Bull. Nov. Comp. Center, Comp. Science, 2(1993), 25-44
© 1993 NCC Publisher

S ynchronous-asynchronq_us
transformation of cellular algorithms*

0.L. Bandman

Asynchronous versus synchronous cellular computations are investigated in terms of Par-
allel Substitution Algorithm (a formal model of fine-grained parallel data processing). A

in cell-complexity should be paid for the abandonment of synchronizing clock in cellular
VLSI systems.

1. Introduction

The advancement in VLSI technology as well as the results in optical com-
puting studies enhance the investigations of fine-grained parallel algorithms
and their implementation. One of the main problems in this field is to com-
pare synchronous versus asynchronous mode of cellular algorithms.

At the current state of computer technology development a synchronous
mode of operation in fine-grained parallel processors is preferred to be used.
There are three reasons for that.

1. Any valid synchronous computation is an algorithm, this is in accor-
dance to our way of thinking.

2. Synchronous computation validity is much more easy to provide, than
that of asynchronous one.

3. Hardware implementation of synchronous systems is more feasible,
and their operation is more reliable. This is confirmed by the long-
term experience of VLSI systems exploitation.

Nevertheless, the theory of asynchronous computations is being devel-
oped rapidly, and the methods of implementing asynchronous systems are
being improved. The most important point in favour of the asynchronous

*This work was supported by Russian Fund of Fundamental Research

26 O.L. Bandman

mode is the tendency for the decrease of switching time, the latter becom-
ing close to that of clock pulse propagation. Hence, the clock frequency
directly depends upon the signal propagation speed, which in its turn is
limited by the speed of light. Thus, the common clock becomes the re-
straining factor for system performance enhancement, which provokes the
desire to get rid of it and stimulates the investigation of asynchronous mode
of cellular computations.

The main goal of the investigation is to get answer to three following
questions:

1. What are the features a cellular algorithm is to possess in order to
meet validity conditions.

2. How to transform a given cellular algorithm into an equivalent one,
whose asynchronous computations meet the validity conditions.

3. What price in hardware and in executing time is to be paid for the
abandonment of synchronizing clock.

The exhausted answer to the first question is given in [1], [2], [3].
The second and the third questions are the subject of this paper. The
answers are obtained in terms of an original formal model of fine-grained
computations, called Parallel Substitution Algorithm (PSA) [4], [5]. The
results do not pretend to be perfectly complete. We only succeeded in
constructing a formal transition from synchronously executable algorithm
to an equivalent one whose features constitute a sufficient but not necessary
condition of asynchronous computation validity [3]. It means that we are
able to construct only a part of all existing computations which are valid in
the asynchronous mode of execution and equivalent to the given algorithm.

The above problems, which are further investigated in terms of PSA
theory, have been explored in relation to other computation models, which
may be considered as subclasses of PSAs. The most fruitful from the
methodological point of view approach is presented in [6], where the asyn-
chronous computations on one-dimentional cellular array referred to as
“asynchronous grammars” are studied. The relation between the computa-
tion time and the degree of asynchronism is also determined. The latter is
measured with the number of times (denoted by D), during which a sub-
stitution remains applicable before being executed. The main result of this
investigation is as follows: any set of strings, recognized by the synchronous
grammar not more than in k times, are recognized by the asynchronous
grammar not more than in 3(D + 1)k times. Very important in (6] is also
the proposed strategy for transition from the synchronous mode to the
asynchronous one for 2D and 3D dimensional computation spaces.

Synchronous-asynchronous transformation of cellular algorithms 27

In [7] a more general model with no constraints on the computation
space dimension is presented. The possibility of simulating a synchronous
computation by an asynchronous one has been studied. The main result is
the following: any synchronous computation in d-dimensional cellular space
may be simulated by an asynchronous one in (d + 1)-dimensional cellular
space. The strict proof of this proposition is anticipated by a method of
simulating space construction, which illustrates the idea and is interesting
from the methodolcgical point of view.

It is worthwhile to pay attention also to the method of selfsynchro-
nization of the arbitrarily connected identical automata, called "intelligent
graphs” [8]. This stage of study showed that the minimal price to be
paid for the asynchronism is the threefold amount both of states and of
transition functions of each automaton.

