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Algorithms for the construction
of quasiregular hierarchical grids*

G.A. Borisov, V.P. II'in, V.M. Sveshnikov

1. Introduction. The problem of the construction of “good” grids for the
numerical solution of multidimensional boundary value problems (BVPs) in
complicated computational domains has a big history and extensive special
literature, see [1-5], for example.

There are two main conventional requirements for the discretization of
BVPs. The first one consists in the approximation quality which lies in
the adaptivity to boundary peculiarities (vertices, edges, surfaces) and to
differential properties of a solution, with possibility of local refinements.
The second requirement means a simple grid topology and data structure
to provide an efficient finite element or a finite volume approaches. We also
take into account that modern fast algorithms of the numerical solution are
based on the domain decomposition and multigrid principles which require
much more complicated grid objects.

Thus, our objective is to satisfy the above mentioned conditions by con-
structing quasiregular, hierarchical, locally modified grids, for sophisticated
two-dimensional boundary value problems.

The latter means that a computational domain (CD) consists of various
computational subdomains (CSDs) with different functional or “physical”
properties (differential equations to be solved with a description of coeffi-
cients and functions), and their boundaries can be piece-wise smooth, multi-
connected and consisting of different segments of computational boundaries
segments (CBSs).

A local modification, see [5], means that the grid nodes near boundary
vertices and edges are shifted to the boundary with a possibility of saving
the topology of a grid.

Quasiregularity means that a discretized computational domain, or grid
domain, can consist of grid subdomains (GSDs), or subgrids, both regu-
lar and irregular. A regular grid, for example rectangular or triangular,
is defined by its coordinate lines, and by simple uniform interconnections
between the neighbouring nodes. Each GSD can include several embedded
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subgrids with refined meshsteps. We suppose three levels of grid refinement
embeddings. This approach also includes the classical multigrid principle.

Formally, the problem of construction of a universal mesh consists in
forming the grid data structure (GDS) which defines uniquely all the topo-
logical and geometric specifications of elementary grid objects, i.e., nodes,
edges and finite volumes with necessary references to macro-objects from
input data (CSDs, CBSs), which are the results of user graphic interface
preprocessing. Thus, in what follows we present definitions and data struc-
tures for the macro- and the micro-level grid objects, algorithms a local of
grid modification and data transformations which provide the full necessary
information for the implementation of approximation of the BVP by finite
volume or finite element methods.

2. Macrolevel data structure. Let © = |J, ; be an open computa-
tional domain of the BVP and = QUT be its closure with the external
boundary I'. Here Qx, k =1,..., Ncsp, are computational subdomains with
different functional, or physical, properties (we also formally define {2y as an
exterior subdomain). The boundary I' = J; Ty0, I = 1,... , Npg, consists of
different computational boundary segments I';o which are specified by their
own beginning and end points P!, P¢, geometry (equations), and boundary
conditions. The joint (internal) boundary segments I'y y between the subdo-
mains §; and Qp, together with the external segments, form the boundary
Iy = Up Ty of the subdomain Q.

In addition to computational geometric objects we define the grid domain
Q" the boundary I'?, the subdomains Qr, k' =1,...,Nesp, QF = Jp O}
and the grid boundary segments I‘ﬁ,hm, (between the BGSDs with numbers
m and m') which provide the boundary TR = Upy TR o of Q.

Computational subdomains and boundaries can coincide with the cor-
responding grid objects, but in general they can be different. The main
conditions for their definition are: @ C _ﬁh, and T is approximated by a
certain set I‘i‘n,m,.

For the sake of the efficient construction of algorithms, we also define
computational-grid objects (CGSDs and CGBSs) which are the intersections
of the respective computational and grid subdomains or boundary segments.

Each grid subdomain is formally defined as triangular, quadrangular
(rectangular, in particular) or polygonal and its sides are described as a set
of CGBS:s.

Additional data include information on discretization of each side of GSD
and the rule of definition of the nodes inside the GSD. For example, the 1D
partition of sides can be piecewise analytical, i.e., uniform or with geometric
or arithmetical increments.
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3. Microlevel data structure. The elementary 2D grid objects are the
nodes PP, the edges EJ', and the non-mtersectmg volumes V% (elements).

The grid domain is defined as Q" = |J,, V!, and the gnd boundary is a
union of some set of the grid edges Ep.

Each node is defined by its coordmates, and affiliation to some bound-
ary segment or a computational subdomain. The edges and the finite vol-
umes are specified by their vertices as well as by relations with geometric
macroobjects. Microlevel data structure also includes switch-back references
on different types of elementary objects to provide all necessary functional
information for the approximation procedures.

4. Local grid modification. One of the ways of constructing a regular
grid adapted to a complicated computational domain is the following. A
regular grid domain (GD, grid rectangles, for example) is superimposed
in the CSD, and later the nearboundary nodes are shifted to the closest
points of a boundary. There are two main rules for the resulting grid: each
boundary vertex must be a grid node and all intersections of the boundary
with grid edges must be nodes as well.

The grid modification of the algorithm can be formulated as follows.
If some boundary vertex is disposed into the Dirichlet—Voronoi cell (the
DVC), corresponding to a certain original (nonmodified) node, this node
is shifted to the vertex. Also, if a smooth part of the boundary crosses
the DVC, its node is shifted to the closest point of the respective part of
the boundary. The results of the modification are the new coordinates of
the shifted nodes and their encoding, i.e., equipping of the numbers for the
respective boundary vertices or segments. In the modified and the original
grid subdomains, the numbers of nodes and their links are the same, i.e., we
have two topologically equivalent grids.

The algorithm is successively realized for each subdomain by loops on the
corresponding internal grid-computational segments, and is in discretization
of these segments and on coding (coloring) of the respective boundary grid
nodes.

5. Algorithms of grid data structure transformations. Formally, any
grid is defined by its data structure. On the microlevel, we consider two dual
DSs, i.e., node and element (volume) oriented.

The DS node includes the numbering and the classification (encoding, or
coloring) of grid points which are divided in to the following types: macron-
odes, i.e., coinciding with the boundary vertices, boundary and internal
nodes of the first level (a coarse grid) and internal nodes of the second and
the third levels (intermediate and fine grids).

We make use of two types of node numbering (ordering): regular and
unique. The first one means the numbering of all the nodes in each grid
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subdomain successively, i.e., for the first GSD, for the second GSD, etc.

In the GSD ordering, the high level grid subdomains succeed the parents
subdomains of lower levels. Thus, in the regular ordering, one node with
affiliation to different GSD, has several numbers. Another result of this
approach consists in the formal definition of such a grid object as GSDs at
different levels.

In the unique ordering, each node has only one number, and the corre-
sponding list (the integer array) contains all the information on the node
classification (coloring) and on the references to the regular numbering.

The subdomain affiliation of the node is defined by the algorithm of
the point localization and by the geometric analysis of intersections of the
coordinate lines with the boundaries of subdomains.

The element oriented data structure is constructed on the basis of the
node DS, also by loops on grid subdomains and of the geometric analysis
corresponding to computational boundaries and subdomains. Each element
has a unique number only and contains all the geometric and functional
information on its vertices, edges and volumes, necessary for approxima-
tion of the BVP and for formation of the, algebraic data structure for the
subsequent numerical solution to the problem.
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