Bull. Nov. Comp. Center, Comp. Science, 1 (1993)
© 1993 NCC Publisher _

An effective model checking
for Mu-calculus: from finite systems
towards systems with real time

S.A.Berezin and N.V.Shilov and P.V.Shneider

Mu-calculus [1] is a polymodal logic with fixed points. A Decision Procedure (DP)
checks the validity of a formula. A Model-Checking Procedure (MCP) constructs the
validity set of a formula in a model. Since Mu-calculus is finitely approximatizible [1]
and it is applicable for verification of Finite-State Machines an effective MCPs are of
high importarce [2]. The paper deals with the direct exponential MCP and a polynomial
approximation of MCP, which is correct for a representative fragment of Mu-calculus on
finite' models, and with an extention of a MCP for finite models to infinite models with
a real time.

1.. The syntax and semantics of Mu-calculus. The
model-cheking problem for Mu-calculas

Let p, g, r, ...be the alphabet of predicate symbols (or predcates), z, y,
z, ...be the alphabet of (logical) variables, a, b, ¢, ...be the alphabet of
action symbols (or action). All those alphabets are countable and disjoint.

Definition 1. The syntax of Mu-calculus consists of formulae.

1. For a predicate p the expression "p” is a formula without free and
bound variables.

2. For a variable z the expression "z” is a formula with the unique free
variable x itself and without bound variables.

3. For a formula W the negation "~W" is a formula with the same free
and bound variables as W.

4. For a finite set of formulae F if there is no variable which is free
and bound in the formulae from ¥, the conjunction ” A F” and the
disjunction "\/ F” are formulae with sets of free and bound vari-
ables equal to the union of free and bound variables respectively of
formulae from F. ‘

74 S.A. Berezin, N.V. Shilov, P.V. Shneider

5. For a formula W and a variable z, if z is free variable of W and
all occurrences of z in W are under even number of negations, the
expressions "min z.W?” for the least fixed point and "maz z.W”
for the greatest fixed point are formulae with the leading variable z
and the sets of free variables equal to the same ones of W without
z and the sets of bound variables equal to the same ones of W with
addition of z.

6. For a formula U and a action b the expressions ”[b] U” and "< b > U”
are formulae with the same free and bound variables as U.

For a formula W and a list of variables Var without doubles we will
write "W (Var)” iff any free variable of W occurs in Var and all bound
variables of W are absent in Var.

A model M is a pair of the form (D, Ips), where D)ys is a non-empty
set of states s,t,... and Ips is a mapping such that: :

1. for any predicate Ips(p) C Dy

2. for any action Im(a) C Dy X Dy

Definition 2. If M is a model and V(Var) is a formula, then AE. [V, E],,

is a general function from (2PM)Verl to 20m which means that for any
evaluation E of free variables by subsets of Dy the [V,E], C Das ; the
set [V, E] 2 is defined below: '

1. For a predicate p, if V = p, then [V, E]M = IM(p).
For a variable z, if V = z, then [V, E]M = E(z).
For any formula W, if V = -W then [V, E]M = Dp\ [‘W, E]M.

el N

For a set of formulae F
(a) if V.= A F, then Vay = Nyex (W, E] s
(b) if V =/ F, then Vay = Uwer (W, E],,-

5. For a formula W and a variable z, if V = fiz z.W, where fiz €
{min, maz}, then the list of variables (Var,z) is a list of free vari-
ables of W; let Fiz(W, M, E) be {set C Dy|[W, E(set/z)],, = set}
with the partial order C; '

(a) if V= min z.W, then
[V, E] a = the least set from Fiz(W, M, E);

An effective model checking for Mu-calculus 75

(b) if V=maz z.W, then
[V,E],, = the greatest set from Fiz(W, M, E).
6. For a formula W and a action b
(a) if V = [b]W, then
[V,E]M = {slfor all t if (s,t) € Ip(b) then t € W, E],,};
(b) if V=W, then
[V, E] a = {8] there exists t such that
(s,t) € Im(b) and te [W,E],}.

The Model-Checking Problem for Mu-Calculus is an algorithmic prob-
lem of how to construct the semantic set [V, E]M for a formula V on a
model M and an evaluation E for free variables. A Model-Checking Pro-
cedure is an algorithm for the Model-Checking Problem.