In what follows a method for transforming synchronous computations
into the equivalent asynchronous ones is presented. The method is in the
framework of PSA theory, though some ideas and approaches from the
above investigations are also used.

2. Formal statement of the problem

Let A be a finite alphabet and M be a set of names, A pair (am) belonging
to AX M is called a cell, where a is a state of the cell and m is @ name of
the cell. In our investigation M is the naming set, being a set of integer
vectors, determining the coordinates of the points in computation space.
The 1D-space is denoted as M! = {1,2,.. .}, the 2D-space is M2 = {(4,7) :
i=0,1,...; =0,1,...).

Definition 1. A finite set of cells W none two pairs of which have the
same name, is called a cellular array. The set of all cellular arrays whose
cells have states from A and names from M is denoted by K(A,M).

Definition 2. An expression of the form

O : Wy + Wy = W, (1)
where W1, Wy, W3, and W1 UW; are cellular arrays, is called a substitution,
W1 U W, is the left-hand side of a substitution, W, is the base, W, is the

context, and W3 is the right-hand side of a substitution.

A substitution is applicable to W if Wi UW, C W, and the result of
this application is

28 O.L. Bandman

O(W) = (W \ Wy) U Ws. (2)

Example 1. The substitution

| © : {(0,(0,1))(0,(0,2))} * {(1,(0,0))} = {(1,(0,1))(1,{0,2))},
where A = {0,1} and M = M?, being applied to the array
W = {(1,(0,0))(0,(0,1))(0,(0,2))(0,(1,0))(0,(1,1))(0, (1;2))},

results in

O(W) = {(13 (0,0))(1, (0, 1))(1’ (072))(0, (1,0))(0, (1, 1))(0, (132”}'

Definition 3. A partial function ¢(m) determined on the set M’ C M is
called a naming function. A finite set of naming functions

T = {e1(m),...,e(m)}, (3)

such that for no m € M ¢i(m) = ¢;(m), i,7 = 1,...,t, i # j and
@1(m) = m, is called a template.

A template associates with each name m, € M a set of closely allocated
names T(my) referred to as a template element, which may be considered
as a pattern in the naming space.

Definition 4. An expression of the form

S= {(alspl(m)) . "(a’ta ‘Pt(m)}a (4)

is called a configuration. A pair (a;, p;(m)) is called the i-th component of
the configuration. A cellular array, obtained by substituting a certain my
for m in (4) is referred to as a configuration element. The set of naming
functions occurring in (4) is called the underlying template T(S) for §.

Example 2. Let M = M?, A = {0,1}. The configuration

S = {(13(3?3))(& (1 - laJ))(O’(ZsJ - 1))}

has the underlying template

T= {(2,]),(3 - laj)’(ivj - 1>}

The cellular arrays:

Synchronous-asynchronous transformation of cellular algorithms 29

5((2,2)) = {(1,(2,2))(1,(1,2))(0, (2,1))},
S((2=3)) = {(11(273))(1’(1’3>)(01(2’2))}

are the elements of §. The element 5((0,0)) is not defined, because so is
the second component of §.

Definition 5. An expression of the form
9:31*52=>S3, (5)

where Sy, S5, S5 and 51 * 8§, are configurations, is called q parallel substi-
tution (further, if it does not lead to ambiguity, the adjective "parallel” is
omitted for short), S; is called g base, S3 ~ a context, 51+ 82 — a left-hand
side, S3 — a right-hand side.

A subclass of parallel substitutions, in which the configurations S; and
S3 have equal underlying templates is used here. Such substitutions are
called stationary substitutions or, sometimes, parallel microprograms [4].

A parallel substitution is considered to be applicable to the cellular
array W € K(A, M), if there exists a subset M' C M, such that for any
my, € M’

(i, pi(m,)) € 51(m,) for the states ¢; of the cells (ciypi(my)) € S3(my),
which is expressed in term of cellular arrays as

o) = (w\ U sitmp)) U (U Sa(m,)). (7)

mpEM' mpEM'

An execution of a substitution @ € @ at a certain cell my, € M is
referred to as q microoperation O(m,).

Definition 6. A finite set of substitutions & = {01,...,0,} is called a
Parallel Substitution System (PSS).

