
Bull. Nov. Comp. Center, Comp. Science, 47 (2023), 1-9
@ 2023 NCC Publisher

An approach to using Golang programs
for the specification and verification of

distributed systems

Evgeny Bodin

Abstract. The work is devoted to an attempt to use Golang programs for the specification and
verification of distributed systems. The A.P. Ershov Institute of Informatics Systems, SB
RAS, has been developing this approach for years. A distributed system described in terms
of an SDL specification, which is first translated to a Dynamic-REAL (dREAL)
specification, and then to a Promela specification. All these languages (SDL, dREAL, and
Promela) are based on the channel concept. Since the Go language (Golang) shares the same
feature, we had an idea to use it in some manner. One way is to use Golang to describe
distributed systems. However, it is more practical to try to formally verify the already existing
Golang applications by translating them into dREAL specifications (as it is done with SDL
specifications) or directly into Promela specifications. The paper compares the aforesaid
languages and presents a case study of a specification of a simplified ATM network specified in
terms of a Golang program.

Keywords: distributed systems verification, distributed systems analysis, translation, SDL, SPIN,
Dynamic-REAL, Golang.

Introduction

The universal popularity of distributed systems makes their validating (testing and
verification) extremely important. Testing does not allow us to find all defects in a
system or a program; formal verification enables us to prove that a program is correct
(in other words, that it has some explicitly specified properties).

For years, the A.P. Ershov Institute of Informatics Systems, SB RAS, has been
developing the following approach: a distributed system is described in terms of an
SDL specification, which is translated to a Dynamic-REAL (dREAL)
specification, subsequently translated to a Promela specification.

All these languages (SDL [1, 2], dREAL [3, 4], and Promela [5]) share the
channel concept. Since the Go language (Golang) also has this feature, we had an
idea to use it somehow.

One possible way is to use Golang to specify distributed systems.
Another way is to try to formally verify the already existing Golang applications

by translating them into dREAL specifications (as it is done with SDL
specifications) or directly into Promela specifications. Nicolas Dilley and Julien
Lange applied this approach: they chose a fragment of the Go language, named it
MiniGo, and developed a GOMELA tool [6, 7] to translate MiniGo programs into
Promela specifications. Later, they evolved it into a tool-chain for an automated
verification of Go programs [8, 9].

The paper compares the languages mentioned above and presents a case study of a
specification of an ATM network, which is simplified and specified in terms of a

2 Evgeny Bodin
__

User

SPLan formula

-

dREAL specification

* +

Tran sl ator2

+

-

Con vert er3

Result 2 (d REAL) Pro mel a specification

Request s (d REAL)

Tran sl ator1 Con vert er1

SDL specification

Result 1 ’ (SDL)

Result 2 ’ (SDL) Result 1 (Pro mela)

Con vert er4 SPIN

Simu l at ion system

LTL formula

Con vert er2

Requ est s (SDL)

Golang program. Section 1 gives an overview of our SRDSVer3 verification tool.
Section 2 presents an example used for illustrating the verification of distributed systems.
Section 3 presents a Golang program corresponding to the SDL specification of the
previous paper [4].

Though Promela has been used for specifying ATMs [10, 11], these specifications
are for less complex cases.

Figure 1. Software suite SRDSVer3

1. Current state of the SRDSVer3 system

The software suite SRDSVer3 is intended for the modeling, analysis, and verification
of the SDL specifications using the dREAL intermediate language.

The SRDSVer3 suite (Figure 1) consists of the following components:

• Translator1 compiles an SDL specification into a dREAL specification
• Converter2 transforms the requests for the SDL specification into requests for the

dREAL specification

 An approach to using Golang programs for the specification… 3
__

• Simulation system analyzes the dREAL specifications according to the user’s

requests
• Converter4 transforms the Result2 (dREAL-related) of the Simulation system

into Result2´(SDL-related)
• Translator2 compiles the dREAL specification into a Promela specification
• Converter1 transforms an SPLan-formula (SDL-related) into a corresponding

LTL formula
• SPIN verification system checks the Promela specification received from

Translator2 with the LTL formula received from Converter1
 Converter3 converts Result1 (from the SPIN verification) into Result1´(SDL-

related).

2. Example (a case study)

We have recently used the following example to demonstrate the SRDSVer3 system.
It is an ATM (automated teller machines) network with the dynamic creation of

client processes. The ATM network discussed in [4] and, with some changes, in [3]
consists of several processes (Figure 2):
• one server with the data on clients and their accounts, and
• a fixed number of terminals (instances of t h e terminal process) to communicate
with the clients.

To imitate the clients coming and going, the following additional processes
were added to the SDL specification:

• one queue process that receives signals from the external environment containing
information about the clients’ intentions, creates an instance of the client process and
sends to it the information received, and
• clients (instances of the client process).

Figure 2. SDL diagram, overview

4 Evgeny Bodin
__

The complete SDL specification can be found in the GitLab repository [12].

3. Using Golang

Since the concept of channels and signal passing is inherent to Golang, it looks promising
to try to use a Go program to simulate the case study. In a way, it was a manual
translation from the SDL to Golang.

