
Bull. Nov. Comp. Center, Comp. Science, 19 (2003), 15{24c
 2003 NCC PublisherAssociative parallel algorithmperforming depth-�rst searchT.V. BoretsIn this paper, we propose a novel associative parallel algorithm performingdepth-�rst search on an abstract model of the SIMD type with vertical data pro-cessing (the STAR-machine). This algorithm is represented in two ways: as re-cursive and non-recursive STAR procedures, whose correctness is veri�ed and timecomplexity is evaluated.1. IntroductionAlgorithms of systematic traversing of a graph, when each vertex is in-spected exactly once or the next traversal of vertex do not a�ect the runof the algorithm, have an important place in the graph theory. The bestknown among these algorithms are the depth-�rst search and the breadth-�rst search. On the basis of these methods of graph traversing many al-gorithms were developed, such as graph testing for connectivity, checkingspanning trees for optimality, �nding the immediate dominators [1], andothers.The implementations of these algorithms on the RAM are well knownand described in many books of graph theory, for example [2]. On sequentialcomputers, the algorithms take O(m + n) time, where n is the number ofvertices and m is the number of arcs in the given graph.We are interested in the implementation of the algorithms on asso-ciative parallel computers, because they are mainly oriented to solve thenon-numerical problems. This class of parallel computers includes the well-known systems STARAN, DAP, MPP, and CM-2. Such architecture pro-vides a massively parallel search by contents and processing of unordereddata represented in the form of two-dimensional tables [3].The Breadth-�rst search is very naturally performed on this architecture.A group of associative parallel algorithms based on it has been enumeratedin [4].In this paper, we show how to implement the depth-�rst search on asso-ciative parallel computers.

16 T.V. Borets2. Model of associative parallel machineNow, we will describe the model. It consists of the following components:� a sequential control unit, where programs and scalar constants arestored;� an associative processing unit consisting of p single-bit processing el-ements (the PEs);� a matrix memory for the associative processing unit.To simulate data processing in the matrix memory, the STAR{machineuses new data types: word, slice, and table. The types slice and wordsimulate bit column access and bit row access, respectively. The type tableis used for a de�nition of tabular data.The language STAR is described in [5]. In this paper, we need thefollowing operations and predicates for slices.Let X, Y be variables of the type slice and i be a variable of the typeinteger. We use the following operations:SET(Y) sets all the components of Y to 010;CLR(Y) sets all the components of Y to 000;Y (i) selects the i-th component of Y ;FND(Y) returns the ordinal number i of the �rst (or the uppermost) com-ponent 010 of Y , i � 0;STEP(Y) returns the same result as FND(Y) and then resets the �rst 010found to 000.The predicates ZERO(Y) and SOME(Y) and the bitwise Boolean oper-ations X and Y , X or Y , not Y , X xor Y are introduced in the usual way.Let T be a variable of the type table. We employ the following twooperations:ROW(i; T) returns the i-th row of the matrix T ;COL(i; T) returns the i-th column of T .Following Foster [6], we assume that each elementary operation is per-formed at once. Then the complexity of algorithm is de�ned as a numberof elementary operations, performed in worse case.3. PreliminariesA directed graph (digraph) is a pair of sets (V;A), where V = f1; : : : ; ng isa set of vertices, A is a set of arcs, A � V � V .

Associative parallel algorithm performing depth-�rst search 17Let e = (u; v) 2 A be an arc, then the vertex v is the head of the arc eand the vertex u is its tail.The depth-�rst search (DFS) is a technique to traverse a graph system-atically. It uses a strategy: to go as deeply as it is possible (there is anoutgoing arc that has not been passed) and to search another path, other-wise. The DFS runs until it traverses each vertex that is reachable from thegiven vertex.The depth-�rst search numbers vertices with 1; 2; : : : ; n in order, in whichthey were visited for the �rst time. The number assigned by the depth-�rstsearch to a vertex will be called depth-�rst search number (the DFS-number).The depth-�rst search also computes a spanning tree of the graph called theDFS-tree.In the STAR-machine matrix memory, a directed graph will be repre-sented as an association of the matrices left and right, where each edge(u; v) 2 A is matched with the pair hu; vi. We also use the matrix codecontaining binary codes of vertices. Let us recall that vertices are integersrepresented as binary strings. A tree will be represented as a slice, in whichthe positions of tree arcs will be marked by 010.4. Associative parallel algorithm performingdepth-�rst searchOn sequential computers, the depth-�rst search can be represented in twoways: by a recursive procedure and by a procedure using a stack. Theassociative parallel algorithm can be represented by the same ways. Bothimplementations will be shown below. They use the following input param-eters:� matrices left, right, and code, which give the problem graph;� root, saving the binary code of the selected vertex.After execution of the procedure� the matrices left1, right1 give the graph arcs in the DFS-numbering;� the matrix NV stores the DFS-numbers of the vertices;� the slice T stores the positions of arc belonging to DFS-tree. Weassume that it is empty before algorithm execution.Before describing the algorithm, we adduce some basic and auxiliaryprocedures.4.1. Basic and auxiliary procedures. We will use the following twobasic procedures from [7].

