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Fictitious domain method
for fourth-order elliptic problem*

N.V. Borodikhin, A.M. Matsokin

In this paper, we study the convergence of the fictitious domain method for
solving a system of grid equations for the finite element method that approximates
the third boundary problem for the differential equation A?u + au = f in the
piecewise bicubic Hermit interpolations subspace of W2(f2) on a rectangular grid.
The main operation on each step of the method is a double inversion of the FEM
operator for the trivial boundary value Dirichlet problem for the Poisson equation
in a rectangle, which interior includes the rectangle composed domain . For this
purpose an inner iterational process is built. The speed of the convergence of
two-level iterative method does not depend on the grid parameter, so this method
gives the solution with O(h~2(In h~*)? Ine~*) arithmetic operations, where ¢ is an
accuracy of the solution.

1. Definition and convergence of the fictitious
domain method

Let us consider the fourth-order equation

641; dtu 8*u
@+2W+B_¢+au“ﬂ (1.1)

a>0, felLxQ),

Lu=Au+au=

in the domain  C R? and boundary conditions

%y &u 3*u
[Au + (1 - 0)(2ﬂ1ﬂ2m - ﬂ%@ - n%-a?)]an= 0,
1.2
&u 32u) (1.2)

9 a g'u o'u 2 2 ...?._2,}_‘_)] =

where o € (0, 1), n = (n1, na) is the vector of outward normal and s =
{n2, —n,) is the tangent.
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The projective definition of this problem has a form of [1]:
weW2Q): Mo(uv) = falv) = j;fudn Vve W2(Q), (L3)
where
Ma(u,v) = Aq(u,v) + (1 — o)La(u,v),
Aq(u,v) = /ﬂ AuAvdQ, (1.4)

La(u,v) = fn(u“’v” + 2UpyUgy + Uyyyy + auv) dSd.

Following a strategy of [2, 3] we are going to build a fictitious component
method for solution of (1.3).

Let the open rectangle II C R? include the closure of 2. Now we define
functional spaces

H = Wi(I) nwi(m),
Hyg = {ve H: v(z,y) =0 V(z,y) € Q}, (1.5)
Hipm = {‘U € H: Mp(v,w)=0 Vwe Hog}.

We define inner products Mq(u,v) and My (u,v) in the spaces W2(12)
and H respectively. Let us assume that there is bounded linear operators
of the function prolongation from  to IT'\ Q:

pr: W3(Q) = H, (1.6)
and of the function restriction from IT \ & to Q:
ra: H— Wi(Q). (1.7)

Let Ag(u,v) be an inner product in H and Mq(rqu,rqv) be an inner
product in Hy pr, so we note that

”p'r'”_zMH('U:'v) < MQ(TQ’U,TQ‘U) < MH(”:”) Vv € HI,M; (1 8)
coAn(v,v) < Mn(v,v) < e1An(v,v) Vv e H. '
Statement 1. The sequence {rqu*} of iterative process

e H: Yve H
An(uk+1 - uk,v) = -—T[Mn(f‘nuk,fn’”) - fa(rav)]  (1.9)

converges to solution of (1.3) when T € (0,2/c1).

Proof. We denote an orthogonal projector from H to Hj m with respect
to the inner product My (v,w) by Py,p. ThenVu,v € H
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Mq(rqu,row) = Mq(ro Py pmv,ro Py pyw) = Mu(APy pmv, Py ppw)
= Mu([A2 Py v, [AY2P, p]w),

where the operator A : Hy m — Hy s self-adjoint and positive definite
one.

Further, the bilinear form My (v,w) defines a self-adjoint and positive
definite in the inner product A (v, w) operator B : H — H:

My (v,w) = Ag(Bv,w).
Then Yv,w € H
Ma(rou,rqw) = Mu([AY2Py ylv, [AY2 Py pr]w)
= An([AY? Py )" BIAY? Py po, w) = An(Tw, w),

where T : H — H is a self-adjoint and positive semi-defined in Aq(v,w)
operator and ker T' = Hq.
So, the iterative process has an operator form

L v\ (LN} (1.10)

and to research its convergence we should note that from (1.8) it follows
that

An(Tv,v) = Ma(rqu,rquv) < Mn(v,v) < c;Ap(v,v) Vv e H. (1.11)
Introduce a subspace
Hia={veH: Ag(v,w) =0 Vw € Hyq} =ImT,

consisting of functions v € WZ(Q) prolonged to IT \ © with the minimal
norm |[v||la = /An(v,v). If we denote by P; A the orthogonal projector
from H to Hy A with respect to the inner product Ap(v, w), then from (1.8)
it follows that Vv € H

