Joint NCC & IIS Bull., Comp. Science, 16 (2001), 1-27
© 2001 NCC Publisher

Towards a framework for designing
constraint solvers and solver
collaborations

C. Castro, E. Monfroy

In this paper, we propose a strategy language for designing constraint solvers and
schemes of solver collaborations. Solvers are seen as bricks that can be integrated when
creating more complex solvers that can become themselves new bricks to compose new
solvers. These bricks are glued together using operators of our language. A pattern of
operators can be used to create solvers and collaborations for solving different types of
constraints. We illustrate the use of this language by describing some well-known tech-
niques for propagation-based solvers, optimization problems, and collaboration of solvers
(symbolic/numeric cooperation, linear/non-linear collaboration, local consistency combi-
nation).

1. Introduction

In the last twenty years, constraint programming has emerged as a new pro-
gramming paradigm. In this alternative approach, the programming process
is merely a specification of a set of requirements (i.e., the constraints), a solu-
tion for which will be generated using some general or domain specific tech-
niques and mechanisms (i.e., the constraint solvers). Numerous algorithms
have been developed for solving constraints and the resulting technology has
been successfully applied to solving real-life problems.

The design and implementation of these constraint solvers is generally
an expensive and tedious task, and thus, the idea of reusing solvers “of the
shelves” is very interesting and promising [26]. However, that also implies
that we must have some tools to integrate/combine them. Another key-point
is that some problems cannot be tackled or efficiently solved with a single
solver. Hence, we definitely realize the interest in integrating and making
cooperate several solvers [16,6,19,25,23]. This is called collaboration of
solvers [24]. In order to make solvers collaborate, the need for powerful
strategy languages to control their integration and application has been
well recognized [21, 22, 2].

However, the existing approaches are generally not generic enough: they
consider fixed domains (linear constraints [6], non-linear constraints over
real numbers [23,19,4]), fixed strategies, or fixed scheme of collaboration
(sequential [23, 4], asynchronous [19]). In the language BALI, collaborations

2 C. Castro, E. Monfroy

are specified using control primitives and the constraint system is a param-
eter. Although BALI is more generic and flexible, the control capabilities for
specifying strategies are not always fine enough [22]: the control is based on
a “set of constraints”, not at the level of constraints taken separately. In the
system COLETTE [11,12], a solver is viewed as a strategy that specifies the
order of application of elementary operations expressed by transformation
rules. In this framework, different domains mainly mean the definition of
different transformation rules, and different heuristics mean different strate-
gies. However, the granularity of control is too low to really consider solver
collaborations.

Extending the ideas of BALI and COLETTE, we consider collaborations
of solvers as strategies that specify the order of application of solvers. In [9],
we proposed a strategy language for designing elementary constraint solvers
and we exemplify its use by specifying several solvers (such as solvers for
constraints over finite domains and real numbers). In [10] we presented the
application of our language to prototyping the constraint solving schemes via
collaboration of solvers. In this paper, we show that designing solvers and
collaborations are intrinsically linked and related. For example, the same
strategy can be used to write a solver or to express a collaboration. In fact,
the basic solvers are bricks that can be used to design more complex solvers
and collaborations which then become other bricks. They can be re-used,
assembled together through strategies, used in higher collaborations, ... The
glue between these bricks (i.e., patterns of solvers and strategies, or assembly
of operators) can be instantiated for different domains of constraints and dif-
ferent strategies of resolution. In this paper, these techniques are illustrated
by numerous examples over different domains: generic propagation-based
solvers (and instantiation for finite domains and real interval constraints),
and collaboration of solvers (optimization problems, symbolic-numeric coop-
eration, linear /non-linear collaboration, local consistency combination). For
each of these solvers/collaborations, we simulate the standard techniques,
and we also propose improvements in terms of strategies.

The main motivation for this work is to propose a general framework in
which one can design the component constraint solvers, as well as solver col-
laborations. This approach makes sense, since the design of constraint solvers
and the design of collaborations require similar methods (strategies are often
the same: don’t-care, fized-point, iteration, parallel, concurrent, ...). In other
words, we propose a language for writing the component solvers and design-
ing collaborations of several solvers at the same level. Key points in this work
are the concepts of constraint filters, separators, and sorters. These notions
allow one to manage constraints with high-level mechanisms. Furthermore,
they help describing syntactical transformations and manipulations that are

Towards a framework for designing constraint solvers 3

generally hidden in the implementation of the current solvers. These con-
cepts are used to define the strategy operators for applying solvers, such as
don’t care mechanism, best application of solvers, concurrent solvers, par-
allel applications, and operators for treating sub-problems. These operators
allow us to design solvers by combining the basic functions, as well as col-
laborations of solvers by combining the component solvers.

This paper is organized as follows: in Section 2, we use a very simple
example to informally present our language. In Section 3, the basic defini-
tions are given and we introduce the notions of filters and sorters. Section 4
details the basic and complex operators for applying solvers. In Section 5,
we give a generic propagation-based solver together with some instantiations
for finite domain constraints and interval constraints. Section 6 introduce
optimization problems and some possible implementations using our lan-
guage. Section 7 is devoted to different forms of solver collaborations: sym-
bolic/numeric cooperation, linear/non-linear collaboration, and local con-
sistency combination. Finally, in Section 8, we conclude this paper and give
some perspectives for further work.

2. An illustration of the language

Suppose that we want to design a solver for Constraint Satisfaction Problems
(CSPs) composed of domain constraints (defining the value a variable can
assume), and inequations over integer expressions. We are thus concerned
with implementation of a solver for problems of the following type:

X <Y, Z<40, Y < Z, Z€[2.130], Y € [50..100], X € [5..120].

Now, suppose that we have heard about a technique of removing impos-
sible values from domains of variables using inequations. This technique is
given as two proof rules that reduce the search space without losing any
solution:

_ X e [lb)(..’f’bx] ANX<Y AYe [lby..’r‘by]
- Xe [le..min(rbX,rby)] ANX<Y AYe [lby..’f’by]

S1

and
_ X e [lbx..’l“bx] ANX<Y ANY € [lby..’l“by]
- Xe [lbebx] ANX<Y ANY¢€ [maI(lbx,lby)..Tby].

How to use these rules to design a solver? Such a technique requires
Implementation of a mechanism to match the pattern of constraints and
some strategy of applications to efficiently apply the rules iteratively until
a fixed-point is reached. Our language proposes some help for doing so. A
possible solver for this type of constraints using this technique is dcS152:

S2

4 C. Castro, E. Monfroy

deS152 = de((S1;52), ppacans)™.

In our language, ¢pacaps is a filter (defined in Section 3) that will select the
constraints of the problem that match the head of the rule. S1 and S2 are

solvers. dc, “;”, and “x” are operators for applying solvers. The expression
dcS152 means:

1. find parts of the constraint that meet our needs, i.e., constraints on
which S1 and S2 can apply. This is performed using the filter ppacaps,

2. select randomly (selection indicated by dc) one of these constraints,

3. apply first S1 on the selected constraint, then S2 on the result of S1
(sequential application of solvers indicated by “;”),

4. iterate Items 1, 2, and 3 until a fixed-point is reached (the “x”), i.e., S1
and S2 cannot modify the constraint anymore. The result contains the
same solutions as the input, but the search space has been reduced.