Statement 1. For a partial-ordered set S with the least 1 and the greatest

T elements, and a non-descending general function f : § — § the following
hold:

1.1. if the least fized point of f ezists, then for all n > 0 the value f(L)
is not greater than the least fized point of f;

1.2. if there erists a natural number n > 0 such that f*(L) = fr+i(1),
then the least fized point of f exists and is equal to f(L);

1.3. if the greatest fized point of f exzists, then for all n > 0 the greatest
fized point is not less than f*(T);

1.4. if there ezist a natural number n > 0 such that f*(T) = fr+1(T),
then the greatest fized point exists and is equal to f™(T).

Lemma 1. For a finite model the semantics of a formula is correctly de-
fined: the semantics of a formula is a non-descending function on variables
with positive instances only and non-ascending on variables with negative
instances only. A

Remark. An instance of a subformula in formula is said to be posi-
tive/negative iff it is under even/odd number of negations.

76 S.A. Berezin, N.V. Shilov, P.V. Shneider

SKETCH OF PROOF. Let us fix a model M and design a sketch of a proof .
by induction on the structure of a formula. The base of the induction —
the case when a formula is a predicate or a variable — is obvious. The
induction step in the case when a formula is a boolean combination of
subformulae is trivial too, but it is important that the negation transforms
positive instances into negative and vice versa.The induction step in the
case when a formula is a modal formula is also trivial, but let us consider
the case when a formula is a modal formula of the form: < b > W, where
b is an action and W is a subformula. :
In this case for an evaluation E of free variables of V we have: [< b>
W, E],, = {s|, there exists ¢ such that (s,t) € In(b) and t € [W, E],} so,
for any evaluations E’ and E”, if for any variable z with positive/negative
instances only E'(z) C / 2 E"(z), then [W,E'], C [W,E"],, and hence
[< b> W, E’]M C [< b > W,E”]M. The induction step in the case
when a formula is a fixed point formula is of the most importance, but let
us consider the case when a formula is a fixed point formula of the form
"min 2.W”, where z is a variable and W is the subformula. In this case
for a list sets of subsets of Dps we have (in accordance with Statement 1 and
because of Dys finiteness) the least set of {set C Dyl [W, E(set/:r)] M=
set} is equal to |J,set; , where seto = 0 and for each i > 0 setiy; =
[W, E(set;/z)) am- So, for any evaluations E’ and E” if for any vari-
able y with positive/negative instances only E’(y) C / D E”(y) then for
all i >0 set] C set! and [min s W, E',, = U;set: C;set! =
[min =.W,E"], . 0

Corollary 1. The Model-Checking Problem is decidable with the upper bo-
. und (constx m3x f)"*1, where m is the capacity of the domain of a model, f
is the length of a formula and n is the mazimal depth of nested fized points.

SKETCH OF PROOF. Let us describe a recursive procedure which will be
referred to as the Direct Model-Checking Procedure (DMCP). The DMCP
is applicable to triples of the form (M,V,E), where M is a finite model,
V is a formula and E is an evaluation for free variables and for each
such triple DMCP(M,V, E) should be equal to [V, E] a- The definition
of the DMCP almost coincides with the definition of the semantics of
Mu-calculus, but the fifth step: '

(5’.a) if V=min z.W then
begin

1:=0; set; :=0 ;
repeat

. An effective model checking for Mu-calculus

ii=14+1;
E; := E(set;_1/z)
- set; := DMCP(M,W, E));
until set; # set;_,
end; '
DMCP(M,V,E) := set;;

(5°.b) if V=maz =z.W then

begin i := 0; set; := Dy ;
repeat]
i:=1+1; .
E; := E(set;-1/z)
-set; 1= DMCP(M,I’V,E;);
until set; # set;_; -
end; ‘
DMCP(M,V,E) := set;.

7

So, the time complexity bound TC B(M, V, E) for DMCP(M, V,E) can
be approximated in accordance with the steps of the DMCP definition as

follows:

fu—y

. const x |Dyl;
2. const X |Dpl;

3. const x |Dy| + const x TC B(M, W, E);

4. const X |Dpy| + const X (EwerTCB(M,W, E(Dp/2)));

5. (because of the finiteness of M, bodies of loops are calculated at

most |Dps| times)

const X |Dpy| x (TCB(M, W, Sets U {z}));

6. const x |Dm|? x |Dm| + const x (TCB(M,W, E));

Obviously, a function (const x m® x f)"+! majorettes TCB(M,V,E),
where m = |Dy|, f = |V| and n is the maximal depth of nested fixed

points.