An(Tv,v) = Ma(rqu,rav) > |lpl|~* Mu(Py,av, Py o)
2+l % coAn( Py, v, Py pv)
> |lp, )| 7% coAn(Py,av, Py av). (1.12)

v

Let us now rewrite the iterative process (1.11) in the form
(@**)oq = (@¥)o =0,
(@ )18 = (W8 = —7T((W*)1,a — (w)1,a],

where new designations have been introduced: (v);a = Py av, (v)oq =
v — Pav € Hoq. From (1.11) and (1.12) it follows that in Hj A

(1.13)
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IE - 7T < max{|1 = llpe| 2ea, |1 —Tcl\} =q <1 (1.14)

when 7 € (0,2/¢;). Therefore, due to rqv = rqPy av Vv € H, the following
formulae hold true:

H (uk)l,A - (u)l,A”A < gk

(u®)1,a — (u)l,aHA -0,

k k k|0
- < s - @ral,, < ~ (@haf, ~o.
Hrgu muHMn < H(u")1,a — (u)1,a P a1qy [|(u')1,a — (u)1,a A 0

The iterative process (1.9) is called the fictitious domain method for solving
(1.3). m]

2. PFictitious domain method for FEM scheme

Let us assume that  is composed of rectangles and it is possible to make a
square grid Oy, on  with a step h. Moreover, we assume that it is possible
to extend this grid to a square grid II; on the rectangle II. We denote by
Hj, a subspace of H which consists of all functions v continuous in {2 with
their derivatives vg, vy, Ugy and bicubic in every rectangle of II,. The finite
element method for (1.3) is formulated as follows:

up € Hp : Mq(rqup,rqu) = fa(rav) = fn.fmv dQ VveHp (21)

The iterative process (1.9) is approximated by the process
uftl € Hy: Vv € Hy
Ap(ubt! —uf v) = —r[Mq(rqul,rqv) — fa(rav)]. (2.2)
The proof of the convergence of the sequence {rquf} to rqus is analogous to
the proof of Statement 1, so the speed of the convergence does not depend

on h. The main operation of the fictitious domain method (2.2) is to solve
problems like

vy € Hy @ Ap(vp,w) =g(w) Yw€ Hy. (2.3)

We assign each function v € Hj, to the vector 7 € RN() of values of the
function and its derivatives vz, vy, vgy in grid nodes of II; excluding values
of the function and its tangent derivative in the boundary points because
they are equal to zero. We define symmetric matrices and a vector of the
dimension N (h):

Mﬂ(rﬂuhyrﬂv) = (Mhﬁ, ‘LTJ), fﬁ(f‘gw) = (fa ’lﬁ), Aﬂ(vaw) = (Bhﬁ: ﬂ')),

Vav,w) = LVUV&UdH = (Do, w),

(v,w)o = f vwdll = (Ex9, 0), Vo,w € Hy. (2.4)
I
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Theorem 1. There exist positive constants vy and 7, independent on h
such that for all 5 € RN the following inequality is true:

Yo(Dn[Ep] " Dy, 5) < (By, ) < 71(Da[Ex]"1Dy5, 5). (2.5)

From (2.5) it follows that the iterative process (2.2), a matrix form of
which is

By(@**! — @*) = —r(Ma* - §), (2.6)

can be changed to the iterative method
Dh[Bp] ™ Da(@**! — a%) = —r(Mya* - ), (27)

which converges when 7 € (0,27 /c1) and the convergence speed of which
does not depend on h. The main operation of the method (2.7) is the solution
of the variational-differences Dirichlet problem for the Poisson equation.
Therefore, the rectangle II is divided into square cells by grid lines z = z;,
1=0,1,...,n+1l,andy = y;, j =0,1,...,m+1. We define the polynomials
o(t) = (1 —t)® + 3(1 — t)2¢, 9(t) = (1 — )%, and the functions [1]

o(lz — zi]/h), z; <z < Ty,
o(2) = { oz —z)/h),  ma<z<a,
01 T ¢ (mi—li $i+1);

hd)([w - m!]/h): T S & S Tit+1,
¥ (@) = { —he((zi —2)/h), o1 <z <,

0, z ¢ (zi-1, Tit1).

The functions tp_s-y)(y) and 1/;_,5-”) (y), 3 =0,1,...,m + 1, are to be defined
analogously.