Now, consider that we have heard about some strategy for finite domains
that speeds up reduction of the search space. This strategy is called MinDom:
reduction of the smallest domain first can lead to quicker elimination of some
branches of the search space. We can easily integrate this strategy using our
language:

bestS152 = best((Sl; 52), jDoma ¢D/\c/\Ds)*-

This time we use a sorter (Xpen, is described in Example 4) that will “order”
possible applications of S1 and S2. The meaning of the expression bestS152
is:

1. find parts of the constraint that meet our needs (¢pacaps),

2. select the “best” (w.r.t. to the MinDom strategy) possible applica-
tion. This is performed by <p,,, that returns the candidate with the
smallest domain,

3. apply S1 on the selected constraint, then 52,

4. iterate Items 1, 2, and 3 until a fixed-point is reached (the “x”).

The result is the same as the previous one, but this time we use a strategy
that speeds up resolution.

So far, we can “quickly” reduce the search space. But we need to complete
our solver to provide the user with solutions. To this end, we need to consider
different branches of the search tree separately. Consider a function split that
takes as input a domain constraint, and returns a disjunction of domains
when possible (this solver is formally defined in Section 5). Roughly, this
function is:

Towards a framework for designing constraint solvers)

split(X ED) =XeDiVXED:,.

We can now create a complete solver (i.e., a solver that not only reduces the
search space but also extracts solutions):

SolverS152 = (bestS1S2;dc(split, pp))*.

SolverS1S52 first reduces completely the search space using bestS152. Then,
create a disjunction of a domain constraint (the domain constraint is filtered
by ¢p and splitted by the function split). The process reduction-split is
iterated on each sub-space until no more split and reduction are possible.
The result is a disjunction of possible assignments of variables, i.e., the
solutions.

We have informally presented some operators and notions of our lan-
guage. Some more complex operators (based on parallelism or concurrency)
are also provided. The next sections will formally describe the language and
some more complex examples.

3. Framework

In this section, we present the basic components of our framework, i.e.,
sorters and filters. We first need some definitions fixing our framework.

3.1. Constraints and solvers

Definition 1 (Constraint System). A constraint system is a 4-tuple (X,
D,V, L) where

e Y is a first-order signature given by a set of function symbols Fyx, and
a set of predicate symbols Py,

e D is a Y-structure (its domain being denoted by |D]),
e)V is an infinite denumerable set of variables, and

e L is a set of constraints: a non-empty set of (X, V)-atomic formulae,
called atomic constraints, closed under conjunction and disjunction.
The unsatisfiable constraint is denoted by | and the true constraint
is denoted by T. The set of atomic constraints is denoted by L 44.

An assignment is a mapping « : V — |D|. The set of all assignments is
denoted by ASSY. An assignment « extends uniquely to a homomorphism
a : T(X,V) — |D|. The set of solutions of a constraint ¢ € L is the set
Solp(c) of assignments o € ASS)Y such that a(c) holds. A constraint c
is valid in D (denoted by D E c¢) if Solp(c) = ASSY. We use Var(c) to
denote the set of variables from V occurring in the constraint c. We can now
introduce the notion of a solver.

6 C. Castro, E. Monfroy

Definition 2 (Solver). A solver for a constraint system (X,D,V, L) is a
computable function S : £L — L such that

1. VC € L, Solp(S(C)) C Solp(C) (correctness property);
2. VC € L, Solp(C) C Solp(S(C)) (completeness property).
A constraint C is in the solved form with respect to S, if S(C) = C.

Given a solver S over a constraint system (X,D,V, L), we extend S
to a constraint system (X,D,V, L"), where £L C L', in the following way:
VCeL\L SC)=C. We say that a constraint C' is in the solved form
with respect to S, if S(C) = C.

Example 1. Consider the constraint system (X, D, V, £) such that the con-
straint symbols (i.e., the predicate symbols) c of arity n and € are in X, |D|
is finite. Constraints of the form X € D are called domain constraints, and
they are widely used in CSPs: the set D (called the domain of X) specifies
the values of |D| the variable X can take.

Consider now the LocalConsistency function that takes as input the
following pattern of constraints

x; € DiNe(xy,y .., Tiy.o.yTp) ANy €Dy Ao A xi—1 € Dj—yq
ANZiy1 € Digy Noo. AN oy, € Dy

and returns

v, € DiNc(x1,...,Tiy...,mp) Aoy €Dy A A T 1 € D;i 4
ANxipv1 € Dig1y Ao N xp € Dy,

where

D; = {v;e D;| (3vi € Dy,...,3v;—1 € Dj_y,
E|’U’H>1 € D’i+17"'7EIIUn € DTL) : C('Ula"' 7'Ui7"'7vn)}'

Then, LocalConsistency is a solver, i.e., it removes impossible values from
the domain of z; using the constraint ¢, but preserves solutions of c¢. This
solver can be efficiently implemented for several standard constraints, such as
= and < over finite domains (i.e., generally, integers that can be represented
in a computer). LocalConsistency is used in Section 5.1.

3.2. Syntactical forms and sub-constraints

On the previous example, we have seen that a solver cannot always be ap-
plied on a “complete” constraint but only on a part of it (S< could be
applied only on a special pattern of constraints). Thus, to define specific
parts of a constraint, we introduce the notions of a syntactical form and a
sub-constraint.

Towards a framework for designing constraint solvers 7

Definition 3 (Syntactical Forms and Sub-constraints). We say that
C' is a syntactical form of C, denoted by C' ~ C, if C' = C modulo the
associativity and commutativity of A and V, and the distributivity of A on
V and of V on A '. We say that C' € L is a sub-constraint of C, denoted by
C[Cl}, if

e C=C

e or AC) € L, w € {A,V}, C = Ciw(’,

e or ACh € L, w € {A,V}, C = C'wCh,

e or 3C1, 0 € L, w € {A,V}, C = C1wC3 and (Cicry or Caen)-

A couple (C”,C") such that C” is a sub-constraint of C' and C' = C
is called an applicant of C. We denote by SF(C) the finite set of all the
syntactical forms of a constraint C: SF(C) = {C'| C" ~ C}2. We denote by
LA the set of all the lists of applicants, and by LC the set of all the lists of
constraints. Generally, we will use LA (respectively LC) to denote a list of
applicants (respectively constraints). We denote by P(L x L) the power-set
of all the sets of couples of constraints. Atom(C') denotes the set of atomic
constraints that occur in C: {c|c € L4; and Cl}.

3.3. Filters and sorters

We now define the basic components of our strategy language: filters to
select specific parts of a constraint, and sorters to classify the elements of
a list w.r.t. a given ordering. These transformations are generally hidden in
the implementation of solvers.

We introduce the notion of a filter for two main reasons. A solver can, in
general, be applied on several parts of a constraint [11]. Second, when dealing
with solver collaborations, in general, a single solver is not able to treat the
complete constraint [21]. In both cases, we want to identify the sub-parts of
the constraint that the solver is actually able to handle. The usefulness of
filters is clear when, for example, we want to manipulate only the domain
constraints like X € Dx from a set of constraints C' in order to carry out
enumeration. Also, when one is interested in verifying the local consistency
(such as in the solver of Example 1), it is necessary to select sub-constraints.
In this case, a sub-constraint is the conjunction of a domain constraint, an
atomic constraint, and a conjunction of domain constraints, i.e., an atomic
constraint, and all the domain constraints of the variables occurring in it
(see filter of Example 2).