Since the author is not an expert in Golang, some design choices may be far from
perfect, so any feedback would be appreciated. The most noticeable drawback for
Gofers (those who use Golang) is that the identifiers do not follow the camelCase
convention (all words but the first in a complex idenitifier have an initial uppercase
letter), and use the snake_case instead (all words are lower-cased and separated with
underscore). The preference of the snake case convention is attributed to the idea to
make the program look more similar to the original SDL specification.

Below we consider how the components of the SDL specification are implemented
in Golang. The complete Golang program can be found in the GitLab repository [13].

3.1 Overall structure

The program is implemented as a Go module, where the processes or entities of the same
kind (such as channel definitions and external environments) are located in separate
.go-files.

3.2 Signals

The signals without parameters described in the SDL as follows

SIGNAL
...
terminal_no_money,
no_money,
correct_code,
wrong_code,
ready_for_job,
press_start,
...

are represented in Go as the following structure with the signal name and sender field
storing the PId of the process that sends the signal (in the SDL, this PId automatically
goes to a special variable SENDER once the signal is read):

type signal_info struct {

sig_name string
sender int

}.

Signals with up to two parameters are translated into

 An approach to using Golang programs for the specification… 5
__

type two_ints_info struct {
sig_name string
first int
second int
sender int
}.

The SDL channels (or, strictly speaking, SIGNALROUTEs) allow passing signals
of different types; therefore, in Go we had to declare a channel so as to fit the signal
with a maximal number of parameters, the unused parameters being zeroes.

3.3. Channels

The SIGNALROUTEs from SDL for signals with up to two parameters (translated
into two_ints_info Go structures)

SIGNALROUTE t2m
FROM terminal TO server WITH check_code, check_summ, balance,

insert_summ;
SIGNALROUTE m2t
FROM server TO terminal WITH summ, no_money, correct_code, wrong_code;

become two different kinds of channels, depending on whether the channel goes to a
‘simple’ process (without instances) or to a process with instances (such as a terminal or a
client). In the latter case, the SIGNALROUTE is represented by an associative array (a map
in the Go world), where the channels are indexed by the PIds of the instances.

// terminal -> server (the Machine)
var t2m chan two_ints_info
// server -> terminal
var m2t map[int]chan two_ints_info
//...

t2m = make(chan two_ints_info, CHAN_SIZE)
m2t = make(map[int]chan two_ints_info, TERM_COUNT)
// Create all terminal-indexed channels here
for i := 1; i <= TERM_COUNT; i++ {

// ...
m2t[i] = make(chan two_ints_info, CHAN_SIZE)

}

Here the constants CHAN_SIZE and TERM_COUNT denote the maximum size of a
channel (the number of signals it can contain) and the number of terminals (the
instances of the terminal process), respectively.

3.4. Server

The server process receives requests from the instances of the terminal process and
responds to the corresponding channel chosen by the sender field of the received
signal. Below is the fragment designed to check if the PIN code of the card is
correct:

6 Evgeny Bodin
__

for { // Infinite loop

//SDL: STATE main;
sig := <-t2m
term_num := sig.sender
switch sig.sig_name {
//SDL: INPUT check_code(cl_card_num, cl_code);
case "check_code":

cl_card_num := sig.first
cl_card_pin := sig.second
result := "wrong_code"
if code_table[cl_card_num] == cl_card_pin {
result = "correct_code"

}
m2t[term_num] <- two_ints_info{sig_name: result}.

3.5. Terminals

An instance of the terminal process receives requests from the instances of the client
process, and then it either sends a corresponding request for information to the server
process or decides by itself (for example, if the terminal is out of cash, it cannot give
money to the client). After that, the result is sent to the client process. Here is the
fragment related to the checking of the PIN code:

card_sig := <-card_reader[pid] // Read the card number from the card
card_num = card_sig.first
indicator[pid] <- signal_info{sig_name: "correct_card"} code_sig
:= <-buttons[pid] // Read the PIN code from the keyboard
card_pin := code_sig.first
t2m <- two_ints_info{
sig_name: "check_code",
first: card_num,
second: card_pin,
sender: pid,

}
code_res_sig := <-m2t[pid] sig_name :=
code_res_sig.sig_name
indicator[pid] <- signal_info{sig_name: sig_name}.

3.6. Clients

An instance of the client process imitates the behavior of a client. The appropriate
information is received from the queue process in the init signal.

//SDL: INPUT init(cl_summ, cl_card_num, cl_code, terminal_pid,
cl_operation);

init := <-q2c[pid]
term_num := init.term_num
// ...
card_reader[term_num] <- two_ints_info{sig_name: "card", first:

init.cl_card_num}
sig_correct_card := <-indicator[term_num]

 An approach to using Golang programs for the specification… 7
__

buttons[term_num] <- two_ints_info{

sig_name: "code",
first: init.cl_card_pin,
sender: pid,

}
sig_correct_code := <-indicator[term_num]
if sig_correct_code.sig_name != "correct_code" {
// ...