18 T.V. BoretsThe procedure MATCH(T;X; v; Z) de�nes in parallel positions of thoserows of the given matrix T , which coincide with the given pattern v writtenin binary code. It returns the slice Z, where Z(i) = 010 if and only ifROW(i; T) = v and X(i) = 010.The procedure WMERGE(w;X; T) writes in parallel the word w in thoserows of the given matrix T , whose positions are marked by 010 in the slice X.It returns the matrix T , where ROW(i; T) = w ifX(i) = 010, and unchanged,otherwise.These procedures take O(k) time, where k is a number of bit columns.Now, we propose the following auxiliary procedure that can be found inthe appendix.The procedure OrdNode(left, right, code, node, ord, X, left1, right1,NV , Y) uses the matrices left, right, and code to represent a given graph, andbinary word node to represent a vertex to set a DFS-number. The currentDFS-number is stored in integer variable ord. The procedure returns theslices X and Y , and the matrices left1, right1, NV .It runs as follows:� �nds the binary code for ord ;� �nds the position k of node in the matrix code, and writes the binarycode of ord to the k-th string of the matrix NV ;� �nds positions of strings that coincide with node in the matrix leftand writes the DFS-number of node in the corresponding strings ofthe matrix left1 and 010 in the corresponding positions of Y , if thereare 010 in X.� �nds positions of strings that coincide with node in the matrix rightand writes the DFS-number of node in the corresponding strings ofthe matrix right1 and 000 in the corresponding positions of X.Now, we give some explanation to procedure's run. The problem graphis shown in Figure 1. We want to number vertex 5 and assume that vertices
Figure 1. The graph just beforeexecution of OrdNode Figure 2. The graph just afterexecution

Associative parallel algorithm performing depth-�rst search 191, 2, 3 are numbered. Then node is equal to the binary code of 5, ord = 4.The slice X stores the positions of solid arcs. Figure 2 shows the graph justafter numbering the vertex. The slice Y saves the positions of bold arcs,ord = 5. The positions of the arcs (2; 5) and (6; 5) are marked by 000 in X.4.2. Representation of the algorithm using recursion. In this sub-section, we will describe a recursive algorithm for �nding the DFS-tree. Thisis performed by a procedure DFS� using the above parameters.The procedure also uses the following input variables. Integer ord storesthe current number in decimal code. All arcs ingoing to unnumbered verticesare marked by 010 in the slice X. We assume that ord = 1 and the slice Xsaves only 010 (it can keep some 000 in the case, when we do not need totraverse any part of the graph).The procedure also uses some additional variables: node keeping the bi-nary number of a vertex to be numbered by the current ord ; the slice Ysaving the positions of arc outgoing from the node to unnumbered descen-dants.The idea of the algorithm:1. Give the number to the vertex root and remember the positions of arcsingoing to unnumbered descendants.2. While the set of such arcs is non-empty:{ choose the �rst descendant node;{ add the arc (root ;node) to the DFS-tree;{ repeat the procedure for the vertex node.Procedure DFS*(left, right, code: table; root: word;Var X: slice; var ord: integer;Var left1, right1: Table; Var NV: Table;Var T: slice);Var Y: Slice; node: word; j: integer;Begin1 OrdNode(left,right,code,root,ord,X,left1,right1,NV,Y);2 while SOME(Y) do3 begin4 j:=STEP(Y);5 T(j):='1';6 node:=ROW(j,right);7 DFS*(left,right,code,node,X,ord,left1,right1,NV,T);8 Y:=Y and X;9 end;10 End;11