1We consider that “=" is purely syntactic.
2The ACD theory defines a finite set of quotient classes that we can effectively filter.

8 C. Castro, E. Monfroy

Once we have identified different parts of the constraint on which a given
solver can be applied, we generally want to select some of them based on
a given criterion, i.e., the best of these parts in order to “optimize” the
application of the solver. Thus, we introduce the notion of a sorter associated
with the concept of a strategy.

For example, when solving constraints, we sometimes are interested in
choosing a variable that can take the minimum or the maximum number of
values. If we suppose that we can already select all the domain constraints
like X € Dx from a set of constraints C' using the notion of a filter, we can
easily imagine a sorter to implement the minimum or the maximum domain
criterion (see the sorter of Example 4).

Definition 4 (Filter). Let (¥,D,V, L) be a constraint system. Then, a
filter ¢ on (X, D,V, L) is a computable function ¢ : L — P(L x L) such that

VC € L, $(C) = {(Cfi,Cy)y ..., (Cfn,Cn)},

where Vi € [1,n], C =~ C; (C; is a syntactical form of C), and Cycy,) (C'f; is
a sub-constraint of Cj).

The elements of ¢(C') are called candidates. We define the filter Id which
returns the initial set of constraints. Given the filters ¢ and ¢’ on (X, D, V,
L), we say that

e ¢ is selective if VC € L, ¢(C) = {(Cf1,C1),...,(Cfn,Cp)} such that
Vi,j €[l,...,n] x[1,...,n],i # j, Atom(C f;) N Atom(C f;) = 0;
e ¢ is stable if VC € L, $(C) ={(Cf1,C"),...,(Cfn,C")};

e ¢ and ¢ are disjoint if VC' € L, ¢(C) = {(Cf1,C1),...,(Cfn,Cp)},
and ¢'(C) = {(Cf],CY),...,(Cfl.,CI)}, s.t. V(i,7) € [1,...,n] x
[1,...,m], Atom(C'f;) N Atom(C'f}) = 0.

Property 1. Let ¢; and ¢ be two filters on (X,D,V,L). Then, ¢1;po
defined by
VC € L, p1502(C) = ¢1(C) N ¢2(C)

is a filter on (X, D, V, L).
Property 1 enables one to design complex filters using more basic filters.
Example 2. We define a simple filter for the domain constraints

VO e L, ¢p(C) = {(c,C)|Cg and IX € V, ¢ = (X € Dx)}.

The filter ¢p is stable and selective. We denote by Lpey, the elements of
L 44 resulting from the application of this filter. We will use this notation in
other examples.

Towards a framework for designing constraint solvers 9

Example 3. We now consider patterns of constraints (such as in the solver
of Example 1). The utility of this filter will be clarified in Section 5. We want
to filter sub-constraints that are the conjunction of a domain constraint, an
atomic constraint, and a conjunction of domain constraints, i.e., an atomic
constraint, and all the domain constraints of the variables occurring in it.
VC € L, ppprerps(C) C L2 and ¢pprenps(C) is defined as follows:

1. Patterns:
(C”,Cl) € ¢D/\c/\D5(C) = ("= (X € DX)
Ne /\YEVar(c)\{X} Y € Dy
ANc E LAt \ EDom
AC' € SF(C)
/

/\ C[C”]

AX € Var(c).

2. Context-free:

((C',C1) € pprerps(C) A (C',C2) € ppaenns(C)) = C1 = Ch.

3. Commutative-free:

(X €eDx AcA Ci’, C1) € ¢pneans(C) -~ O~ OV
A (X e Dx AcA Cé’, 02) S ¢D/\c/\Ds(C) ! >

Item 1 requires that elements of ¢ppacnps(C) have some syntactical prop-
erties, i.e., form a pattern of constraints; in Item 2, we do not want to
consider several times the same sub-constraints issued from different syn-
tactical forms of C'; and finally, in Item 3, we specify that the ordering of
the conjunction of domain constraints is not relevant.

Item 2 and 3 are not mandatory, but they reduce the number of appli-
cants. This definition does not provide uniqueness of the filter. Depending
on our needs, we can consider (1) adding the requirements to define one set
of applicants per constraint, (2) removing Item 2 and 3, or (3) selecting one
of the sets corresponding to the definition.

For example, consider the problem of solving CSPs and a function S (or
a transformation rule) which reduces the domain of one variable using one
constraint. Then, for each constraint of the CSP and each variable of this
constraint, we can consider a possible application of S.

Definition 5 (Sorter). A sorter Sorter, w.r.t. a partial ordering <, for a
constraint system (X, D,V, L) is a computable function Sorter : < xP(L x
L) — LA, such that V{(Cf;,,Cs,),...,(Cfi, ,C;.)} € P(L X L)

L. Sorter(j,{(Cfil,C’il),...) (sznaoln)}) = [(Cflaol)a---) (Cfnaon)]v
2. Vk € [1,... ,n],ﬂj S [1,...,’)1], sz] = Cfi and Cij = Cy;

10 C. Castro, E. Monfroy

3.Vj€l,...,n—1],Cf; < Cfjs1.

Remark 1. We assume that a sorter is deterministic, i.e., if L is a set of
applicants, each application of Sorter on L will always return the same list
of applicants.

Example 4 (MaxDom and MinDom sorters). The <p,,, ordering is
based on the width of the domain constraint®. For atomic domain con-
straints, <pem, is straight-forward, but we may need to consider this order-
ing for more complex constraints (e.g., patterns of constraints issued from
filters). We define the function w, the width of a constraint, as follows:

e if c€ Lpom and ¢ = X € D then w(c) = width(D),

e ifce L\ Lpom then w(c) = —1,

e if C=cAC"or C=cVC then w(C) = w(c).
=<Dom 1s now defined by

VC,C" € L, C <pom C" if w(C) < w(C).

The sorter MinDom (respectively, MaxDom) is defined by the <p,, ordering
(respectively, > pom, the reverse ordering of <pgm).

4. The language

In this section, we define the operators of our strategy language. They are
used to apply solvers to selected parts of constraints. Most of the operators
are based on the same mechanism when applied to a constraint C"

1. A set SC of candidates is built using the filter ¢ on C.

2. The set SC is sorted using the partial order <. We obtain LC, a sorted
list of candidates.

3. The solver S is applied to one (e.g., the “best” w.r.t. <) or several
elements of LC.

4. Each occurrence of the sub-constraint(s) modified by S is replaced
(substituted) in its corresponding (w.r.t. candidates) syntactical form
of C.

In the following, we consider a given constraint system (X, D,V, L),
solvers S, ..., Sy, filters ¢1,...,¢,, and partial orders <q,...,=<,. We de-
note by C{c — "} the substitution of the sub-constraint ¢’ of C' by ¢”.
Note that a substitution applies to every occurrence of a sub-constraint.

3For interval domains, width(D) can be the difference between the upper and the lower
bound. On the other hand, for domains that are sets of elements, the width can be defined
as the cardinality of the set. In every case, width is a numeric value.