Definition 7. The union of underlying templates of the left-hand side
configurations of all substitutions of a PSS is called the input neighbourhood
template and is denoted as N'(m). Its subset, comprising the templates of
the right-hand sides of the substitutions is called the output neighbourhood
template and is denoted as N"(m), i.e.,

30 0.L. Bandman

N'(m)= | T(Sa*Sa), N'(m)= | T(Sia). (8)

Ocd ©ed

The sets of names obtained by substituting a certain name m, € M in
N'(m) and in N"”(m) are called input and output neighbourhoods of the cell
named m,.

Definition 8. The iterative procedure is called the synchronous mode of
ezecution of a PSS, if it is accomplished according to the following proce-
dure. '

Let W be the result of the i-th step, then:

1) if no substitution is applicable to W?, then W' is the result of the
computation;

2) if there exists a non-empty subset & C & applicable to W*, then W*
is substituted for
Wt =] o). (9)
0,ed’

An executim}’of a PSS @ with W as the initial cellular array is called
a synchronous computation and is denoted as ®(W).

Definition 9. A PSS is called non-contradictory on K(A, M) if its ap-
plication to any W € K(A, M) results in a cellular array, i.e., the result
contains no pair of cells with the same names. If there exists a cellular
array W € K(A, M) such that the result of application of a PSS is not
a cellular array (it contains two cells identically named), then the PSS is
contradictory.

Definition 10. A non-contradictory PSS @, which is to be executed on
cellular arrays from K(A, M) according to the synchronous mode, is called
a Parallel Substitution Algorithm (PSA) and denoted as Il = (®, (A, M)).

Definition 11. The non-deterministic procedure is called the asynchronous
mode of execution of a PSS, if it is accomplished according to the following
procedure.

Let W' be the result of the i-th step, then:

1) if no substitution is applicable to W', then W' is the result of the
computation;

2) if there exists a non-empty subset ® C & applicable to W, then
any but only one substitution ©; € " applicable at a cell m, € M,
is executed, so that

Synchronous-asynchronous transformation of cellular algorithms 31

Witl = (Wi \ Sja(my)) U Sja(my).

An execution of a PSS & in the asynchronous mode with W as_the initial
state is called an asynchronous computation and is denoted as o(W).

The behavioral properties and validity conditions for both modes have
been studied in [1], [2], (3]. They are expressed in terms of computation
graphs, which are associated with the computations ®(W°) or &(W0) as
follows. The vertices of a computation graph are denoted by the reach-
able cellular arrays W°,... , W9, an arc from W' to W/ existing if W7 is
the one-step result of PSS application to Wi. Each path from the initial
vertex to the terminal one is referred to as a computation realization. The
computation is said to be determinate, if the associated computation graph
has only one termination vertex. If each vertex in the computation graph
has only one successor, then the computation is deterministic. The com-
putation is terminating, if there is no cycles in its computation graph. The
computation is called valid if it is determinate and terminating.

Definition 12. The synchronous (asynchronous) mode of execution is
called valid if for any initial cellular array W € I((A, M) the synchronous
(asynchronous) computations are valid.

In [1], [2], [3] necessary and sufficient conditions are obtained and meth-
ods for PSS validation are developed. For our aims here the following
results from [1], [2], [3] are essential:

1) a PSA is always deterministic (and, hence, determinate);

2) an agynchronous mode of execution of a PSS is determinate if so
are asynchronous computations initiated by a set of cellular arrays,
referred to as critical. A critical cellular array Cjr(m,) is equal
to the union of left-hand side configuration elements of a pair of
substitutions ©;,0), € & of the form

Cin = Sj1(mp) U Sja2(my) U Shy(my, + d), (10) .

if there exists mp € M and an integer vector d, such that Cin C
K(A,M).

A very useful extension of a parallel substitution is also used here. This
extension is associated with a concept of variables and functions as alphabet
symbols. The set of variable symbols X = {21,...,2,} and functional
symbols ¥ = v,y i = f(z1,...,2,) with the domain and the

32 O.L. Bandmmt

range in A, are added to the alphabet A, so that the resulting alphabet
A* = AUX UY. A configuration with variable or functional symbols
in its components assign to each its element §(myp) a number of cellular
arrays, each corresponding to a set of values from A standing for z; € X,
t=1,...,p.