O

78 S.A. Berezin, N.V. Shilov, P.V. Shneider

2. The decidability of the model-cheking problem
for Mu-calculus

A normal formula is a fixed point formula in which the negation is applied
to predicates and variables only.

Lemma 2. There ezists a procedure with a linear upper time bound which
transforms any formula in an equivalent normal formula.

SKETCH OF PROOF. The process of normalization is based on the Morgan’s
laws and obvious equivalences:

1. for a action b and a formula V formulae ~([b] V) and ~(< b > V)
are equivalent to < b > (=V) and [b](-V) respectively;

2. for a variable z and a formula V formulae ~(min 2.V) and
~(maz z.V) are equivalent to maz z.(-=V(-z/z)) and
min z.(~V(-z/z)) respectively.

At the same time each formula V is equivalent to a closure min 2.V,
where z is a variable which does not occur in V.

An equation is the expression of the form z = V, where z is a variable
and V is a formula without fixed points. m]

Let us describe a recursive algorithm of a decomposition of normal
formulae into pairs of systems of equations. For a formula V this algorithm
constructs two systems of equations MIN (V) and MAX (V) as follows:

MIN := MAX :=0; EQ(V,MIN,MAX);
MIN(V):= MIN; MAX(V) := MAX.
where
procedure EQ (V : a normal formula;
var MIN, MAX : systems of equations Js
begin
(* let’s present V as fiz z.W(V[L...k]), where fiz €
{min, maz}, z is a leading variable of V, W is a fixed points
free context and V' [1...k] is a vector of normal subformulae
of V; let z[1...k] be the vector of leading variables of
V[1...k] ; let eq be the equation = = W(z[1...k]) ;*)
if fiz = min then
MIN := MIN U {eq};
if fiz = maz then

An effective model checking for Mu-calculus 79

MAX := MAX U {eq};
for i :=1 to k do EQ(V;,MIN,MAX);
end.

Statement 2. The decomposition procedmi has a linear time bound.

Let us describe an iterative algorithm of an a.ppronmatlon for some
solution of pairs of systems of equations in a finite model and for an eval-
- uation of variables which do not occur in the left parts of equations (so
called free variables). For a pair § of systems of equanons

{ MIN :z; =R(z[l...f],y_[l...g],z[l...h]),
MAX (¥ =Gji(z[1...f],y[1...g9],2[1...R)),

where i€ [t...f], je€[l...g]l, =z[l...f],y[l...g],2[L...R] are dis-
joint vectors of variables, for a finite model M = (Dm, In) and for an
evaluation E of free variables z[1...h] by subsets of Dps this algorithm
tries to construct subsets of Dp o : :

x?‘(s’Mr"E)’ .‘y,-(S,M,E), z;,(S,M,E)
deft...f], jell...g, kel...h)
as follows: o ' '

s:=0;
let E(s) be the evaluation E(B/z[1...f])
repeat S
t:=0;
let E(s,t) be the evaluation E(a)(DM/y[I g]),‘
repeat
let E(s,t+ 1) be the evaluataon
E(s,t)([G[1...9]), E(s,1)] s/ [1...0));
t:=t+1 '
until E(s,t) = E(s,t - 1);
let E(s+ 1) be the evaluation
E(s,0)([F(1...f], E(s,0)] /2 [1... f);
s:=s8+1 .
until E(s) = E(s-1);
the evaluation E(s) defines values of
E;‘(S, M’E)’ yJ(Si M, E), zk(S, MrE)
i€[l...fl, je[l...g], kell...n)

80 S.A. Berezin, N.V.Shilov, P.V. Shneider

Lemma 3. The Approzimation Procedure has upper time bound const x
(m x f)* , where m is the capacity of the domain of a finite model and f is
the length of systems of equations.

- Remark. The length of systems of equations is the sum of lengths of all
equations from these systems. '

SKETCH OF PROOF. Let M be a finite model, § — a pair of systems MIN
and M AX of equations and E — an evaluation of free variables of §. The
semantics of any fixed-point free formula H from the system S with vari-
ables z[1...f],y[1...g] and 2[1...h] for any evaluation E’ of z[1... f],
any evaluation E” of y[1...g] and for the evaluation E of z[1...h] can
be computed in the time const x m? x h , where h is the length of H.
Hence, each computation of the body of inner loop of the Approximation
Procedure can be done in the time const x m? x f? . But the negation in
formulae Gy, ..., G, is applied to the variables z[1...A] only; consequently,
" Gy,...,G, are non-descending functions on z[1... f] and y[1...g]. Hence,
because of M finiteness, the body of the inner loop is computed not more
than m x f times. So, each computation of the inner loop can be done
in the time const x m® x f3 . Obviously, this is upper bound for each
computation of the outer loop body of the Approximation Procedure. But
formulae Fi,..., Fy are similar to Gy,...,Gy. Hence, because of M finite-
ness, the outer loop body is computed not more than m x f times too. So,
the upper time bound for the Approximation Procedure is const x m* x f4.
e o