Towards a framework for designing constraint solvers 11

4.1. Basic operators

These operators are analogous to function compositions and allow us to de-
sign solvers by combining the “basic” functions (non-decomposable solvers),
or to create solver collaborations by combining component solvers. Consider
two solvers S; and S;. Then, for all C' € L

e SY(C) = C (Identity),

e 5i;5;(C) = S;(Si(C)) (solver concatenation),

o SM(C) = S""18;(C) if n > 0 (solver iteration),

e S¥(C) = SP(C) such that SP*(C) = SP(C) (solver fized-point),
e (5;,5))(C) = S;(C) or S;(C) (solver don’t-care).

Property 2. Let S; and S; be two solvers. Then, S;; Sj, SP*, Sf, and (S;, S;)
are solvers.

4.2. Best and random applications of solvers

The following two operators apply solvers to specific components of con-
straints.

Don’t care application of a solver: the dc operator restricts the use of
the solver S; to one randomly chosen sub-constraint of a syntactical form of
C (obtained using the filter ¢).

VC € ‘Ca dc(Sia QS)(C) = Cla

where

o [(Cflﬂol)aa(ofnaon)] = ¢(C))
e if there exists ¢ € [1,...,n] such that S;(Cf;) # Cf;, then C' =
Ci{Cfi— Si(Cfi)}, otherwise C' = C.

Best application of a solver: the best operator restricts the use of the
solver S; to the best (w.r.t. the partial order <) sub-constraint of a syntac-
tical form of C' (obtained using the filter ¢) that S; is able to modify.

VO € L,best(S;, =,¢)(C) = ',
where
° [(Cf1,C1);- .., (Cfn, Cn)] = Sorter(=, ¢(C)) ;
e if there exists ¢ € [1,...,n], such that S;(Cf;) # Cf;, and Vj €

[1,...,n] (Si(Cf;) # Cf; = i < j) then C' = C{Cf; — Si(Cfi)},
otherwise C' = C.

12 C. Castro, E. Monfroy

4.3. Concurrent and parallel applications of solvers

These two operators manage several solvers. The first one selects the result
of one solver depending on a required constraint property, the second one
composes the resulting constraints based on the results of each solver. A
constraint property p on a constraint system (X, D, V, L) is a function from
constraints to Booleans (i.e., p : £ — Boolean).

Concurrent application of solvers: the pcc operator applies one of the
solvers S; once and returns a constraint that verifies the property p.

VC e E,pcc(p, [Sla jla ¢1]a ey [Sna jna ¢n])(0) = 0,7

where

e for all 7 € [1, ... ,n] [(Cfi,l, Ci,l), caey (Cfi,mia Cz,m,)] = SOT‘te’f’(ji,
$i(C)) ;

e if there exists (¢,5) € [1,...,n] x [1,...,m;] such that p(S;(Cf;;)),
and SZ(CfZJ) # Cfi’j, then C' = Ci,j{Cfi,j — SZ(CfZJ)}, otherwise

Cc'=cC.
Parallel applications of solvers: we assume the filters ¢1,..., ¢, to be
stable and pairwise disjoint. The bp operator applies n solvers Si,..., 5,

on n sub-constraints of one syntactical form of a constraint.
VC € ['7 bp([sla jla ¢1]7 sy [Sna jna ¢n])(0) = Cla
where

o forallie[l,...,n] [(Cfi1,C"),...,(Cfim; C")] = Sorter(=;, $:i(C));

e foralli € [1,...,n], if there exists j € [1,...,m;], s.t. S;(Cfi,) # Cfi,,
and for all k < j, SZ(Cka) = Cflk, then o; = {wa] — Sl(Cfm])},
else o; = 0;

o (" =C"0, where 0 = Ucpy, oy 0i-

4.4. Associating sub-problems with distinct solvers

Finally, we present two operators to apply a solver on each component of a
conjunction or disjunction of constraints. The result is obtained by conjunc-
tion or disjunction of the resulting constraints, respectively. These operators
enable parallel computation, and standard OR_parallel computation.

To this end, the notion of a separator is introduced. It can be seen as
a pre-processing for parallel computation. Separators are mainly defined to
manipulate the elements of conjunctions and disjunctions of constraints as

Towards a framework for designing constraint solvers 13

elements of lists%. Each element of the list will then be treated separately
but in parallel before gathering (conjunction or disjunction) all the results.

Definition 6 (Separators). A A_separator § is a function § : £L — LC
such that

VCeL,IneN, §C)=I[C1,...,Cp] where C = Cy A...ACh.
Similarly, a V_separator § is a function § : £ — LC such that
VCeL,IneN,iC)=][C,...,C,] where C = C1 V...V Cy.

Example 5. Consider a disjunctive problem in which variables can assume
several domains. This is a standard case when representing at once the explo-
ration of several branches of a search space. Then, we would like to be able
to consider every branch of the search space (see Section 5 for illustration).
Thus, we consider a V_separator named C'SP,, defined by

VC € L, CSP,(C) =[Ch,...,Chl,

Ch = XGD}(/\CI
such that C =~ C; V...V, and ¢ : Do .
C, = XeDynAC

Conjunctive sub-problems: the A_p operator applies (in parallel) the
solver S; to several conjuncts (determined by d,) of the constraint C and the
final result is obtained by conjunction of the results computed in parallel:

VO € ‘Ca /\—p(s’u 5/\)(0) = Cla

where

o [Ch,...,Ch] =0A(C),
L Cl = SZ(Cl) VANPRA SZ(Cn)

Disjunctive sub-problems: the V_p operator is analogous to A_p, but
dyv determines disjuncts, and the final result is the disjunction of the results
computed in parallel:

V(O € ‘Ca v—p(Sia 6\/)(0) = Cla

where

“Lists enable us to sort and explore the search tree in a deterministic way. This is
particularly important when we consider sequential implementations, i.e., the branches
are processed sequentially. In such cases, the use of sets leads to non-deterministic search.

14 C. Castro, E. Monfroy

o [C1,...,Ch] =6y(C),
L Cl = SZ(Cl) V...V SZ(Cn)

In spite of its simplicity, the following property is essential, since it allows
us to manipulate the basic functions and solvers at the same level, and thus
to create solvers and solver collaborations with the same strategy language.

Property 3. Consider n solvers Si,...,S,, n filters ¢4, ..., ¢,, n partial
orders <1,..., =y, a constraint property p, and separators 0, and Jv,. Then,
dc(s’ia QS)? beSt(Sia = (;5), pcc(pa (51, =1, ¢1) LA (Sna =n, ¢n))7 bp((Sla =1,
®1) 5y (Sny =Zn,Pn)) (assuming ¢q,..., ¢, to be stable and pairwise dis-
joint), A_p(S;,), and V_p(S;, dy) are solvers.

5. A generic propagation-based solver

A CSP is given by a set of constraints together with a set of domain con-
straints, one for each variable of the problem. Constraint propagation is a
widely recognized concept aimed to reduce a CSP into an equivalent but
simpler one (meaning the search space is reduced, but no solution is lost) by
narrowing the domains of variables until a fixed-point is reached. However,
constraint propagation must be interleaved with a splitting mechanism in
order to compose a complete solver, i.e., a solver able not only to reduce the
problem, but also to extract solutions. This mechanism works by splitting
the domain of a variable into (sub)domains.