Definition 13. A substitution whose configurations contains components
with variable and functional symbols is called functional.

A functional substitution is considered to be applicable to a cellular
array W, if there exists a set of values in A and a name my, € M such
that after substituting them for the variables the substitution meets the
applicability condition (6).

Definition 14. Two computations (of any execution mode) are called to
be equivalent, if being initialled by equal cellular arrays, they terminate in
equal resulting ones.

Definition 15. An asynchronous mode of execution of a PSS &' is called
to be equivalent to a PSA II = (®, K (A, M)), if for any W € K(A, M) the
asynchronous computation ®(W) is equivalent to a synchronous one ®(W).

Example 3. A PSS & = {01,02}, 4 = {0,1}, M = {(4,7) 4 =1,2,3;
J =1,2,3} represents the logical OR’ing of three Boolean vectors three bit
long. The substitutions of & are as follows:

01t (L3N0, i+ 1,3)} = {0, (,3))(L (i + 1,30}
02 {(L, (63N} {(L, i+ 1,1)) = {(0, (i, 7))}

The same algorithm expressed with using functional configurations contains
only one following substitution:

O: {(xla(ivj”(m% (i+ L)} = {(v, (2, 7))(0, (i — LN},

where y = (2, V 2;), The input and output neighbourhoods are as follows:

N'((i,3) = N"((,) = {(i,5), (i + 1,)}

Figure 1 shows geometrical substitution patterns ofa given.PSA, Fig-
ure 2 shows its functional expression. In Figure 3 a synchronous and in
Figure 4 an asynchronous computation, initialled by one and the same cel- -
lular array, are displayed. The patterns of the applicable microoperations
are enclosed in rectangles. In the asynchronous computation graph an arc

33

Synchronous-asynchronous transformation of cellular algorithms

- o o

- o o

o o

Figure 4

34 O.L. Bandman

starting from the pattern of applicable microperation go to the cellular
array resulting of this microperation execution. _

Example 3 displays a “nice” PSS, which is valid in both synchronous
and asynchronous modes of execution. It is easy to check that for any W
computation ®(W) is equivalent to ®(W). Hence, the asynchronous mode
of execution of ® is equivalent to its own synchronous mode. It is not so
in general, hence the problem is to obtain a method of constructing a PSS
®’ whose asynchronous mode of execution is equivalent to a given PSA.

3. Simulating a synchronous computation by an
asynchronous one

In terms of PSA theory the above problem is formulated as follows. A
PSA II = (®,K(A,M)) is given, a PSS @' is to be found such that its
asynchronous mode of execution is equivalent to the given II. The prob-
lem is further solved by means of developing a method of constructing
an asynchronous computation (Definition 11), which simulates the syn-
chronous one. The concept of simulation is requested to provide validity
and identity of the results.

Definition 16. Let a be a sequence of symbols from 4, a = a4,...,4q;,....
Then the sequence h(a), obtained by eliminating from « all but one symbol
from each subsequence of identical symbols is called a history of a.

Example 4. The history of the sequence a = 111A0010001AA00 is as
follows: h(a) = 1A0101X0. -

Definition 17. Let o/ = ay,...,4a, be a sequence of symbols from A’ and
A is the subset of A’. Then a sequence & = a;1,...,a;, , where a;; € A,
p < ¢, is called a projection of o’ on A, if it is obtained by eliminating
from o’ all symbols not belonging to A.

Definition 18. A sequence § = by,...,b,, b; € B, is called a &,-extent of a
sequence « = ai,...,aq, a; € A, ie., B = £ (a), if there exists a partition
on B, B=ByU...UB,_, such that the following holds:

1) Bin Bj = { for each pair i,5 € {0,...,7 =1}, 1 # 7,

2) Bp =4,

3) each By, i=1,...,r — 1, is isomorphic to A, i.e., there exists r — 1
one-to-one mapping §; : B; = A,

Synchronous-asynchronous transformation of cellular algorithms 35

4) the history h(/3) is of the form

h(B) = a],c‘il(al),...,61,_1((51),...,aq,ﬁl(aq),...,6,_1(0,?), (12)

5) the projection of h(3) on a

Pr(h(3)= A) = a. (13)
The sequence « is referred to as the initial sequence for [, i.e.,‘a = £71(B).