Statement 3. For any finite model, for any normal formula and for any
evaluation of free variables of the formula if the least fized points of the
formula are syntactically independent of outer greatest fized points of the
formula then the Approzimation Procedure to be applied to the decomposition
of the formula into the pair of systems of equations, and to the model, and
to the evaluation, evaluates the semantics of all those fized points correctly.

Remark. If V is a formula , fiz; ,.W; is a subformula of V, fiz, z,.W;
is a subformula of Wj, then the last subformula is said to be syntactically
independent of the first subformula in V iff z; does not occur in Wj.

Theorem 1. The model-checking problem for Mu-Calculus formulae, for fi-
nite models and evaluations of free variables is decidable with an ezponential
upper time bound; but if a formula is a normal formula in which each least

An effective model checking for Mu-calculus 81

fized point is syntactically independent of any outer greatest fized point, then
the model-checking problem has a polynomial upper time bound.

SKETCH OF PROOF. An exponential upper time bound in the general case
is proved in Corollary 1 from Lemma 1. A polynomial upper time bound
in the special case follows from Statement 2, Lemma 3 and Statement 3.

) a

3. Towards infinite models with real time

First we give an informal description of a transition system with real time
(3] which properties we want to verify.

Let S be a finite set of states. We will denote states by s, s/, Let
A be a set of actions which transfer system in the non-deterministic way
from one state to another. In addition, to each action two constants from
N U {0} are assigned; they form a duration interval for the action; we call
them lower and upper time bounds. And for an action b with time bounds
I and u we will write ;b* when necessary. The global variable ¢ ranging over
natural numbers will keep global system’s time.. For each action ;b% the
variable T} ranging over N will be called a timer of ;6% or a history variable.
An individual timer can be incremented only simultaneously with the global
time but it can independently be assigned to 0. An action is enabled in
a state s iff the action may be executed in s. Let En(b) be a set of all
states where the action b is enabled. We say that an action ;b is eligible iff
T, > l.. An action may occur when it is enabled and eligible simultaneously.
If an action may occur, its execution leads to transformation of a current
state to a next one and its individual timer is assigned to 0. For any other
action if it is enabled in the next state, its individual timer does not change
its value; if not, the timer is assigned to 0. But there is one distinguished
action otick® that differs from actions described above by the rules of
transferring. T'ick is enabled in every state and it does not change a state.
However, it increments by 1 the global variable ¢ and individual timers of
all enabled actions. We will say that an action must (or have to) occur till
next tick iff its individual timer is equal to the upper time bound of the
action. The tick action is eligible iff there is no any action which must
occur till next tick. ,

Thus, we obtained a transition system with actions transferring with
time delay.

It is easy to understand that actions like ga® do not need timers,
because they are eligible just when they are enabled; we call such actions
untimed actions; all the other actions are timed actions. Actions like ,,a™

82 S.A. Berezin, N.V. Shilov, P.V. Shneider

do not have a sense at all, because they never occur. For actions like 16>,
where | > 0, the individual timers suffice reaching the lower time bounds
and then maintaining it as long as the action is enabled, because the action
will never actually have to occur before the next tick. At last, for actions
like ;a*, where 0 < I < u < oo the individual timers are bounded by the
appropriate upper time bound. Therefore, we may redefine our system so
that every timer has a finite range. Now we will describe formally a model
for our transition system.

Definition 3. A configuration of a system is a vector given by
(ﬁ,-hl, ey hn),

where s is a state, hy,...,h, are values of timers of all timed actions a,

viey Gn. .
Note, that the set of all configurations D, is ﬁnite.
Definition 4. An extended configuration of a system is a vector given by
(8,h1y.. oy by, t),

where (s, Ay, . coyhp)is a conﬁgura.tioil, and ¢ is a value of the time variable
t. ' ‘ :

Note, that the set of all extended conﬁgurations D; is countable.
It is clear that any status of the system with real time can be fully
described by an extended configuration. ‘

Definition 5. Let M; = (Dy, I;) be a real-time model, where D, is a set of
all extended configurations, I; is an interpretation of predicates and actions.
We will say that I, is induced by the transition system if the following holds:

e For any action ;a* (including tick) and any d, d;, € D, (de, d}y) €
It(a) iff the action ;a* may occur in the extended configuration d;
and it can transfer the system to the extended configuration d,.