20 T.V. BoretsTheorem. Let a directed graph G = hV;Ai with the selected vertex root begiven as described above. Let the slice X and ord satisfy the above require-ments. Then the procedure DFS� adds the positions of arcs belonging to theDFS-tree to the slice T . The matrix NV stores the DFS-numbers of thetraversed vertices. The matrices left1 and right1 give the problem graph inthe DFS-numbering.Proof. It will be given by induction on p, where p is the number of verticesaccessible from the root.Base of induction p = 1: As a result of execution of OrdNode in line 2the vertex root takes the DFS-number ord in. The slice � does not containthe positions of arcs going at root, ord out = ord in + 1. In the matrices left1and right1, the entry of the vertex root are changed by the binary code oford in. There is a single 010 in the slice Y . Its position corresponds to thearc going to the unnumbered vertex. This position is added to the slice Trepresenting the DFS-tree. The number of this unnumbered vertex is savedin the variable node. After that the procedure DFS� is performed for thevertex node. After execution of the procedure OrdNode for the vertex node,the slices X and Y are empty because all arcs going to either root or nodehave been deleted from X. Go out to the �rst level of recursion. Becausethe value of X is transmitted above, the procedure stops its run. As a resultof the procedure only one arc (root ;node) is added to the slice T . This arcis the DFS-tree.Step of induction. Let the theorem be proved for p � 1, prove itfor p. After execution of the procedure OrdNode the vertex root has a DFS-number, the slice Y stores the positions of the arcs going from the root tounnumbered vertex. Since there are p 6= 0 vertices accessible from root, theslice Y is not empty. An arc to continue traversing is chosen from the arcsmarked by 010 in Y and the node saves the head of this arc. Let Vnode bethe set of vertices reachable from the vertex node along the arcs marked by010 in X. jVnodej � p� 1 because there are no arcs going to the root.1. jVnodej = p � 1. Then by the proved earlier the arc (root ;node) andthe DFS-tree rooted in node are marked by 010 in the slice T after executionof line 8. All the vertices are numbered and the slice X is empty. And afterthe execution of line 9 the slice Y is empty too. The procedure stops itsrun.2. 0 � jVnodej < p � 1. Then after execution of line 8 the positionsof the arc (root ;node) and the arcs belonging to the DFS-tree rooted innode are marked by 010 in the slice T . All the numbered vertices are notaccessible from the root along the arcs marked by 010 in the slice X. Butsome of vertices accessible from root are unnumbered. The positions of allarcs going to them are marked by 010 in the slice X. After execution of line 9the arcs going from root to the unnumbered vertices are marked in the slice

Associative parallel algorithm performing depth-�rst search 21Y and it is not empty. Let us get onto the graph, the set of vertices ofwhich is equal to V n (fnodeg [Vnode). In this graph, there are less than pvertices accessible from root. Then by the proved, the procedure constructsthe DFS-tree for this graph. Joining the DFS-trees for both subgraphs givesthe tree of the original graph. 2Since each vertex is numbered only one time and we go only throughtree arcs (no more than two times), the procedure takes O(n log n) time.4.3. Representation of the algorithm using stack. In this subsection,we describe the non-recursive algorithm of the DFS-tree construction. Likein the previous case, the procedure DFS uses the matrices left, right, andcode, and the binary word root and returns the DFS-tree as the slice T andthe matrix of the DFS-numbers NV . The matrices left1 and right1 storearcs of the graph in the DFS-numbering.The parameters X and ord become auxiliary. Moreover, we need somemore auxiliary variables.The matrix LIFO simulates a stack. Addition of a column to the LIFO isperformed in the following way: after the vertex node gets the DFS-numberand an arc going to unnumbered descendant is chosen, the positions of othersuch arcs (if any) are put to a column of the matrix LIFO. So in each columnthere are positions of arcs going from the same vertex. The deletion of acolumn from LIFO is performed when the vertex node has no unnumbereddescendants. Integer variable lif stores the depth of the stack.Idea of the algorithm:1. Initialize the variables.2. Number the root and save the positions of arcs ingoing to unnumbereddescendants.3. While there are some arcs going to unnumbered vertices, do the fol-lowing:{ if the vertex having the last DFS-number has no unnumbereddescendants, then seek a vertex in the stack that has maximumDFS-number from the vertices having arcs going to unnumbereddescendants; remember the positions of such arcs;{ choose an arc to continue the traversing and mark its position inthe tree; add the other arcs to the stack;{ number the head of the arc, remember the positions of arcs goingto unnumbered descendants.

22 T.V. BoretsProcedure DFS(left, right, code: table; root: word;Var left1, right1: table; Var NV: table;Var T: slice);Var LIFO: table; fsimulates a stack of arcsglif, fgives a depth of the stackgord, fcurrent DFS-numbergk: integer;X, Y: slice fleftgnode: word;BeginSET(X); CLR(T); SET(U); ord:=1; lif:=1;1 OrdNode(left,right,code,root,ord,X,left1,right1,NV,Y);2 while SOME(X) do3 (� X keeps the positions of arcs going to the unnumbered vertices �)begin4 while ZERO(Y) do5 begin lif:=lif-1;6 Y:=COL(lif,LIFO);7 Y:=Y and X;8 end;9 k:=STEP(Y);10 node:=ROW(k,right);11 (� We add the arc to the tree �)T(k):=010;12 if SOME(Y) then13 begin14 (� If there are any arcs going from node to unnumbered vertices, then weput them to the stack �)COL(lif,LIFO):=Y;15 lif:=lif+1;16 end;17 OrdNode(left,right,code,node,ord,X,left1,right1,NV,Y);18 end;19 End;Lemma. If all vertices of the given graph are accessible from the root, thenthe cycle 5{9 stops its run, while the slice Y stores at least a single 010 andlif � 1.Proof. The decrease of lif 's value occurs within the cycle 5{9.Let us consider the run of this cycle more exactly. The condition meansthat there are no arcs going from the considered vertex to unnumbered