Example 5. Let A = {a1,a3}, B = {b1,02}, C = {e1,¢2}. The se-
quence § = ay,ay, by, ¢1,a9,by, ¢, a3, by, by, €9, a1, a1, by, by, ¢1, a1, a4 is a £3-
extension of & = ay,ay,a3,a;,a;. To make sure of it the conditions of
Definition 18 are to be checked as follows:

1) the alphabets B and C are isomorphic to A,

2) the history h(8) = a1, by, ¢1,a3,b3,¢9,a3,b3,¢3,a1,by,¢1,a; is of the
form (12),

3) Pr(h(B))= A) = ay, Gz, az, ay, a1, which is equal to o.

Lemma 1. If 8 = by, .. by andy =gy, ... »9q are E--extensions of the one
and the same sequence, then their histories are identical, i.e.,

h(B) = h(7). (14)

Proof. The equality of the histories follows directly from the conditions 4
and 5 of Definition 17. O

Lemma 2. If 8 = §y(a), then
h(B) = a. - (15)

Proof. According to Definition 18, §o-extension has the trivial partition of
B, so that B = By, By = A. The substitution of B for A together with
the fact that the projection of a sequence of symbols from B onto B is the
sequence itself gives the equality A(8) = a, which proves the lemma. 0O

Definition 19. Let 0 = W°,... W/, .. ., W17 be a computation realization
(a path from the initial vertex to the termination one) in a synchronous or
in an asynchrenous computation graph, then the sequence

36 0.L. Bandman

o(mp) = @ity ..., 0i5,...,aq,

where (a;j,m,) € Wi, j = 1,...,q, is called a cell-realization. If the
computation is a synchronous one, then cell-realization in it is denoted as
(mp), if the computation is asynchronous — &(m,).

Now a concept of simulating a synchronous computation ®(W0) by an
asynchronous one &’ (W?) is introduced. It is important to remind that a
PSA @ (a non-contradictory PSS & executed synchronously), generates a
deterministic computation, whose computation graph is linear, representing
a single realization & = WO, ..., W7, ... W9 which is finite, if so is the
computation ®(W?).

Definition 20. A computation ®(W°), W € K(A, M), _generated by
a PSA, is said to be simulated by an asynchronous one '(V9), VO ¢
K(A',M), A C A, if there is a certain r, such that any cell-realization
&i(my) in ®(VO) is a £,-extension of a(my), i.e.,

G(mp) = &(3(my)) (16)
for any m, € M.
Example 8. A computation graph ®(W?°), where & = {01,02},

01: {(6:9)} * {(a,i - 1)(a,i + 1)} = {(c, 1)},
92 : {(avi— 1)(C1i)(aai+ 1)} = {(C’i - 1)(6) i)(cai"' 1)},
and W° = {(a,1)(b,2)(a, 3)(c,4)}, is shown in Figure 5. The cellular arrays
are represented as strings of symbols. The left-hand sides of applicable
substitutions are underlined.
A computation graph ®'(V°), where V® € A’ x M, A’ = AU A",
={d\V',c'}, ' = {0',...,0},
01 :{(a,i— 1)(b,i)(a,i + 1)} = {(d',i = 1)(¥',i)(d,i + 1)}
02 :{(c, i)} * {(d,i = 1)} = {(c,9)};
0% {(a'yi =),)a'si + D} + {(cyi+2)} = {(@i— 1)(e,i)(ayi + 1))
04 :{(c,)} *+ {(a,i = 1)} = {(c,i)};
Os : {(a,i—1)(c,i)(a,i+ 1)} = {(d,i-1)(c,0)(a',i 4+ 1)};
0% {(ayi = V()i 4 1), i+ 2} = {(eri = 1)e,i)eri+ 1)(eyi +2)}

is shown in Figure 6.

