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Operator alternating-triangular method
for the three-dimentional static problem
in elasticity theory*

T.A. Bukina

To solve the tree-dimensional static problems in elasticity theory in the displacements
a new class of effective iteration methods - factorized operator-triangular methods was
studied. The additive expansion of the diagonal operator leads to the analogous expan-
sion of the initial matrix operator in the sum of triangular-matrix operators. The degree
of convergence of the factorized operator-triangular method is higher than of factorized
operator-diagonal method, when, as in the two-dimensional case, the corresponding iter-
ative parameters were taken.

When solving numerically the three-dimentional static problem in elas-
ticity theory in displacements, we will proceed, as in [1-3], from a factorized
representation of the Lame operator A:

Au=f, z€G, A=R*'KR,
v=0,zel.

(1)
In (1) w = (u1,u2,u3)T is the column vector of elastic displacements, G =
GUT = {z = (21,22,23)T, 0 < ; <1}, the vector f = (f1, fo, fs)T gives
the field of mass forces, and T is the transposition. '
Let € = (e11,€22,€33, 2612, 2613, 2€23)T be the vector of elastic deforma-
tions, €ix = €ki, 0 = (011,022,033,012,013,023)7 be the vector of elastic
stresses, and o = 0. For a physically linear medium, we have

A+2u A A 00 0

A A+2¢ X 00 0

B B A A A+22 0 0 0
oE ke K= 0 0 0 00 (2)

0 0 0 0 p 0

0 0 0 00 u
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Here A > 0, ¢ > 0 are the constants characterizing the properties of the
elastic medium. Their positiveness provides invertibility of the Hooke law
(2), so that ¢ = K~ 'o.

As it is known, for a geometrically linear medium,

d a d T
5.’1:'_1 0 0 3_:3.2_ E‘E_;_),- 0
‘ B d ] ]
E = Ru, R = 0 —3'3:—2 0 3_271 0 -3?3 , (3)
0 ad d
0 0 .é;:; 0 51; 5;;

and the operator R:
H*(u) —» H(e) = H(K 'o)

is thereby defined.

The set of vectors u € H*(u) whose components possess a desired
smoothness and satisfy the homogeeneous boundary value problem from
(1) is assumed to be the domain of definition U(R) of the operator R.

Next,
[, u@,. E(“m’ (21)_2 / M) Do,

i=1 =1
G
As for the Hilbert spaces H(e) and H(o),

3
E(a,k,es,? > [ ePae, ki,

1,k=1 i,k=lG

I

and the space H(g) is an image of H (o) for mapping K.
By definition,
[Ru, o)y = [u, R*o]g-.
If w € U(R), then ker R = {0}, in addition K = KT > 0. Therefore,
A=A">0in (1)
Let us introduce in G a uniform grid

G = {®ijk = (210, T2j, T3k) T, 21 = ih, T2 = jh, T3k = kh, 0 < i,5,k < N}.

Notice that a concrete choice of G, G}, is not essential and is only used for
calculating the constans of energy equivalence.

Of fundamental significance is the fact that if a certain grid approxi-
mation R, of the operator R for which ker R = {0} is chosen, then
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A,=R;KR; = A} > 0. (4)
We will set the operator Ry, as follows: _
v T
(')1'1 0 0 (')xz ()‘-‘:3 0
R, = 0 ()-‘rz 0 (‘)ra 0 () . (5)
0 0 (Joa 0 () (s

The designations in (5) and below we do not explain are standard in the
theory of difference schemes (see [4-6]). Let uj = y. For y € U(R)) we
assume that y = 0 if x;jx € I'y. For such vectors, ker R, = {0}. If one
takes into account that, by definition,

[0k, Ruyly, = [Rhon, ylH;,

for R} we have

Dz 0 0 (Jzm (Jm O
Ro=—| 0 ()% 0 (Jm 0 ()= |. (6)
0 0 (Jm O ()= ()=
Now (4)—(6) determine the grid Lame operator
[ An Aj Ay
Ah = Az]_ A22 A;z = ;: > 0. (?)
Az Az Az
Here
Ay = "(’\ + 2.”-)(')3:151 = #(')1-‘252 - F’(‘)rafsa
Az = ""#(')-1‘151 - (’\ + 2#)(')1252 - #(')xz’fs’
Az = _-“(')37151 - “(')1-‘25-"2 - ()‘ + 2"‘)(-')33535
A = _)‘(')xﬁe - ”(')1:.‘5_,'7 1>7.
Thereby the grid problem
Ahy = fha y= 01 Tijk c I‘h, (8)

is also determined.
To solve the problem (8) numerically, we will consider a two-layer sta-
tionary iterative method o

m+1 _ ym

BLT_ +Apy" =fp, Y =0, zijx € (9)

Let A = diag A, = diag{ A1, A2z, A33}. Then
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An 0 0 P+P* 0 0
A=1 0 Ap o0 |-= 0 Q+@ 0
0 0 M+M

(10)
0 P* 0 0
0 + 0 Q* 0 '—=A1+A2, Ag——-/i;

0 0 M

Il
AN
oM
o o
<

The operator diagon»! decomposition (10) produces the operator triangular
decomposition Ap:

P 0 0 \ P A’ZI gl
A= Ay Q 0 + 1] Q* A;z =A1+A,;, A= A;. (11)
A3y Azs M 0o o0 M

Consider now two iterative methods of the type (9):

m+1 _ ym

(B +wt)(E+wa)—+ 4™ = f,, (12)
ymtt—ym
(B +wa)(E+wadf— 1 ay™ = f,. (13)

The iterative methods (12), (13) are of insignificant difference in the num-
ber of operations needed to perform one iteration. In [3], the degree of
convergence of the iterative method (13) is shown to be higher for the two-
dimensional case than that of the iterative method (12). As will be shown
below, this result is also true for the three-dimensional case.