Associative parallel algorithm performing depth-�rst search 23vertices. Just before the considered vertex is the vertex having the maximalDFS-number. Then we return along the stack. We remind that each columnof LIFO stores the positions of arcs, which are going from the same vertex vto vertices, which had no DFS-number before numbering the vertex v; someof these vertices have been numbered afterwards.Let us suppose that lif = 0. It means there are no arcs going from anumbered vertex to an unnumbered vertex (otherwise lif stores the numberof the column, where such arc is). But as there are some arcs going tounnumbered vertices (the procedure has not stopped its run), there is somevertex not accessible from root. But this contradicts the conditions of thelemma. 2It should be noted that stack simulation on the STAR-machine has beenpresented in [8].5. ConclusionIn this paper, we have proposed a novel associative parallel algorithm per-forming depth-�rst search on a directed graph represented on the STAR-machine as a list of pairs. To perform the DFS on undirected graph eachedge (u; v) is to be written in the list as hu; vi and hv; ui. In this case, thealgorithm also takes O(n log n) time, because its complexity does not de-pend on the number of arcs. Recall that it is less than the implementationon sequential computers. It is because we can remove the positions of arcsgoing to a numbered vertex at once. There is the factor O(log n) becausevertical processing.The algorithm have been represented as the recursive and non-recursiveprocedures. Making some modi�cations we can obtain the algorithm return-ing the DFS-tree represented a matrix of paths. It may be useful for solvingsome problems.Our implementation of depth-�rst search opens wide �eld for associativeparallel realization of many sequential algorithms using it.References[1] Lengauer T., Tarjan R.E. A fast algorithm for �nding dominators in a
ow-graph // ACM Translations on Programming Languages and Systems. { July1979. { Vol. 1, ü 1. { P. 121{141.[2] Thomas C.H., Leiserson C.E., Rivest R.L. Introduction to Algorithms. { NewYork: McGraw-Hill, 1990.

24 T.V. Borets[3] Potter J.L. Associative Computing: A Programming Paradigm for MassivelyParallel Computers. { New York and London: Kent State University, PlenumPress, 1992.[4] Nepomniaschaya A.S., Borets T.V. Associative parallel algorithm of checkingspanning trees for optimality // Joint NCC & IIS Bulletin, Series Comp. Sci-ence. { Novosibirsk: NCC Publisher, 2002. { Issue 17. { P. 75{88.[5] Nepomniaschaya A.S. Language STAR for associative and Parallel computationwith vertical data processing // Proc. of the Intern. Conf. \Parallel ComputingTechnologies". { Singapure: World Scienti�c, 1991. { P. 258{265.[6] Foster C.C. Content Addressable Parallel Processors. { New York: Van Nos-trand Reinhold, 1976.[7] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra'sshortest path algorithm on associative parallel processors // Fundamenta In-formaticae. { Amsterdam: IOS Press, 2000. { Vol. 43. { P. 227{243.[8] Nepomniaschaya A.S. E�cient implementation of Edmonds' algorithm for �nd-ing optimum branchings on associative parallel processors // Proc. of the EighthIntern. Conf. on Parallel and Distributed Systems (ICPADS'01). { KyongJuCity, Korea: IEEE Computer Society Press, 2001. { P. 3{8.AppendixProcedure OrdNode(left, right: table; code: table; node: word;var ord: integer; Var X: slicefleftg;Var left1, right1: table; Var NV: table;Var Y: slicefleftg);Var U, V: slicefcodeg; Z: slicefleftg; w: word; J: integer;BeginSET(Z); SET(U);MATCH(code,U, node,V); j:=FND(V);w:=ROW(ord,code);(� We give the DFS-number �)ROW(j,NV):=w; ord:=ord+1;MATCH(right, Z, node, Y); WMERGE(w, Y, right1);(� We remove all arcs going to node �)X:=X and (not Y);MATCH(left, Z, node, Y); WMERGE(w, Y, left1);Y:=Y and X;End;