We consider also an untimed model M, = (D¢, 1.), where D, is a set
of all configurations, and I, is a projection of the interpretation I; on D,.
Formally, it means that I, should meet two following conditions.

1. For any predicate p d € I.(p) iff there exists ¢ € A such that
d; € In(p);

An effective model checking for Mu-calculus 83

2. For any action b (d,d’) € I.(b) iff there exist ¢, € N that (dy,d}) €
L(b).

We will also say that the interpretation I, is induced by the tran-
sition system if corresponding I; is induced by this system. A model
M = (Dum,In) is induced by the transition system iff Dps is either the
set of all configurations or ‘the set of all extended configurations, and the
interpretation Ips is induced by the transition system.

From now on we will fix some transition system and consider only
models induced by this transition system.

If we could store and operate with countable sets. with the help of
computer, we would be able to evaluate formulae in the Mu-calculus with
time using the model M; and hence to verify any expressible property of
a transition system with real time. In this paper we try to find classes of
properties, for which we can reduce evaluating of. appropriate formulae in
the countable model M; to the model-checking in some finite model. An
accurate reader will note that the correctness of the semantics of formulae
for some special infinite models is actually proved in Theorem 2, Corollary 1
and Theorem 3. Moreover, the semantics is proved to be correct for any
countable model in [1].

The set of all extended configurations is mﬁmte only because of infinity
of range of variable . The next theorem allows us to reduce verification of
properties which do not depend on time, to model-checking in finite model
M..

Theorem 2. Let M; = (Dp,In) be a real-time model induced by a transi-
tion system. Let the interpretation I; meet the following: for any predicate
p Ii(p) = I(p) x N. Let also an evaluation E;: V +— 2Dt map the set of
variables in the same way: Ei(z) = E.(z) X N, where X is a variable and

E.:V — 2D< s an evaluation in the model M Then, for any formula
F [FEt]t [F,E] xN.

Proor. The induction on the structure of F. Most cases are obvious; we
consider here only two cases when F is < a > F' and maz z.F’. The fact
that [< a > F, Et] - [< a>FFE] x N follows from the constructing of
M,. To prove that [< a>F E] xN C [< a>F Et it is sufficient to
show that if d; € [< a>F Et]t ‘then for any t' dy € < a> F, Eg]

the definition of |,]:’ there exists dj, € [F', E;], such that (d,d!,) € I,(a)
By the induction hypothesis, for any t” € N d}, € [F', E‘t] Let us consider
here only the case when a = tick. So, d = d', ¢’ = t + 1. Since for any
t"enN (dynydinyq) € It(tzck), it” follows that dy» € [(a>F, E*]t' Now

84 S.A. Berezin, N.V. Shilov, P.V. Shneider

let us discuss the case of maz z.F’. We will compute the greatest fixed
points of F’ in two models M, and M; simultaneously.

...........................

ooooooooooooooooooooooooooo

If for some i z; ; = z; X N/, then by the induction hypothesis, z; ;41 =
z;4+1 X N. Since D, is finite there exists n = |D,| that 2,41 = z,. Hence,

Tt ntl = Tp4l XN"—"'ZL'nXN=$f no.

Using Statement 1 we may conclude that z; , is the greatest fixed point
of F/, and
[maz z.F’,Et]t = [maz :c.JF",Ec]c x N.

O

Corollary 1. Suppose, the interpretation in a model My = (Dy, I;) meets
~ the following: for any predicate p if d; € I,(p) for some t, then dy € I,(p)
Jor anyt' =t (mod p), where p > 0 is a fized period. Let an evaluation E,
map the set of variables in the same way, i.e., if for some t d; € Ey(z), then
dy € Ey(z) for any t' =t - (mod p), where z is a variable. Then for any
formula F if some d; € [F , Ey) . thendy € [F, Et] foranyt' =t (mod p).