Lemma 1. If y € U(Ry), then the following operator tnequalities are valid:

A
A A< A, < AF20)(p+2))

— A< 14

M43zt == AP4+3hp+p? 7 (14)
4 . 27l'h * (’\ + 4#)

A 2 .}-I'.E(A +4u)81n —2-'—E, A1A1 S TA (15)

Lemma 2. If y € U(Ry), then the following operator inequalities:

8usin? Z2 N,
(Awy,y) 2 pllyll, An> TLE, A1A2 < #h—;Ah, (16)
2482 +2(1+97) A A+2
N0:4+3“)’2+€, S=ﬂ +h 1ﬂ+ 2( 72), ﬂ=ﬂ’ ‘Y:"M' (17)
¥ 7 p

are true.
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We will comment on some important points asscciated with the proofs
of Lemmas 1 and 2. The validity of the first inequality in (15) and the
firsi two inequalities in (16) is established in a standard manner (see, e.g.,
[6]). Turn to the second inequality in (15). Let y = (u,v,w)T. Then, by
definition

Pu = %((A + 20)ug, + ptig, + Ugy),
P*u = %((A + 2p)uz, + puz, + puz,),
Qv = %(uvxl + (A4 200, + pvg,),
v = %(uv-fl + (A + 2p)vz, + pvz,),
Mw = %(;uwz1 + Bz, + (A + 20)ws, ),
M*w = %(#wm + pws, + (A + 2u)ws,).
Therefore.
(A14iy,y) = [P ulf® + @ v|)? + | M~ w]i®. (18)
Next,

" 1
| P*ul)? = 7all(A + 20)uz, + puz, + puz||?
(19)
A+4pu
< h2 [(A + 2#)”"'51 "2 + ﬂ"u'lelz + #nufa “2] -

Similar estimates also take place for ||Q*v||?, || M*w||?. Thus,

x A+4p
(AlAly’y) < h2

(A + 28)81 + pS3),
where
= |z, II* + vz, II? + [Jws,|%,
Sz = Nz, |* + lluzs 1 + vz, I + Noz |1 + we, |2 + Jjwe,||?.
It remains to note that
(Ay,y) = (A + 2p)51 + pS,.

For the operator inequality (14) we will prove, for example, the left-hand
inequality. We have
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(Ah!hy) = (’\ + 2#)51 + #52 + S3s

where
S3 = —2[(A21u,_v) + (A31u, w) + (A32’u, w)] .

Then
S3> —(A+u)e+e )5, 832> —(A+u)Se. (20)

Now it may be noted that
33=V133+(1—V1)53, 0<iy<l;

and the point is the determination of the constant ¢; in the inequality
Ap > A. We have '

(Ary,y) > (A+2p)81 + pS2 — (A + p)(e + 7181 = (L= ) (A + p)S,
> e1[(X + 2u)S: + pS2).

For the unknown constant ¢;, we get

(A+2p)—ni(A+p)e+et) = (A +2u)a,

(21)
ﬂ_(lﬁyl)()‘*'p') = KC,
whence
Ap 1 A+4p
= —=2TF =" <1
SR CINRC S Wi et A < )\+,u<1

The validity of the right-hand inequality in (14) is established in a similar
way. The accuracy (unimprovability) of the estimate (14) is evidenced by
the fact that

A O+t _,
A2 43+ p? T A2+ 3Ap+ p?

Finally, as for the operator inequality (16)

X =(447y,y) =L + Lo (22)

The scalar products of the type (P*u, P*u) and (P*u, A},v) are incorpo-
rated into the term )_,, while the remaining ones are included in the term
2_2- All the scalar products entering (22) will be estimated through ||ul|?,
lol|2, |lw}|?. For ¥°,, we have the following estimate:
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2u? + (A + 21)?
=, < 2O e

The term ) _,, will be estimated using the Cauchy-Bunjakovsky inequality
and the ¢-inequality. When choosing &, we proceed from the equality of
the coefficient at ||'u|]§, [lv]|? and ||w||? in 3. Then

. A+2
(Arain,y) < G242t 4er2+ ) o

= B3t olbll < (a4 377 ) Any,)

Using Lemmas 1 and 2; it is possible to find all the needed constans in
order to estimate the degree of divergence of the iterative methods (12) and
(13). When choosing the parameters w and 7, the norms of the transition
operator are assumed to be minimal (see [4]).

Theorem 1. If y and y™ are the solutions to the problems (8) and (12)
respectively, then

ly™ - yllAh <pPly° - yIIAh,

1-m 22p sin Tt "h

1+m’ = )\2+3:\p+u2'1+sm"2'"

=

Theorem 2. If y end y™ are the solutions to the problems (8) and (13)
respectively, then

m < m 0_ ,
lly yllAh <pr7ly yIIAh_

1-m Ve - 2s5in? %}
> = —_— < = N = —
Py > p2 <M= N & No

1+
Remark 1. The inequality 7 > 7, from Theorem 2 is checked by using
simple, but cumbersome munipulations. Their essence is reduced to the
following. Let

_ 2t sin ”2h
= (t+2)(2t+1) 1+smT

Then
2V/2 sin ——

"= viNo+ \/5 sin 5*

and we should cunvince ourselves in the \'ahdlty of the inequality
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< 2(t + 2)%(2t + 1)2.

No P

Remark 2. The inequality p; < p; also holds true when (12) and (13)
are applied in the nonstationary version, with a stable Chebyshev set of
iterative parameters Tp,41.
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