3. Equivalence of matrices Dy[E,] 1Dy, and B,
in one-dimensional case

We assign v(z) of

H = span{e{®, 0{7),..., @, 4,9, 4,4,
to a vector ¥ = (v1,v2,...,Un, V0, v],...,V), vy q)T, where v; = v(z;), vi =

v'(z;). Define the one-dimensional analogs E,(f), D}f) , and M,(f) of the
matrices Ey, Dy, and By:
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(=)~ —\ _ Tn+41
(B, '5,w) = v(z)w(z) dz,
. To

Tn+1

(D5, ) = ] V() (z) dz, (3.1)

Tn+1

(B35, @) = fx o (e)u" (z)dz,  Vv,w e H®,
0

(5,%) = ?;01 [v;w; + viw]] is an inner product in R¥™2 (yy =

Statement 2. For each vector & € R¥t? the following equations are true:

156 54 22 —137 [vi-1 Vi1

+
)5 5 __h_ 54 156 13 —22| | v v;
(B0 %) = 330 Z 22 13 4 =3 ||hv_ |’ | Ao, ]| |’ (3.2)
TAL-13-22-3 4] Lhy ho!
co,5(I75,9) < (BY5,9) < e1,5(1y75,9), (3.3)

where I = diag(2h,...,2h,h%,2h%,..., 283, K%}, cop & 0.2/420, e1p ~
216/420;

1 72 3v2 3v2 | [vici—vi Vim1— V4

. 1 n+
(D5, 3) = o 3v2 4 —1|[v2huis1|, | V2huica | |, (3.4)
=1\ |3v/2 -1 4| |V2hy V2h;
il (vl ~vl)? vy ol v —viq)?
B(m)—, 7Y — { i—-1 3 +3[ i—1 7 _2 1 T ] }‘ 3.5
(By"®, 7) 2 h Jh hvh (8:5)

These equations follow from deﬁmtmns of matrices (3.2). From (3.3)

it follows that matrices D (=) [E’(m - 1D and D( ){I (=) ID( *) are spectral
equivalence:

cos (D11 D{09,0)

< (DPEP D5, 9) < 0 p (D05, ), (3)

so we will proof the equivalence of matrices J‘B’,(1 *) and D(z) (I (z)] 1D,(f). Let

o vi_q — b= vi_q1 + v Vi Vi-1
! h h 2
3t; — b7y 3t +om
a; = — i 8= i+ ony i=1,...,n+1

\/E' bl
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From equations of Statement 2 it follows that

n+1

n+1
=5, 7) Z(r +3tH)h =% [US(a + 83 + 1.1 + 83, (3.7)

D)1m@) . 9
302 (0P 1711 D")5,5) = i Z(aam — o + Bir1 — 36:)% +

1 1 & 1
~af + 1 Z a1+ 6i)? + Zﬁrzw-l- (3.8)

i=1

W

It is easy to check the following identity:

n

> (3ais1 — o + Bis1 — 36;)% + 1803 +9 Z‘ a1+ Bi) + 1862,

i=1 =1
= 12(af +6}) + GZ(a? +87) +12(ady + B2,y + 32, (3.9)
1=2
where

&2 = Z,@H_l—a,,) +3(a; + £1)? +62(a,,+;6’1

i=1 i=2
3(an+1 + Bat1)? + 32[ (it — o) + (Bir1 ~ B)?).
=2
From (3.7) it follows that

= : 2) < 5.7) < — 2 2y
36 2+ 1) < (4{78,0) < 55 3(al + )

From (3.8) and (3.9) we have

n+1 n+1
Z(a +62) < 303D 1™ 1 D@5, 5) < 1802 of + B2).

From these inequalities and (3.6) it follows

Theorem 2. There exist positive constants vy and -y, independent of h such

that
(z) - -
By6,0 _ _
70 S (D(Z)[;(ﬂg]lp)(z]— 5) sm VUE RY(®, # 0, (3.10)
r 1 Eh h UV '
and vy > 50, v1 < 2268000.
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Remark. Estimations for 7y and ; obtained in this section are very rough.
From the experiment it follows that yg = 1, 71 = 1.45.

Denote by E;ly), D,(Ly), and B,(ly) the matrices of (2m + 1)-th order that
are one-dimensional (with respect to y) analogs of the matrices Ej, Dy, and
Bj. Obviously that all the results of this section are also valid for them.

4. Spectral equivalence of Dy[E;] "' Dy and By,

Each function v(z,y) € Hp:

m n (@) m n+l (2)
T T
= 3wl e + 30D (et
§=114=1 j=11=0
+1
S )y S E vay )i 5P p
(vy)i J‘Pz oy )i 3
=1 j=0 =0 j=0

corresponds to a vector of the dimension (2m + 2)(2n + 2):

=[G, .., BN (TN TN )]
where

—(z)

) = (o1, 2 Ungs (02)0,) (V)11 (v2)nt1,47s

@) = [@)1s- -+ (@) (042)ogs (g s (Bt gl"

We introduce a matrix of the dimension 2n + 2

(‘P( ))‘P_g )) i=l..;n ' ( i ,’(,b ) i=1,..,n
Q(z'k) _ J=1.09n J=0,...,n+1
" () (2) @) @ | ’
(¢ )90_1 ) k|i=0,..,n+1 ('l)bz 111)_7 )k 1=0,...,n+1
j=l,..,n 7=0,...,n+1
where

dzx.

zns1 ghy(@)(z)  dFw(®(z)
(=) @), = ¢
('U )w )k /:;0 dmk dmk

Then
B =Y, D = QY. BY =ef?,

v) _ Q"(’z,O), Dﬁy) — Q’(’g,l), B}(Ly) =z Q%,Z).
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B, = EY @ B,
Dy = (BY @ D) + (DY & E),
By = (B B + 2D © D®) + (BY @ B),  (4.1)
DilEx]"'Dy = (BY ® DP(EP D)) + 2(DY D)) +
(DYIEP)' DY © B,
where ® is a matrix tensor product symbol ([4]).

