Bull. Nov. Comp. Center, Comp. Science, 19 (2003), 15-24
(© 2003 NCC Publisher

Associative parallel algorithm
performing depth-first search

T.V. Borets

In this paper, we propose a novel associative parallel algorithm performing
depth-first search on an abstract model of the SIMD type with vertical data pro-
cessing (the STAR-machine). This algorithm is represented in two ways: as re-
cursive and non-recursive STAR procedures, whose correctness is verified and time
complexity is evaluated.

1. Introduction

Algorithms of systematic traversing of a graph, when each vertex is in-
spected exactly once or the next traversal of vertex do not affect the run
of the algorithm, have an important place in the graph theory. The best
known among these algorithms are the depth-first search and the breadth-
first search. On the basis of these methods of graph traversing many al-
gorithms were developed, such as graph testing for connectivity, checking
spanning trees for optimality, finding the immediate dominators [1], and
others.

The implementations of these algorithms on the RAM are well known
and described in many books of graph theory, for example [2]. On sequential
computers, the algorithms take O(m + n) time, where n is the number of
vertices and m is the number of arcs in the given graph.

We are interested in the implementation of the algorithms on asso-
ciative parallel computers, because they are mainly oriented to solve the
non-numerical problems. This class of parallel computers includes the well-
known systems STARAN, DAP, MPP, and CM-2. Such architecture pro-
vides a massively parallel search by contents and processing of unordered
data represented in the form of two-dimensional tables [3].

The Breadth-first search is very naturally performed on this architecture.
A group of associative parallel algorithms based on it has been enumerated
in [4].

In this paper, we show how to implement the depth-first search on asso-
ciative parallel computers.

16 T.V. Borets

2. Model of associative parallel machine

Now, we will describe the model. It consists of the following components:

e a sequential control unit, where programs and scalar constants are
stored;

e an associative processing unit consisting of p single-bit processing el-
ements (the PEs);

e a matrix memory for the associative processing unit.

To simulate data processing in the matrix memory, the STAR-machine
uses new data types: word, slice, and table. The types slice and word
simulate bit column access and bit row access, respectively. The type table
is used for a definition of tabular data.

The language STAR is described in [5]. In this paper, we need the
following operations and predicates for slices.

Let X, Y be variables of the type slice and 7 be a variable of the type
integer. We use the following operations:

SET(Y) sets all the components of Y to '1’;
CLR(Y) sets all the components of Y to '0';
Y (7) selects the i-th component of Y7

FND(Y) returns the ordinal number 7 of the first (or the uppermost) com-
ponent '1' of Y, 5 > 0;

STEP(Y) returns the same result as FND(Y) and then resets the first '1’
found to '0'.

The predicates ZERO(Y') and SOME(Y') and the bitwise Boolean oper-
ations X andY, X orY, notY, X zor Y are introduced in the usual way.
Let T be a variable of the type table. We employ the following two
operations:
ROW(i,T) returns the i-th row of the matrix T,
COL(¢,T) returns the i-th column of 7'.
Following Foster [6], we assume that each elementary operation is per-

formed at once. Then the complexity of algorithm is defined as a number
of elementary operations, performed in worse case.

3. Preliminaries

A directed graph (digraph) is a pair of sets (V, A), where V = {1,...,n} is
a set of vertices, A is a set of arcs, ACV x V.

Associative parallel algorithm performing depth-first search 17

Let e = (u,v) € A be an arc, then the vertex v is the head of the arc e
and the vertex w is its tail.

The depth-first search (DFS) is a technique to traverse a graph system-
atically. It uses a strategy: to go as deeply as it is possible (there is an
outgoing arc that has not been passed) and to search another path, other-
wise. The DFS runs until it traverses each vertex that is reachable from the
given vertex.

The depth-first search numbers vertices with 1,2, ..., n in order, in which
they were visited for the first time. The number assigned by the depth-first
search to a vertex will be called depth-first search number (the DFS-number).
The depth-first search also computes a spanning tree of the graph called the
DFS-tree.

In the STAR-machine matrix memory, a directed graph will be repre-
sented as an association of the matrices left and right, where each edge
(u,v) € A is matched with the pair (u,v). We also use the matrix code
containing binary codes of vertices. Let us recall that vertices are integers
represented as binary strings. A tree will be represented as a slice, in which
the positions of tree arcs will be marked by '1’.

4. Associative parallel algorithm performing
depth-first search

On sequential computers, the depth-first search can be represented in two
ways: by a recursive procedure and by a procedure using a stack. The
associative parallel algorithm can be represented by the same ways. Both
implementations will be shown below. They use the following input param-
eters:

e matrices left, right, and code, which give the problem graph;

e 7o0t, saving the binary code of the selected vertex.
After execution of the procedure

e the matrices left1l, rightl give the graph arcs in the DFS-numbering;
e the matrix NV stores the DFS-numbers of the vertices;
e the slice T stores the positions of arc belonging to DFS-tree. We

assume that it is empty before algorithm execution.

