hull and Box are de�ned as follows:

BoxC = best(Box
;�

Dom

; �

:p

)

?

HullC = best(Hull
;�

Dom

; �

p

)

?

;

where \�

Dom

" sele
ts the
andidate with the largest domain (see the sorter

of Example 4).

Note that we
ould on
e again de
ompose these solvers into solvers

that enfor
e box (or hull)
onsisten
y of one
onstraint with respe
t to one

variable. Des
ribing these solvers at this level, we are
lose to the generi

propagation-based solver presented in Se
tion 5: only the �lter is di�erent.

Thus, we
ould imagine a more generi
 solver where the �lter would also be

a parameter. Then, solvers presented in Se
tion 5 and in this se
tion would

be designed using the same pattern of operators of our language.

Note also that (Hull ; Box)

?

an represent the solver int
onsidered

in Se
tion 7.1. We
ould also think about some other des
ription of Hull

and Box (e.g., using parallel appli
ation of solvers), but then we would not

respe
t anymore the original
ombination of [3℄.

8. Con
lusion

We have presented a strategy language for solving
onstraint satisfa
tion

problems using solvers and
ollaboration of solvers. A key point in this

work is the introdu
tion of the
on
epts of
onstraint �lters, separators,

and sorters. These notions allow one to manage
onstraints with high-level

me
hanisms. Furthermore, they help des
ribing synta
ti
al transformations

and manipulations generally hidden in the implementation of the
urrent

solvers. These
on
epts are then used to de�ne strategy operators for ap-

plying solvers. These operators allow us to design solvers by
ombining the

basi
 fun
tions, and
ollaborations of solvers by
ombining the
omponent

solvers. This language
an be seen as a Lego game, where bri
ks are basi

solvers. These bri
ks are used to design more
omplex solvers and
ollabora-

tions. They
an be re-used, assembled together through strategies, used in

9

�

p

is similar to �

D^
^Ds

(see Example 3) ex
ept that atomi

onstraints are for
ed

to be primitive
onstraints.

Towards a framework for designing
onstraint solvers 25

higher
ollaborations, ... Patterns of solvers and strategies (i.e., assembling

of operators)
an be instantiated for di�erent domains of
onstraints and

di�erent strategies of resolution.

The language is illustrated by several examples of
onstraints of di�er-

ent types and by de�ning solvers of di�erent nature, su
h as well-known

te
hniques for solving CSPs over �nite domains and non-linear
onstraints

over real domains, a generi
 propagation-based solver, optimization prob-

lems,
ollaboration of solvers (symboli
-numeri

ooperation, simulation of

C

o

SA

,
ombination of lo
al
onsisten
ies). For ea
h example, we have dis-

ussed standard strategies and proposed new strategies that
larify the use

of our language. For la
k of spa
e, we did not present other solvers that

we have already designed using our language, su
h as Gaussian elimination

(and some standard strategies), and Gr�obner bases
omputation.

We are
urrently working on the implementation of this language in order

to evaluate the real appli
ability of this framework. We are
on�dent that

su
h a language
an help exploring and testing new strategies. From a more

theoreti
al point of view, we
onsider as further work veri�
ation of the

termination properties of the strategy operators.

Referen
es

[1℄ K. R. Apt. The Rough Guide to Constraint Propagation. In J. Ja�ar, edi-

tor, Pro
. of the 5th International Conferen
e on Prin
iples and Pra
ti
e of

Constraint Programming (CP'99), volume 1713 of Le
ture Notes in Computer

S
ien
e, pages 1{23. Springer-Verlag, 1999. Invited le
ture.

[2℄ F. Arbab and E. Monfroy. Heterogeneous distributed
ooperative
onstraint

solving using
oordination. ACM Applied Computing Review, 6:4{17, 1999.

[3℄ F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull

and Box Consisten
y. In Pro
eedings of International Conferen
e on Logi

Programming, pages 230{244, Las Cru
es, USA, 1999. The MIT Press.

[4℄ F. Benhamou and L. Granvilliers. Combining Lo
al Consisten
y, Symboli

Rewriting, and Interval Methods. In Pro
eedings of AISMC3, volume 1138

of Le
ture Notes in Computer S
ien
e, pages 144{159, Steyr, Austria, 1996.

Springer-Verlag.

[5℄ F. Benhamou and W. Older. Applying interval arithmeti
 to real, integer and

Boolean
onstraints. Journal of Logi
 Programming, 32(1):1{24, Mar
h 1997.

[6℄ Henri Beringer and Bruno DeBa
ker. Combinatorial Problem Solving in Con-

straint Logi
 Programming with Cooperative Solvers. In Christoph Beierle

and Lutz Pl�umer, editors, Logi
 Programming: Formal Methods and Pra
ti
al

Appli
ations, Studies in Computer S
ien
e and Arti�
ial Intelligen
e. North

Holland, 1995.

26 C. Castro, E. Monfroy

[7℄ Alexander Bo
kmayr and Thomas Kasper. A unifying framework for integer

and �nite domain
onstraint programming. Resear
h Report MPI-I-97-2-008,

Max Plan
k Institut f�ur Informatik, Saarbr�u
ken, Germany, August 1997.

[8℄ B. Bu
hberger. Gr�obner Bases: an Algorithmi
 Method in Polynomial Ideal

Theory. In N. K. Bose Ed., editor, Multidimensional Systems Theory, pages

184{232. D. Reidel Publishing Company, Dordre
ht - Boston - Lan
aster, 1985.