Statement 3.
Sp{(Dn[Ex) " D1) "' B} € [v0,m1], (4.2)

where the constants vy, 1 are spectral bounds of the matriz
(D;f) [E’(lm)]—lD’(::) )—IB}lz)
from (3.10).

Proof. Let ¢ be an eigenvector and A be an eigenvalue of the matrix
(Dh[Eh]_th)_lBh. Then from (3.10) it follows that

A = (Bhﬁﬁ ﬁ)
(Dr[ER)~1Dyo,7)
< max (B ® B, ) (B ® B )5, 9) 1)
~ BV e DB D)5,5) (DY BV DY e E)N5, )

< max{ (D (B DI B, 1} < .
The lower estimation of A is proved similarly:
A2 dmin((D7 B DI D) 2 . 0

This statement finishes the proof of Theorem 1.

5. Inversion of the matrix D
We introduce a matrix
Dy = (EY ® D)y + (DM & E), (5.1)

where



42 N.V. Borodikhin, A.M. Matsokin

’ E}{Iy)zh[mEm 0 ]

h ™ 0 h?E,.o

5@ _p 112E, 0 (
0 h2Enis

(5:2)

pe _ 1 0-3Anh29 opw=l 0.34m 0
TR0 BEa PR 0 EEn|]

Ej is the identity matrix of the dimension k, Ek+2 = diag{1,2,...,2,1} is
a diagonal matrix of the dimension k + 2, A is a tridiagonal matrix of the
dimension k: (Ak)i'-g =2, (Ak)i,i-}-l = (Ak)i+1,-i = —1.

Statement 4. The matriz Dy, is spectral equivalent to Dy:
do(D®,3) < (Dy3,7) < di(Dyo,5) Vo € REMDEMH, (5.3)
where dy > 0.56/420, d; < 103/420.

Proof. One can prove that

eof ”(f)f,’@) < (E,(f)ﬁ,ﬁ) < e (EW¥5,9) VoeRM?
eo(EV5,5) < (BY9,7) < er (B3, 7) Vo€ R,
2(5P5,5) < (DP5,5) < 5(DF5,5) Vo€ R,
2(1')%')13,5) < (D}f")ﬁ,ﬁ) < 5(1“);‘31),5, 3) Vo Rm™

where ey ~ 0.14/420 and e; =~ 10.3/420. So, from the properties of the
tensor product of matrices ([4]) we can obtain inequality (5.3). |

Statement 5. The ezact solution to a system with the matriz Dy, can be
obtained for O(h~2Inh™1) arithmetic operations.

Proof. From the careful analysis of the system Dy = g it follows that its
solution can be computed by performing the following steps:

1. To solve the 5-points finite-differences scheme with constant coeffi-
cients by, for example, the cyclic reduction method for O(h~2Inh!) oper-
ations [5, 6];

2. To solve n + 2 systems with tridiagonal matrices of m dimension and
m~+2 systems with tridiagonal matrices of n dimension (by the sweep method
for O(h~2) operations [5, 6]);

3. To compute two multiplications of (2n-2)(2m-+2) dimensional vectors
and diagonal matrices (for O(h™2) operations). 0

Statement 6. The solution to the system Dp% = g can be found with an
accuracy € in the energetic norm for O(h~2Inh~'lne~!) arithmetic opera-
tions by the iterative method
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Dy(a**! — %) = —r(Dpo* - g), ° =0,
" = (Dy' —Tn)g, N =O(lne ), (5.4)
Ty = D (D, V> Dy ) E — Dy Y2 DDy V)N ;2
This statement is a corollary of Statements 4 and 5.
Statement 7. There ezists N = O(Inh™') such that Vo € R(Zn+2)(2m+2)
0.5([D;* — Twl]w, %) < (D;'9,9) < L5([D;* — Twls, 9), (5.5)
From this statement and Theorem 1 follows

Theorem 3. The solution to system Ma* = f (the matriz formulating
of (2.1)) can be found with precision ¢ for O(h~%(Inh~1)2Ine~1) arithmetic
operations by two-level iterative method ([7])

a**! = @* — 7 [D;Y — Tw|EMD; ! -~ Tw)(Mya* - F), (5.6)

where the parameters Ty can be chosen on variational principles [8].
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