3.7. Handling the creation of instances (queue)

The instances of the terminal process are created at the start, whereas the instances of
the client process are created only when a new client starts working with a terminal.
Instances are modeled by signals sent from the external environment. In SDL, ENV is
a special pseudo-process, while in Go, it must be explicitly specified as a separate
process.

3.8. External environment (env)

The env process consists of a statement sending special client_info signals to the queue
process. The signals look as follows:

CLIENT_1_PIN := code_table[CLIENT_1_CARD]
e2q <- client_info{

cl_id: CLIENT_1,
term_num: TERM_1,
cl_operation: BALANCE,
cl_card_num:
CLIENT_1_CARD,
cl_card_pin:
CLIENT_1_PIN,

}.

3.9. Comparison with dREAL and Promela

Let us look at whether specifying a distributed system in Go is better because it is
more concise.

• The original SDL specification [12] contains 428 lines.
• The result of translating it into dREAL is 2251 lines long.
• The Promela version generated from dREAL is even bigger: 2951 lines.

The Go files are 634 lines in total, which is greater than the original SDL

specification but is much less than the other alternatives.
As for readability, the SDL specification looks better; in addition, it is a more

standard way to describe distributed systems.

4. Conclusion
The approach presented in the paper has turned out to be not as satisfying as it originally
looked. Moreover, it does not seem probable that software engineers using

8 Evgeny Bodin
__

Golang would use it as a specification language. They would rather write a prototype
program of the system in question, and then run and debug it using some conventional
methods. Thus, it may be better to try to verify the existing Golang programs by
transforming them into formal models and then applying formal methods to them.
Further plans include learning more about the GOMELA tool ([6] and [8]) and either
contributing to it or developing an alternative. Another possible direction of future
work is to join the investigations at the Cyber-Physical Systems Laboratory of the
Institute of Automation and Electrometry [14].

References

[1] Specification and Description Language. CCITT, Recommendation Z.100, 1988.

[2] ITU-T Specification and description language (SDL). ITU-T Recommendation,
Z.100, 2015.

[3] Nepomniaschy V.A., Bodin E.V., Veretnov S.O. The language Dynamic-REAL and
its application for verification of SDL-specified distributed system Programming
and Computer Software // Programmirovanie.— 2015. — Vol. 41, No.1. — P. 41–
48.

[4] Nepomniaschy V.A., Bodin E.V., Veretnov S.O. The analysis and verification of sdl-

specifications of distributed systems using dynamic-real language // Vestnik TGU.
Ser. Upravlenie, vychislitelnaja tehnika i informatika. — Tomsk, 2020. — No.53. —
P. 118–126. DOI: 10.17223/19988605/53/12 (In Russian).

[5] Holzmann, G.J. The SPIN Model Checker. Primer and Reference Manual.— Addison-

Wesley, 2004.

[6] Dilley N., Lange J. Bounded verification of message-passing concurrency in Go

using Promela and Spin. — https://arxiv.org/pdf/2004.01323.pdf.

[7] The Gomela project - GitHub repository. — https://github.com/nicolasdilley/Gomela.

[8] Dilley N., Lange J. Automated verification of Go programs via bounded model

checking // 36th IEEE/ACM International Conference on Automated Software
Engineering. Proc. ASE 2021. — Melbourne, Australia, November 15–19. — 2021.
— P. 1016–1027.

[9] The tool-chain implemented as part of paper “Automated Verification of Go

Programs via Bounded Model Checking” GitHub repository. —
https://github.com/nicolasdilley/gomela-ase21/ .

[10] Shi H., Ma W., Yang M., Zhang X.A. Case study of model checking retail

banking system with SPIN // Journal of Computers. — 2012. — Vol. 7. — P. 2503–
2510.

[11] Iqbal I.M., Adzkiya D., Mukhlash I. Formal verification of automated teller

machine systems using SPIN // Proc. AIP Conf. 1867 (1): 020045. — 2017.
DOI:10.1063/1.4994448.

[12] SRDSVer3 examples - GitLab repository. — https://gitlab.com/iis10/srdsv3.

https://arxiv.org/pdf/2004.01323.pdf
https://github.com/nicolasdilley/Gomela
https://github.com/nicolasdilley/gomela-ase21/
http://dx.doi.org/10.1063/1.4994448
https://gitlab.com/iis10/srdsv3

 An approach to using Golang programs for the specification… 9
__

[13] Golang programs - GitLab repository.— https://gitlab.com/iis10/atmnetwork.

[14] Garanina N.O., Staroletov S.M., Zyubin V.E., Anureev I.S. Model checking process-

oriented IEC 61131-3 structured text programs // System Informatics. — 2023. —
No.22. — P. 21-30.

https://gitlab.com/iis10/atmnetwork

 10

	Introduction
	1. Current state of the SRDSVer3 system
	2. Example (a case study)
	3. Using Golang
	3.1 Overall structure
	3.2 Signals
	3.3. Channels
	3.4. Server
	3.5. Terminals
	3.6. Clients
	3.7. Handling the creation of instances (queue)
	3.8. External environment (env)
	3.9. Comparison with dREAL and Promela

	4. Conclusion
	References