Before describing the algorithm, we adduce some basic and auxiliary
procedures.

4.1. Basic and auxiliary procedures. We will use the following two
basic procedures from [7].

18 T.V. Borets

The procedure MATCH(T, X, v, Z) defines in parallel positions of those
rows of the given matrix 7', which coincide with the given pattern v written
in binary code. It returns the slice Z, where Z(i) = 1’ if and only if
ROW(:,T) = v and X (z) ='1".

The procedure WMERGE (w, X, T) writes in parallel the word w in those
rows of the given matrix 7', whose positions are marked by '1’ in the slice X.
It returns the matrix T', where ROW (¢, T) = w if X (z) = '1’, and unchanged,
otherwise.

These procedures take O(k) time, where k is a number of bit columns.

Now, we propose the following auxiliary procedure that can be found in
the appendix.

The procedure OrdNode(left, right, code, node, ord, X, leftl, rightl,
NV ,Y) uses the matrices left, right, and code to represent a given graph, and
binary word node to represent a vertex to set a DFS-number. The current
DFS-number is stored in integer variable ord. The procedure returns the
slices X and Y, and the matrices leftl, rightl, NV.

It runs as follows:

e finds the binary code for ord;

e finds the position k of node in the matrix code, and writes the binary
code of ord to the k-th string of the matrix NV

e finds positions of strings that coincide with node in the matrix left
and writes the DFS-number of node in the corresponding strings of
the matrix leftl and '1’ in the corresponding positions of Y, if there
are '1' in X.

e finds positions of strings that coincide with node in the matrix right
and writes the DFS-number of node in the corresponding strings of
the matrix right1 and '0’ in the corresponding positions of X.

Now, we give some explanation to procedure’s run. The problem graph
is shown in Figure 1. We want to number vertex 5 and assume that vertices

Figure 1. The graph just before Figure 2. The graph just after
execution of OrdNode execution

1
2
3
4
5
6
7
8
9

10
11

Associative parallel algorithm performing depth-first search 19

1, 2, 3 are numbered. Then node is equal to the binary code of 5, ord = 4.
The slice X stores the positions of solid arcs. Figure 2 shows the graph just
after numbering the vertex. The slice Y saves the positions of bold arcs,
ord = 5. The positions of the arcs (2,5) and (6,5) are marked by '0’ in X.

4.2. Representation of the algorithm using recursion. In this sub-
section, we will describe a recursive algorithm for finding the DFS-tree. This
is performed by a procedure DFS% using the above parameters.

The procedure also uses the following input variables. Integer ord stores
the current number in decimal code. All arcs ingoing to unnumbered vertices
are marked by 1’ in the slice X. We assume that ord = 1 and the slice X
saves only 'l’ (it can keep some '0' in the case, when we do not need to
traverse any part of the graph).

The procedure also uses some additional variables: node keeping the bi-
nary number of a vertex to be numbered by the current ord; the slice Y
saving the positions of arc outgoing from the node to unnumbered descen-
dants.

The idea of the algorithm:

1. Give the number to the vertex root and remember the positions of arcs
ingoing to unnumbered descendants.

2. While the set of such arcs is non-empty:

— choose the first descendant node;
— add the arc (root, node) to the DFS-tree;
— repeat the procedure for the vertex node.

Procedure DFSx(left, right, code: table; root: word;
Var X: slice; var ord: integer;
Var leftl, rightl: Table; Var NV: Table;
Var T: slice);
Var Y: Slice; node: word; j: integer;
Begin
OrdNode (left,right,code,root,ord,X,leftl,right1,NV,Y);
while SOME(Y) do

begin
j:=STEP(Y);
T(j):=’1;

node:=ROW(j,right);
DFS*(left,right,code,node,X,ord,leftl,rightl,NV,T);
Y:=Y and X;
end;
End;

20 T.V. Borets

Theorem. Let a directed graph G = (V, A) with the selected vertex root be
given as described above. Let the slice X and ord satisfy the above require-
ments. Then the procedure DFS* adds the positions of arcs belonging to the
DFS-tree to the slice T. The matrizc NV stores the DFS-numbers of the
traversed vertices. The matrices leftl and right1 give the problem graph in
the DFS-numbering.

Proof. It will be given by induction on p, where p is the number of vertices
accessible from the root.