The reduction process is performed by domain reduction functions in
the scheme of K. R. Apt [1], and by narrowing operators in the framework
of F. Benhamou [5]. These reduction functions or narrowing operators are
managed by a propagator (such as a set for a don’t care application, or a
list, e.g., for a MinDom strategy) that composes the reduction strategy. We
now present an implementation of these two frameworks using our strategy
language. Then we instantiate this generic solver to solve CSPs over finite
domains and interval real numbers.

Reduction: We first consider g_narrow, a generic reduction solver that
takes as input a domain constraint (the domain of the variable to be re-
duced), a constraint (the information used to reduce the variable), and the
domain constraint of the variables occuring in the constraint (this informa-
tion is required for most, if not for all, narrowing operators). This solver
requires the ¢pacaps filter of Example 3. The dc_g_narrow is the don’t-care
complete reduction of a CSP:

dc_g-narrow = de(g-narrow,ppacrps)”-

Towards a framework for designing constraint solvers 15

The MaxD_g-narrow uses the = p,nm, sorter defined in Example 4 and im-
plements the MaxDom reduction strategy:

MaxD_g_narrow = best(g-narrow, = pom, Pprcans) -

Splitting mechanism: We consider the g_split generic solver which trans-
forms a domain constraint into a disjunction of two domain constraints if
the width of the domain is greater than or equal to a “minimal” width e.
For continuous domains, € generally represents the smallest difference that
can be computed between two numbers. For discrete domains, € is generally
set to 1. The solver g_split : L — L is defined as follows, using the function
w that gives the width of a constraint (see Example 4). For all c = X € D
from L,

e if ¢ € Lpom such that width(c) > e, then
g-split(c)=X e D'vX D", where D=DUD"?,
e otherwise, g_split(c) = c.
The following solver splits a randomly chosen domain,
de_g-split = dc(g-split, dp),
whereas MaxD_g_split splits the biggest current domain of the CSP:
MazD_g_split = best(g_split, = pom, Pp)-

Note that in both split solvers, we use the ¢p filter defined in Example 2.

Generic propagation-based solvers: Here we give some generic solvers
implementing the standard strategies. Note that, using other operators, fil-
ters, and sorters, we can easily design other standard and non-standard
strategies. The first solver

de_g_prop = (dc_g-narrow; de_g_split)*

represents a basic strategy in which no specific selection (for reduction and
splitting) is performed. On the other hand,

MaxD_g prop = (MaxD_g_narrow; MaxD_g_split)*

is a complete propagation-based solver implementing a MaxDom strategy.
Note that we similarly obtain a MinD _g_prop solver by replacing the > pom

SGenerally we also enforce it with D' N D" = .

16 C. Castro, E. Monfroy

sorter by the <pg, sorter. The solving process is neither depth-first, nor
breadth-first, but MaxDom first, i.e., we reduce one branch, and then we
eventually choose another branch (the one with the biggest domain) to ex-
plore.

We are now concerned with a homogeneous exploration of branches. We
consider the V_separator CSP, defined in Example 5. We now get another
generic solver:

MaxD_V _gprop = V _p(MazD_gnarrow; MaxD_g_split, CSP,)*.

Depending on the implementation of the V_p operator, we will obtain a
depth-first search (sequential implementation) or a parallel exploration of
every branches (parallel implementation).

Using dy4r, a A_separator which splits a set of constraints into n variable-
disjoint subsets of constraints, the application of MaxzD_g_prop can be im-
proved when solving CSPs that can be decomposed:

Sp-MaxD_g_prop = A _p(MaxD_g_prop,dvar).

In this way, we are solving several CSPs in parallel. An obvious advantage
is to deal with simpler problems. The solution to the original problem will
be in the union of the solutions to all subproblems.

In the next sub-sections, we instantiate the generic solvers g_narrow
and g_split in order to obtain solvers over finite domains and interval real
numbers.

5.1. Solving constraints over finite domains

A CSP P over finite domains is any conjunction of formulae of the form:

N (i € Dai) A C,

T, €EX

where a domain constraint x; € D,; is created for each variable z; occurring
in the constraint C, D,; being a finite set of values.

First, we just have to instantiate the g_narrow generic solver with the
solver LocalConsistency described in Example 1. dc_g-narrow and
MaxD_g_narrow becomes two solvers that enforce arc-consistency [18].

Second, we instantiate g_split with ¢ = 1, and width(D) = card(D),
when D is a domain, and we enforce that D' N D" = .

With these instantiations, dc_g_prop becomes a finite domain constraint
solver that implements the standard full lookahead strategy [17]. Now, if we

Towards a framework for designing constraint solvers 17

consider MinD_g_prop instead of dc_g_prop, then we obtain a full lookahead
strategy combined with a MinDom strategy (i.e., a standard strategy for
finite domains aimed to find quickly inconsistencies in the set of constraints).

However, we can consider some more specific finite domain strategies,
like the forward checking [17]. This heuristic, when enforcing local consis-
tency, takes into account just the constraints that are directly related to the
splitted variable. We consider another filter ¢parcacaps: this filter returns
a domain constraint D over a variable X, a constraint ¢ that contains X,
all the constraints (the conjunction C) that contain X (except c), and all
the domain constraints of the variables that appear in ¢ A C. We also con-
sider an extension g_split’ of the instantiation of the solver g_split that is
applied on the result of the filter ¢prcacaps- When applied to a constraint
D AeAC A Ds, g_split’ returns g_split(D) A ¢ A C A Ds. We can formulate
Forward Checking using dec_g-narrow instantiated with LocalConsistency
as follows:

ForwardChecking =
de_g_narrow ; de((g_split'; dc_g_narrow), pprcrcaps)™-

We can obviously consider full lookahead and forward checking strategies us-
ing a MinDom strategy: to this end, we just have to consider MinD_g_narrow
and MinD_g_split instead of dc_g_narrow and dec_g_split respectively. We
can also consider Sp_MaxD_g_prop to separate the problem into sub-prob-
lems and to create numerous new strategies using the same solvers but dif-
ferent strategy operators of our language.

5.2. Solving constraints over real numbers

We now design solvers for non-linear constraints over real interval arithmetic.
In the following, a CSP P is any conjunction of formulae of the form

N (i € Dai) A C,

T, €EX

where a domain constraint x; € D,; is created for each variable z; occurring
in the set of constraints C, D;; being an interval of real numbers. Constraints
are equalities, inequalities, and inequations of non-linear terms built over
intervals of real numbers and the function symbols +, —, %, /,” , sin, and cos.

Consider the function b_c which, given a non-linear constraint ¢ € £4; \
Lpom, the domain D of a variable X € Var(c), and the domains of the
other variables of Var(c), returns a smaller domain for X such that c is
box-consistent [28] with respect to X 6.

6Computing b_c generally consists in applying the interval Newton method combined
with a “local” splitting mechanism to push the left and right bounds of the interval.