[9℄ C. Castro and E. Monfroy. A Control Language for Designing Constraint

Solvers. In Pro
eedings of Andrei Ershov Third International Conferen
e

Perspe
tive of System Informati
s, PSI'99, volume 1755 of Le
ture Notes in

Computer S
ien
e, pages 402{415, Novosibirsk, Akademgorodok, Russia, 2000.

Springer-Verlag.

[10℄ C. Castro and E. Monfroy. Basi
 Operators for Solving Constraints via Col-

laboration of Solvers. In Pro
eedings of The Fith International Conferen
e on

Arti�
ial Intelligen
e and Symboli
 Computation, AISC'2000, Le
ture Notes

in Arti�
ial Intelligen
e, Madrid, Spain, 2000. Springer-Verlag. To Appear.

[11℄ Carlos Castro. Building Constraint Satisfa
tion Problem Solvers Using Rewrite

Rules and Strategies. Fundamenta Informati
ae, 34(3):263{293, June 1998.

[12℄ Carlos Castro. COLETTE, Prototyping CSP Solvers Using a Rule-Based Lan-

guage. In Ja
ques Calmet and Jan Plaza, editors, Pro
eedings of The Fourth

International Conferen
e on Arti�
ial Intelligen
e and Symboli
 Computation,

AISC'98, volume 1476 of Le
ture Notes in Arti�
ial Intelligen
e, pages 107{

119, Plattsburgh, NY, USA, September 1998. Springer-Verlag.

[13℄ J-C. Faugere. R�esolution des syst�emes d'�equations alg�ebriques. PhD thesis,

Universit�e Paris 6, Fran
e, 1994.

[14℄ T. Fr�uhwirth. Constraint handling rules. In A. Podelski, editor, Constraint

Programming: Basi
s and Trends, volume 910 of Le
ture Notes in Computer

S
ien
e. Springer-Verlag, 1995.

[15℄ K. Geddes, G. Gonnet, and B. Leong. Maple V: Language referen
e manual.

Springer Verlag, New York, Berlin, Paris, 1991.

[16℄ L. Granvilliers, E. Monfroy, and F. Benhamou. Symboli
-Interval Cooperation

in Constraint Programming. In Pro
eedings of the 26th International Sympo-

sium on Symboli
 and Algebrai
 Computation (ISSAC'2001), pages 150{166,

University of Western Ontario, London, Ontario, Canada, 2001. ACM Press.

[17℄ Robert M. Harali
k and Gordon L. Elliot. In
reasing Tree Sear
h EÆ
ien
y

for Constraint Satisfa
tion Problems. Arti�
ial Intelligen
e, 14:263{313, 1980.

[18℄ Alan K. Ma
kworth. Constraint Satisfa
tion. In Stuart C. Shapiro, editor,

En
y
lopedia of Arti�
ial Intelligen
e, volume 1. Addison-Wesley Publishing

Company, 1992. Se
ond Edition.

Towards a framework for designing
onstraint solvers 27

[19℄ Philippe Marti and Mi
hel Rueher. A Distribuited Cooperating Constraints

Solving System. International Journal of Arti�
ial Intelligen
e Tools, 4(1-

2):93{113, 1995.

[20℄ M. Meier and J. S
himpf. ECLiPSe User Manual. Te
hni
al Report ECRC-93-

6, ECRC (European Computer-industry Resear
h Centre), Muni
h, Germany,

1993.

[21℄ E. Monfroy. An environment for designing/exe
uting
onstraint solver
ollab-

orations. ENTCS (Ele
troni
 Notes in Theoreti
al Computer S
ien
e), 16(1),

1998.

[22℄ E. Monfroy. The Constraint Solver Collaboration Language of BALI. In

D.M. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems 2,

volume 7 of Studies in Logi
 and Computation, pages 211{230. Resear
h Stud-

ies Press/Wiley, 2000.

[23℄ E. Monfroy, M. Rusinowit
h, and R. S
hott. Implementing Non-Linear Con-

straints with Cooperative Solvers. In K. M. George, J. H. Carroll, D. Op-

penheim, and J. Hightower, editors, Pro
eedings of ACM Symposium on Ap-

plied Computing (SAC'96), Philadelphia, PA, USA, pages 63{72. ACM Press,

February 1996.

[24℄ Eri
 Monfroy. Collaboration de solveurs pour la programmation logique �a

ontraintes. Th�ese de Do
torat d'Universit�e, Universit�e Henri Poin
ar�e -

Nan
y 1, Fran
e, November 1996. Also available in english and on-line at:

http://www.s
ien
es.univ-nantes.fr/info/perso/permanents/monfroy/.

[25℄ Christophe Ringeissen. Cooperation of de
ision pro
edures for the satis�ability

problem. In Franz Baader and Klaus S
hulz, editors, Pro
eedings of The First

International Workshop Frontiers of Combining Systems, FroCoS'96, pages

121{139. Kluwer A
ademi
 Publishers, 1996.

[26℄ Gert Smolka. Problem Solving with Constraints and Programming. ACM

Computing Surveys, 28(4es), De
ember 1996. Ele
troni
 Se
tion.

[27℄ Edward Tsang. Foundations of Constraint Satisfa
tion. A
ademi
 Press, 1993.

[28℄ P. Van Hentenry
k, D. M
Allester, and D. Kapur. Solving polynomial systems

using a bran
h and prune approa
h. SIAM Journal on Numeri
al Analysis,

34(2), 1997.

28