Base of induction p = 1: As a result of execution of OrdNode in line 2
the vertex root takes the DFS-number ord;,. The slice X does not contain
the positions of arcs going at root, ord,y; = ord;, + 1. In the matrices leftl
and rightl, the entry of the vertex root are changed by the binary code of
ord;,. There is a single '1’ in the slice Y. Its position corresponds to the
arc going to the unnumbered vertex. This position is added to the slice T°
representing the DFS-tree. The number of this unnumbered vertex is saved
in the variable node. After that the procedure DFSx is performed for the
vertex node. After execution of the procedure OrdNode for the vertex node,
the slices X and Y are empty because all arcs going to either root or node
have been deleted from X. Go out to the first level of recursion. Because
the value of X is transmitted above, the procedure stops its run. As a result
of the procedure only one arc (root, node) is added to the slice T'. This arc
is the DFS-tree.

Step of induction. Let the theorem be proved for p — 1, prove it
for p. After execution of the procedure OrdNode the vertex root has a DFS-
number, the slice Y stores the positions of the arcs going from the root to
unnumbered vertex. Since there are p # 0 vertices accessible from root, the
slice Y is not empty. An arc to continue traversing is chosen from the arcs
marked by ‘1’ in Y and the node saves the head of this arc. Let V.4, be
the set of vertices reachable from the vertex node along the arcs marked by
"1"in X. |Vy0de| < p — 1 because there are no arcs going to the root.

1. |Viode| = p — 1. Then by the proved earlier the arc (root, node) and
the DFS-tree rooted in node are marked by 1’ in the slice T' after execution
of line 8. All the vertices are numbered and the slice X is empty. And after
the execution of line 9 the slice Y is empty too. The procedure stops its
run.

2. 0 < |Vpodel < p — 1. Then after execution of line 8 the positions
of the arc (root,node) and the arcs belonging to the DFS-tree rooted in
node are marked by '1’ in the slice T. All the numbered vertices are not
accessible from the root along the arcs marked by 1’ in the slice X. But
some of vertices accessible from root are unnumbered. The positions of all
arcs going to them are marked by ‘1’ in the slice X. After execution of line 9
the arcs going from root to the unnumbered vertices are marked in the slice

Associative parallel algorithm performing depth-first search 21

Y and it is not empty. Let us get onto the graph, the set of vertices of
which is equal to V' \ ({node} U V,,54¢). In this graph, there are less than p
vertices accessible from root. Then by the proved, the procedure constructs
the DFS-tree for this graph. Joining the DFS-trees for both subgraphs gives
the tree of the original graph. O

Since each vertex is numbered only one time and we go only through
tree arcs (no more than two times), the procedure takes O(nlogn) time.

4.3. Representation of the algorithm using stack. In this subsection,
we describe the non-recursive algorithm of the DFS-tree construction. Like
in the previous case, the procedure DFS uses the matrices left, right, and
code, and the binary word root and returns the DFS-tree as the slice T and
the matrix of the DFS-numbers NV. The matrices left1 and rightl store
arcs of the graph in the DFS-numbering.

The parameters X and ord become auxiliary. Moreover, we need some
more auxiliary variables.

The matrix LIFO simulates a stack. Addition of a column to the LIFO is
performed in the following way: after the vertex node gets the DFS-number
and an arc going to unnumbered descendant is chosen, the positions of other
such arcs (if any) are put to a column of the matrix LIFO. So in each column
there are positions of arcs going from the same vertex. The deletion of a
column from LIFO is performed when the vertex node has no unnumbered
descendants. Integer variable lif stores the depth of the stack.

Idea of the algorithm:

1. Initialize the variables.

2. Number the root and save the positions of arcs ingoing to unnumbered
descendants.

3. While there are some arcs going to unnumbered vertices, do the fol-
lowing:

— if the vertex having the last DFS-number has no unnumbered
descendants, then seek a vertex in the stack that has maximum
DFS-number from the vertices having arcs going to unnumbered
descendants; remember the positions of such arcs;

— choose an arc to continue the traversing and mark its position in
the tree; add the other arcs to the stack;

— number the head of the arc, remember the positions of arcs going
to unnumbered descendants.

© 00 N O Ov W

10
11

12
13
14

15
16
17
18
19

22 T.V. Borets

Procedure DFS(left, right, code: table; root: word;
Var leftl, rightl: table; Var NV: table;
Var T: slice);
Var LIF0: table; {simulates a stack of arcs}
1if, {gives a depth of the stack}
ord, {current DFS-number}
k: integer;
X, Y: slice {left}
node: word;
Begin
SET(X); CLR(T); SET(U); ord:=1; lif:=1;
OrdNode (left,right,code,root,ord,X,leftl,right1,NV,Y);
while SOME(X) do

(* X keeps the positions of arcs going to the unnumbered vertices *)
begin
while ZERO(Y) do
begin 1if:=1if-1;
Y:=COL(1if,LIF0);
Y:=Y and X;
end;
k:=STEP(Y);
node:=ROW(k,right) ;

(* We add the arc to the tree x)

T(k):='1;
if SOME(Y) then
begin

(* If there are any arcs going from node to unnumbered vertices, then we
put them to the stack *)
COL(1if,LIFQ):=Y;
lif:=1if+1;
end;
OrdNode(left,right,code,node,ord,X,leftl,right1,NV,Y);
end;
End;

Lemma. If all vertices of the given graph are accessible from the root, then

the cycle 5-9 stops its run, while the slice Y stores at least a single '1' and
Lif > 1.