18 C. Castro, E. Monfroy

We now define the solver drf : L — L. For all C' € L, we compute
dr f(C) depending on the syntactical form of C":

e if C=X€DxAcA AYEV&T(C)\{X} Y € Dy, where ¢ € La; \ Lpom,
then
drf(C) =X € D AcA N\ YeDy,
YeVar(e)\{X}

where DY, = b_c(c, Dx,{Dy|Y € Var(c) \ {X}}),
e otherwise, drf(C) = C.

We instantiate the solver g_narrow by the solver drf. dc_g_narrow be-
comes a solver that enforces box-consistency of a set of non-linear con-
straints, i.e., each constraint is box-consitent with respect to each of its vari-
ables. MaxD_g_narrow enforces box-consistency using a MaxDom strategy
(i.e., a standard strategy for numeric real number solver).

In order to isolate solutions, we need to instantiate g_split. We take
€ = 1078, the precision of computation of solutions. The width function is
instantiated by: for all intervals I = [a,b], w(I) = b — a. Finally, we enforce
that D' N D" = (). Thus, dc_g_prop becomes a solver that returns solutions
with a precision of 8 decimals.

MazxzD_VN _g_prop becomes a similar solver that separately explores every
branch. On the other hand, Sp_Maxz D _g_prop creates disjoint sub-problems
before any reduction.

6. Optimization problems over finite domains

We now concentrate on an extension of a CSP called Constraint Satisfac-
tion Optimization Problem (CSOP). CSOP consists in finding an optimal
(i.e., maximal or minimal) value for a given function, such that a set of con-
straints is satisfied [27]. The work of Bockmayr and Kasper [7] explains the
approach generally used by the constraint solving community to deal with
this problem. In this section, we first explain two approaches for solving
CSOPs, and then we show how they can be combined using our strategy
language.

A CSOP can be described by a tuple (P, f,1b, ub) representing a CSP,
an optimization function, and the lower and upper bounds of this function.
Without loss of generality, we consider the case of minimization of a function
f over integers. To deal with this problem, we consider two approaches, both
of them requiring an initial step verifying that Sol(C' A f < ub) # 0, i.e.,
there exists a solution to the constraint C satisfying the additional constraint
f < ub.

Towards a framework for designing constraint solvers 19

The first approach consists in applying the following rule until it cannot
be applied any more:

(P, f,Ib,ub) — (P, f,Ib,a(f)) if a € Sol(C A f < ub).

Each iteration of this rule tries to decrease the upper bound ub by at
least one unit until an unsatisfiable problem is obtained. That is why we
call this technique satisfiability to unsatisfiability. The minimum value of
the function f represents the upper bound of the last successful application
of this rule. Thus, we define the solver MinSatToUnsat implementing this
approach. We do not detail here this definition, but it is obvious that for
solving CSPs, as needed by this approach, we can use the solvers defined in
Section 5.1.

The second approach applies the following rules until they cannot be
applied any more:

(P, f,1b,ub) — (P, f,1b,a(f)) if a € Sol(C A f < L)),

P, f,Ib,ub) — (P, f,) by if b £ ub
2
and Sol(C' A f < —(lb;m)) ={.

The first rule tries to find a new value for the upper bound ub and
reduces, at least in half, the range of possible values of the function f each
time a new solution is obtained”. The second rule similarly updates the lower
bound /b in the opposite situation. We call this approach binary splitting and
define the solver MinSplitting implementing it.

Concerning the behavior of these strategies, we can note that the strategy
MinSatToUnsat is very slow for reaching the minimal value of f, when it
is located far from the initial upper bound. On the other hand, applying the
strategy MinSplitting, the same situation happens when the minimal value
of f is close to the initial upper bound. Since it is not evident where the
optimal solution is located, an a prior: choice between these approaches is
generally impossible. To improve the performance of these two basic solvers,
we can make them collaborate in order to profit from the advantages of both
of them, and to avoid their drawbacks.

A first scheme of cooperation is expressed by the strategy SeqOpt:

SeqOpt = (MinSatToUnsat; MinSplitting)*.

With the strategy SeqOpt, both solvers are executed sequentially. Its obvi-
ous disadvantage is that it leaves a solver inactive, while the other one is
working. Moreover, due to the exponential complexity of the problem under

TOf course, we can think of different ratios, thus, the first approach can be seen as a
particular case of the second one.

20 C. Castro, E. Monfroy

consideration, the whole process could be blocked if one solver cannot find
a solution. To avoid this situation, we can run them concurrently, updating
the current solution as soon as a new one is available, and stopping the other
solver.
ParOpt = pee(first, [MinSatToUnsat, None, Id],
[MinSplitting, None, Id])*.

We do not filter the initial set of constraints and so we do not have any
sorter. In this case, we are interested in the solver that will be faster, that is
why we use the first property . With this strategy, a solver never waits for a
solution coming from the other one. In the worst case (i.e., all solutions are
read from the same elementary solver until the final solution is obtained),
the performance of the ParOpt solver is the same as if one of the elementary
solvers ran independently.

7. Solver collaborations

7.1. Combining symbolic and numerical methods

Here we consider the systems of non-linear constraints and two solvers.
Grobner bases computation [8] (i.e., the gb solver) transforms a set of mul-
tivariate polynomial equalities into a normal form from which solutions
can be derived easier than from the initial set. The second solver, int, is
a propagation-based numerical solver over the real numbers (e.g., one of the
solvers presented in Section 5.2). We assume that every constraint of the
CSPs we consider can be processed by int.

It is generally very efficient to pre-process a CSP with symbolic rewrit-
ing techniques before applying a propagation-based solver. In fact, the pre-
processing may add redundant constraints (in order to speed-up propaga-
tion), simplify constraints, deduce some univariate constraints (whose so-
lutions can easily be extracted by propagation), and reduce the variable
dependency problem.

Thus, we consider sc, a simple collaboration where Grobner bases com-
putation pre-processes the equality constraints before the interval solver is
applied on the whole CSP:

sc = dc(gb, p-); int,

where the filter ¢_ selects equalities of polynomials.
Consider, for example, the following problem:

8Here, since we consider parallel computation, we extend the properties of constraints
to the properties of constraints and computations.

Towards a framework for designing constraint solvers 21

P —zxyP4+2=0A 22—y +2=0 A y>0.

Most of the solvers based on propagation require splitting to isolate the
solutions of this CSP. However, using gb (with a lexicographic order z > y),
the problem becomes

P—3=0A —142=0Ay>0

and int can easily isolate solutions without a requirement of splitting (which
is expensive as it increases the combinatorics of the problem).

However, as stressed in [4], Grobner bases computation may require too
much memory and be very time consuming compared to the speed-up they
introduce. Thus, in [4] the authors propose a trade-off between pruning and
computation time: gb is applied on subsets of the initial CSP, and the union
of the resulting bases and the constraints that are not rewritten (such as
inequalities, and equalities of non-polynomial expressions) forms the input of
the propagation-based solver. We can describe this collaboration as follows:

A-p(dc(gb, p—), dpart); int,

where 4,44 is the A_separator corresponding to the partitioning of the
initial system introduced in [4].