SKETCH OF PROOF. We extend the set of actions by a new action ,tact?.
ptact? is enabled in every state and does not change it when occurs. We
also force ptact? to occur as-soon as possible, i.e., strait away after every
p-th tick, so that the appropriate timer Tipt =t (mod p). Let model M;
be induced by this new transition system with tact. If the interpretation
satisfies the conditions of Theorem 2 predicates and variables may depend
on Tiqct, SO they may still depend on time indirectly and periodically as we
need. To complete the proof one may use Theorem 2. m]

Corollary 2 (The upper bound of complexity). Evaluating of a formula in
the model My = (Dy, I}) for a transition system with evaluation of predicates
with a period p can be reduced to evaluating of the formula in the model

= (D', I'), where D' = D, x [0...p— 1] and I' is the projection of I; on
D.

SKETCH OF PROOF. The model M’ may be considered as a projection
of M; on D' when tick changes the variable ¢ in the following way: t :=

An effective model checking for Mu-calculus 85

(t+1) mod p. Corollary 1 assures that one may expand the result of a
formula’s evaluating to a countable periodical set. a

To verify the properties like ¢t < k and t > k it is sufficient to extend
the model M’ from Corollary 2 by the non-periodical range [0...k — 1]
and to shift the periodical range from [0...p— 1] to [k...k+ p—1]. The
expansion of this model to a countable set gives us semilinear time sets.
The next theorem states the correctness of this expansion.

Definition 8. The semantic set 8P C D, is semilinear with the length of
non-periodical part k and a period p if the following holds: If d; € S} and
t >k, then for any ¢ =t (mod p), t' > k: dy € S}.

- Theorem 3. Let My = (D, In) be a real-time model induced by a transi-

- tion system. Let the interpretation I; map the set of predicates to semilinear
semantic sets. Let also an evaluation E; map the set of variables to semi-
linear semantic sets. Then for any formula F [F, Ey] , 15 also a semilinear
semantic set with the same period and non-periodical part.

We omit here the proof because of its evidence.

Corollary (The upper bound of complexity). Evaluating of a formula in
the model My = (Dy, 1), induced by a transition system, with interpretation
of predicates by semilinear semantic sets with a non-periodical part k and
a period p can be reduced to evaluating of the formula in the model M' =
(D', I'), where D' = D% [0...k+p— 1] and I' is the projection of I; on
D',

SKETCH OF PROOF. Any semilinear semantic set can be represented by a
subset of D'. Thus, we may construct the interpretation I’ as a projection
of I, on D’'. The correctness of expanding results of formula’s evaluating
in M’ to a semilinear set follows from Teorem 3. o

Appendix
A brief description of the model-checker prototype

This section deals with a sketch of description of the prototype of a model-
checker that is based on the polynomial model-checking procedure from
Statement 3.

The prototype was implemented by Kerejbaev D.J. and Shnaider P.V.
on IBM-PC AT 286 as a diploma project.

86 S.A. Berezin, N.V. Shilov, P.V. Shneider

A development of the prototype makes it possible to improve some
features of the algorithm and an expected system. For example, we de-
veloped a command language for parameterized sets of natural numbers,
parameterized binary relations on natural numbers and some kind of simple
recursion. Some non-efficiencies of the algorithm were also detected and
eliminated along the implementation.

The prototype was implemented in a functional programming language
REFAL. This choice is motivated by necessity of processing texts and fast
implementation of a prototype.. Unfortunately, some features of REFAL
realization on IBM-PC restricts efficiency of the model checker prototype.

The prototype has a modular structure. The modular organization of
the prototype reflects global steps of model-checking procedure: a model
generation; the transformation of a formula to a system of equations and
the evaluation of a system of equations.

Modules interact through special files, created by prototype during a
work. Two entrance files must be created earlier. They are : the file of a
model’s description and the file of a formula.

Of course, the prototype supports some services: data files edition; lists
of mistakes; activation of a module; etc. Interface is simple and reliable.

Acknowledgements. We would like to thank Aleksandr V. Rjazanov for kind
attention and constructive advices about the draft version of our paper.

"References

[1] R.S. Streett, E.A. Emerson, An automata theoretic decision procedure for the propo-
sitional Mu-calculus, Information and Control, Vol.81, No.3, 1989, 249-264.

[2] R. Cleaveland, M. Dreimueller and B. Steffen, Faster model-checker for the modal
Mu-calculus, Proc. of TAV-91, Montreal, 383-400.

[3] 1.S. Ostroff, Automated verificaion of timed transition models, Lect. Notes Comput.
Sci., Vol.407, 1990, 247-256.