Proof. The decrease of lif’s value occurs within the cycle 5-9.
Let us consider the run of this cycle more exactly. The condition means
that there are no arcs going from the considered vertex to unnumbered

Associative parallel algorithm performing depth-first search 23

vertices. Just before the considered vertex is the vertex having the maximal
DFS-number. Then we return along the stack. We remind that each column
of LIFO stores the positions of arcs, which are going from the same vertex v
to vertices, which had no DFS-number before numbering the vertex v; some
of these vertices have been numbered afterwards.

Let us suppose that lif = 0. It means there are no arcs going from a
numbered vertex to an unnumbered vertex (otherwise lif stores the number
of the column, where such arc is). But as there are some arcs going to
unnumbered vertices (the procedure has not stopped its run), there is some
vertex not accessible from root. But this contradicts the conditions of the
lemma. O

It should be noted that stack simulation on the STAR-machine has been
presented in [8].

5. Conclusion

In this paper, we have proposed a novel associative parallel algorithm per-
forming depth-first search on a directed graph represented on the STAR-
machine as a list of pairs. To perform the DFS on undirected graph each
edge (u,v) is to be written in the list as (u,v) and (v,u). In this case, the
algorithm also takes O(nlogn) time, because its complexity does not de-
pend on the number of arcs. Recall that it is less than the implementation
on sequential computers. It is because we can remove the positions of arcs
going to a numbered vertex at once. There is the factor O(logn) because
vertical processing.

The algorithm have been represented as the recursive and non-recursive
procedures. Making some modifications we can obtain the algorithm return-
ing the DFS-tree represented a matrix of paths. It may be useful for solving
some problems.

Our implementation of depth-first search opens wide field for associative
parallel realization of many sequential algorithms using it.

References

[1] Lengauer T., Tarjan R.E. A fast algorithm for finding dominators in a flow-
graph // ACM Translations on Programming Languages and Systems. — July
1979. — Vol. 1, Ne 1. — P. 121-141.

[2] Thomas C.H., Leiserson C.E., Rivest R.L. Introduction to Algorithms. - New
York: McGraw-Hill, 1990.

24

[3]

T.V. Borets

Potter J.L. Associative Computing: A Programming Paradigm for Massively
Parallel Computers. — New York and London: Kent State University, Plenum
Press, 1992.

Nepomniaschaya A.S., Borets T.V. Associative parallel algorithm of checking
spanning trees for optimality // Joint NCC & IIS Bulletin, Series Comp. Sci-
ence. — Novosibirsk: NCC Publisher, 2002. — Issue 17. — P. 75-88.

Nepomniaschaya A.S. Language STAR for associative and Parallel computation
with vertical data processing // Proc. of the Intern. Conf. “Parallel Computing
Technologies”. — Singapure: World Scientific, 1991. — P. 258—-265.

Foster C.C. Content Addressable Parallel Processors. — New York: Van Nos-
trand Reinhold, 1976.

Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. — Amsterdam: I0S Press, 2000. — Vol. 43. — P. 227-243.

Nepomniaschaya A.S. Efficient implementation of Edmonds’ algorithm for find-
ing optimum branchings on associative parallel processors // Proc. of the Eighth
Intern. Conf. on Parallel and Distributed Systems (ICPADS’01). — KyongJu
City, Korea: IEEE Computer Society Press, 2001. — P. 3-8.

Appendix

Procedure OrdNode(left, right: table; code: table; node: word;

var ord: integer; Var X: slice{left};
Var leftl, rightl: table; Var NV: table;
Var Y: slice{left});

Var U, V: slice{code}; Z: slice{left}; w: word; J: integer;
Begin

(%

(*

SET(Z); SET(U);
MATCH(code,U, node,V); j:=FND(V);
w:=R0OW(ord,code);

We give the DFS-number x)

ROW(j,NV) :=w; ord:=ord+1;

MATCH(right, Z, node, Y); WMERGE(w, Y, right1);
We remove all arcs going to node *)

X:=X and (not Y);
MATCH(left, Z, node, Y); WMERGE(w, Y, leftl);
Y:=Y and X;

End;