7.2. The solver collaborations of CoSAc

CoSAc [23] is a constraint logic programming system for non-linear polyno-
mial equalities and inequalities. The solving mechanism of CoSAc consists of
five heterogeneous solvers working in a distributed environment and coop-
erating through a client/server architecture:

e chr_lin [14], implemented with CHRs, for solving linear constraints
(equalities and inequalities),

e gb [13] for computing Grobner bases, it is to be noticed that this solver
is itself based on a client/server architecture,

e maple_uni for computing roots of a univariate polynomial equality, i.e.,
maple_uni extracts solutions from one equation, not from a set of equa-
tions,

e maple_exp for simplifying and transforming constraints (both this solver
and the previous one are Maple [15] programs), and

e ccl for testing closed inequalities using ECL/PS® [20] features.

22 C. Castro, E. Monfroy

CoSAc uses several solving strategies, and thus, these solvers cooperate
in three collaborations: Sj,., Sy, and S}m. We now focus on how these col-
laborations could be described in a simple way using our language. The col-
laborations of CoSAc are thus clarified: 1) every constraint cannot be treated
by all the solvers, and using filters, we can make it clear and formalized;
2) distributed applications are implicit and form a part of the primitive
semantics; 3) it becomes clear where improvements/strategies can be inte-
grated.

Sine 18 the incremental (in the sense of CoSAc) collaboration, i.e., it is
applied as soon as a new constraint is added to the store. maple_exp trans-
forms (e.g., expands polynomials and simplifies arithmetic expressions) all
constraints so eq_lin can propagate information and simplify the set of linear
equations (equalities and inequalities) filtered by ¢— < jin:

Sine = maple_cap ; de(eqlin, ¢— < jin)-

S'tin is one of the final solvers of CoSAc. It is applied once to the remaining
constraints. First, constraints are simplified again by maple_exp, since Sjy.
may transform constraints in a syntax gb cannot understand. After com-
puting Grobner bases of the set of non-linear polynomial equalities (filtered
by ¢-), variables are eliminated (by maple_uni) one by one from univari-
ate polynomials (filtered by ¢— ,n;), solutions are propagated, and linearized
equations are solved (eg_lin). This process terminates when all variable have
been eliminated or when there is no more univariate polynomial:

Sfin = maple_exp ; de(gh, ¢=) ;
de(maple_uni, = yni); de(eqlin, p— < jin)*.

Here, we can see the flexibility and the simplicity of our control lan-
guage. In CoSAc, the Sy;, collaboration is fixed. From its description in our
language, we can notice that maple_uni is applied by a don’t care primitive.
Some strategies can easily be introduced to improve the collaboration. In
fact, maple_uni could be applied with a “best” primitive, ordering possible
candidates with respect to the increasing degree of univariate polynomial
equations (with a =gegree sorter). Using best(maple_uni, =jegree, P=uni),
variables could be eliminated from the lower degree equations first, and
thus less arithmetic errors/roundings could be propagated to the system
(and that is a weak point of CoSAc). Concerning gb and eq_lin, a “best”
primitive would not help since these solvers consider the “maximal” set of
filtered constraints.

S}m is an alternative to Sy;, which is more efficient when eliminations
of non-linear variables do not linearize any other constraint and only ground
inequalities have to be checked by ecl:

Towards a framework for designing constraint solvers 23

"in = maple_exp ; dc(gb, p=) ;
dc(maple_uni, p— uni)* ; de(ecl, p< ground)™-

Again, better strategies can be introduced in CoSAc, since ground inequalities
can be checked simultaneously. Using §,ne, a A_separator that splits a set
of n constraints into n singletons of atomic constraints, the application of
ecl is improved:

/_p(dc(ecl, ¢<,ground)a 5one)-

Note that we still need a filter for ecl, since d,,. does not perform any
filtering.
As mentioned in [22], the first solvers of Sy;, and S%;, can be “factor-
ized”:
S, =maple_exp ; dc(gb, p=) ;
pce(first,
[(dc (maple_um', ¢=,uni); dc(eq_lin, ¢:,<,lin))* ; None, Id],
[de(maple_uni, — uni)* ;de(ecl, o< ground))”, None, Id).

The remaining parts of the collaborations are executed concurrently. No
filtering is needed (Id for both sub-collaborations), and thus we do not have
any sorter (None), since there is only one candidate after filtering, i.e., the
initial set of constraints. We do not impose any property on the result, and
we are interested in the sub-collaboration that will be faster (first property).
Note that improvements for applying ecl and maple_uni still hold in S%, .

7.3. Combining consistencies

Box consistency [3] is a local consistency notion for interval constraints that
relies on bounds of domains of variables: it is generally implemented as
a (local) splitting of domains combined with the interval Newton method
for determining consistent bounds of an interval. Hull consistency is another
notion of consistency, stronger than box consistency. However, it can only be
applied on primitive constraints that are either part of the original CSP, or
are obtained by decomposing the constraints of the CSP. Then, the reduction
of the “decomposed” CSP is weaker, but also faster. The idea of [3] is to
combine these to consistencies in order to reduce the computation time for
enforcing box consistency.

Let us consider Hull and Box, two solvers that respectively enforce hull
and box consistency of a CSP. Then, the combination of [3] can be described
by

(HullC ; BoxC)*.

Since we can define both solvers and collaborations in our language, we now
specify the HullC' and BoxC solvers:

24 C. Castro, E. Monfroy

BoxC = dc(Boxzc, ¢p—p)* and HullC' = de(Hullce, ¢p)*,

where ¢, (respectively, ¢-) filters one primitive (respectively non-primitive)
constraint together with the domain constraints (e.g., € [a, b]) associated
with each of its variables?, Bozc (respectively Hullc) is a component solver
that, given a constraint c, enforces box (respectively, hull) consistency of ¢
w.r.t. each of its variables.

We can also consider some inner strategies, such as reducing the variable
with the largest domain. Then, Hull and Boz are defined as follows:

BozC = best(Bozc, = pom, p—p)* HullC = best(Hulle, = pom, dp)”,

where “* pom”

of Example 4).

Note that we could once again decompose these solvers into solvers
that enforce box (or hull) consistency of one constraint with respect to one
variable. Describing these solvers at this level, we are close to the generic
propagation-based solver presented in Section 5: only the filter is different.
Thus, we could imagine a more generic solver where the filter would also be
a parameter. Then, solvers presented in Section 5 and in this section would
be designed using the same pattern of operators of our language.

Note also that (Hull ; Box)* can represent the solver int considered
in Section 7.1. We could also think about some other description of Hwull
and Box (e.g., using parallel application of solvers), but then we would not
respect anymore the original combination of [3].

selects the candidate with the largest domain (see the sorter

8. Conclusion

We have presented a strategy language for solving constraint satisfaction
problems using solvers and collaboration of solvers. A key point in this
work is the introduction of the concepts of constraint filters, separators,
and sorters. These notions allow one to manage constraints with high-level
mechanisms. Furthermore, they help describing syntactical transformations
and manipulations generally hidden in the implementation of the current
solvers. These concepts are then used to define strategy operators for ap-
plying solvers. These operators allow us to design solvers by combining the
basic functions, and collaborations of solvers by combining the component
solvers. This language can be seen as a Lego game, where bricks are basic
solvers. These bricks are used to design more complex solvers and collabora-
tions. They can be re-used, assembled together through strategies, used in

9, is similar to ¢pacaps (see Example 3) except that atomic constraints are forced
to be primitive constraints.

Towards a framework for designing constraint solvers 25

higher collaborations, ... Patterns of solvers and strategies (i.e., assembling
of operators) can be instantiated for different domains of constraints and
different strategies of resolution.

The language is illustrated by several examples of constraints of differ-
ent types and by defining solvers of different nature, such as well-known
techniques for solving CSPs over finite domains and non-linear constraints
over real domains, a generic propagation-based solver, optimization prob-
lems, collaboration of solvers (symbolic-numeric cooperation, simulation of
CoSAc, combination of local consistencies). For each example, we have dis-
cussed standard strategies and proposed new strategies that clarify the use
of our language. For lack of space, we did not present other solvers that
we have already designed using our language, such as Gaussian elimination
(and some standard strategies), and Grobner bases computation.

We are currently working on the implementation of this language in order
to evaluate the real applicability of this framework. We are confident that
such a language can help exploring and testing new strategies. From a more
theoretical point of view, we consider as further work verification of the
termination properties of the strategy operators.

References

[1] K. R. Apt. The Rough Guide to Constraint Propagation. In J. Jaffar, edi-
tor, Proc. of the 5th International Conference on Principles and Practice of
Constraint Programming (CP’99), volume 1713 of Lecture Notes in Computer
Science, pages 1-23. Springer-Verlag, 1999. Invited lecture.

[2] F. Arbab and E. Monfroy. Heterogeneous distributed cooperative constraint
solving using coordination. ACM Applied Computing Review, 6:4-17, 1999.

[3] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull
and Box Consistency. In Proceedings of International Conference on Logic
Programming, pages 230-244, Las Cruces, USA, 1999. The MIT Press.

[4] F. Benhamou and L. Granvilliers. Combining Local Consistency, Symbolic
Rewriting, and Interval Methods. In Proceedings of AISMC3, volume 1138
of Lecture Notes in Computer Science, pages 144-159, Steyr, Austria, 1996.
Springer-Verlag.

[5] F. Benhamou and W. Older. Applying interval arithmetic to real, integer and
Boolean constraints. Journal of Logic Programming, 32(1):1-24, March 1997.

[6] Henri Beringer and Bruno DeBacker. Combinatorial Problem Solving in Con-
straint Logic Programming with Cooperative Solvers. In Christoph Beierle
and Lutz Plimer, editors, Logic Programming: Formal Methods and Practical
Applications, Studies in Computer Science and Artificial Intelligence. North
Holland, 1995.

26

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. Castro, E. Monfroy

Alexander Bockmayr and Thomas Kasper. A unifying framework for integer
and finite domain constraint programming. Research Report MPI-I-97-2-008,
Max Planck Institut fiir Informatik, Saarbriicken, Germany, August 1997.

B. Buchberger. Grobner Bases: an Algorithmic Method in Polynomial Ideal
Theory. In N. K. Bose Ed., editor, Multidimensional Systems Theory, pages
184-232. D. Reidel Publishing Company, Dordrecht - Boston - Lancaster, 1985.

C. Castro and E. Monfroy. A Control Language for Designing Constraint
Solvers. In Proceedings of Andrei Ershov Third International Conference
Perspective of System Informatics, PSI’99, volume 1755 of Lecture Notes in
Computer Science, pages 402—415, Novosibirsk, Akademgorodok, Russia, 2000.
Springer-Verlag.

C. Castro and E. Monfroy. Basic Operators for Solving Constraints via Col-
laboration of Solvers. In Proceedings of The Fith International Conference on
Artificial Intelligence and Symbolic Computation, AISC’2000, Lecture Notes
in Artificial Intelligence, Madrid, Spain, 2000. Springer-Verlag. To Appear.

Carlos Castro. Building Constraint Satisfaction Problem Solvers Using Rewrite
Rules and Strategies. Fundamenta Informaticae, 34(3):263-293, June 1998.

Carlos Castro. COLETTE, Prototyping CSP Solvers Using a Rule-Based Lan-
guage. In Jacques Calmet and Jan Plaza, editors, Proceedings of The Fourth
International Conference on Artificial Intelligence and Symbolic Computation,
AISC’98, volume 1476 of Lecture Notes in Artificial Intelligence, pages 107—
119, Plattsburgh, NY, USA, September 1998. Springer-Verlag.

J-C. Faugere. Résolution des systémes d’équations algébrigues. PhD thesis,
Université Paris 6, France, 1994.

T. Frithwirth. Constraint handling rules. In A. Podelski, editor, Constraint
Programming: Basics and Trends, volume 910 of Lecture Notes in Computer
Science. Springer-Verlag, 1995.

K. Geddes, G. Gonnet, and B. Leong. Maple V: Language reference manual.
Springer Verlag, New York, Berlin, Paris, 1991.

L. Granvilliers, E. Monfroy, and F. Benhamou. Symbolic-Interval Cooperation
in Constraint Programming. In Proceedings of the 26th International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’2001), pages 150-166,
University of Western Ontario, London, Ontario, Canada, 2001. ACM Press.

Robert M. Haralick and Gordon L. Elliot. Increasing Tree Search Efficiency
for Constraint Satisfaction Problems. Artificial Intelligence, 14:263-313, 1980.

Alan K. Mackworth. Constraint Satisfaction. In Stuart C. Shapiro, editor,
Encyclopedia of Artificial Intelligence, volume 1. Addison-Wesley Publishing
Company, 1992. Second Edition.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

Towards a framework for designing constraint solvers 27

Philippe Marti and Michel Rueher. A Distribuited Cooperating Constraints
Solving System. International Journal of Artificial Intelligence Tools, 4(1-
2):93-113, 1995.

M. Meier and J. Schimpf. ECLiPSe User Manual. Technical Report ECRC-93-
6, ECRC (European Computer-industry Research Centre), Munich, Germany,
1993.

E. Monfroy. An environment for designing/executing constraint solver collab-
orations. ENTCS (Electronic Notes in Theoretical Computer Science), 16(1),
1998.

E. Monfroy. The Constraint Solver Collaboration Language of BALI. In
D.M. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems 2,
volume 7 of Studies in Logic and Computation, pages 211-230. Research Stud-
ies Press/Wiley, 2000.

E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Con-
straints with Cooperative Solvers. In K. M. George, J. H. Carroll, D. Op-
penheim, and J. Hightower, editors, Proceedings of ACM Symposium on Ap-
plied Computing (SAC’96), Philadelphia, PA, USA, pages 63-72. ACM Press,
February 1996.

Eric Monfroy. Collaboration de solveurs pour la programmation logique ad
contraintes. These de Doctorat d’Université, Université Henri Poincaré -
Nancy 1, France, November 1996. Also available in english and on-line at:
http://www.sciences.univ-nantes.fr /info/perso/permanents/monfroy /.

Christophe Ringeissen. Cooperation of decision procedures for the satisfiability
problem. In Franz Baader and Klaus Schulz, editors, Proceedings of The First
International Workshop Frontiers of Combining Systems, FroCoS’96, pages
121-139. Kluwer Academic Publishers, 1996.

Gert Smolka. Problem Solving with Constraints and Programming. ACM
Computing Surveys, 28(4es), December 1996. Electronic Section.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems
using a branch and prune approach. SIAM Journal on Numerical Analysis,
34(2), 1997.

28