Synchronous-asynchronoys transformation of cellular algorithms 37

abac

rar 1

a'bac

ryro

a'bac

I

acac

T'

acac

LN A

abac acac
acac a'c’a'c!
¥ N
ccce ccce
Figure 5 Figure 6

It is easy to make sure that ®(W0) is simulated by &’ (V?), checking
the condition (16) for any ¢ = 1,2,3,4. Indeed, for i = 1 and i = 2 this is
done as follows:

(1) = a,a,c 61(1) = a,d’,d,a,a,d, a,c;
02(1) = a,d’,d’,a,d’, c; £2(61(1)) = £&3(65(1)) = a,a,c;
(2) = b,c,c; 01(2) = b,b',V/,¢,c,d, ¢, c;

&(2) = b, bla b’a €, cla c; 5‘2(01(2)) = {2(02(2)) =b, ¢, c.

Theorem 1. Let ®(W0), W ¢ K(A,M), be a computation generated by
a PSA, ®'(V0), V0 € K(A', M), AC A is a simulating asynchronous one.
Then if ®(W0) is valid, then so is ®'(VO).

Proof. As ®(W?) is deterministic and finite, then its computation graph is
linear, and for any cell named mp € M there exists a single cell realization
d(my). Hence, according to Definition 19 all 5;(m,) in (V) are ¢,-
extensions of 5(m,). According to Lemma 1, their histories are identical
and, hence, (according to Item 5 of Definition 18) so are the projections on
the initial alphabet A. Since the Projections of the histories of all Gi(my)
are equal to one and the same sequence &(m,), they terminate in one and
the same state, equal to that of the terminating cell in a(my). As the
above holds for all m, € M, the termination. cellular arrays in ®(W°) and
in ti”(Vo) are equal, which proves the theorem. O

4. Synthethis of a simulating PSS

It follows from Theorem 4 that the problem of synchronous-asynchronous
transformation may be reduced to the construction of a PSS, which gener-
ates asynchronous computations simulating those, generated by the given

38 O.L. Bandman

PSA. The method of constructing a simulating PSS is based on three propo-
sitions, which proceed both from the concept of asynchronous simulation
and from the rules of asynchronous mode of execution of a PSS.

For formulating these propositions one more definition is needed.

Definition 21. Let a cell realization in an asynchronous computation
é’(V), Ve K(A', M), be 5(m,) = ay,...,aq, a; € A’y and A C A’ is
an initial alphabet. Then an ordinal number t of a segment of a(my),
which begins by a symbol from A and ends just before the next one from
A, is called a cell age. Any cell state in a segment numbered ¢ = n is
referred to as a n-aged state, the first one belonging to A being called the
initial n-aged state.

Example 7. Let A = {a,b,c} be an initial alphabet, A’ = {a,b,¢c,a’, ¥, c'}.
Then in a cell realization

L W Y Y | ! [YA / !
a(my) =a,d b, c"a,b,d,c b, c,d,d
~ ~ o ~ N

t=1 t=2 t=3

The cell named m,;, is 1-aged during the first six times, A being the\
initial 1-aged state. Then its age is changed for ¢t = 2.

Proposition 1. A substitution in a simulating asynchronous computation
may be ezecuted at a certain cell, if all the cells of its neighbourhood (Defi-
nition 7) are in one and the same age.

In order the proposition might have been realized for a certain cell
named m, € M, there should occur cellular arrays in the simulating com-
putation, which include all the cells of the neighbourhood of my being in
the same age. This is provided as follows.

Let us require the difference in ages for any two neighbour cells m; and
mp not to exceed a fixed number 7 of times, so that

| T(my) T(mj) |< . (17)

Hence, two neighbours m; and m, of one and the same cell m, may
differ in age by 27. So, in order the whole neighbourhood of a cell might
be in one and the same age if only one time, it is necessary for each cell to
preserve the age at least for 27 + 1 times. Hence, the £,-extension a(my)
simulating the synchronous realization (m,) should have the index

r>2r 4+ 1.

Synchronous-asynchronous transformation of cellular algorithms 39

The natural wish for fast transition to the next age brings up the choice
of minimal 7 = 1 and r = 3.

Proposition 2. The transition of a cell Jrom the age t to the age t+1 occurs
after two following facts are asserted:

1) the cell has already read out the initial t-aged state from all cells of
its input neighbourhood (Definition 7);

2) all cells to whose input neighbourhoods the cell belongs have already
read out its initial t-aged state.

The above conditions are fulfilled with r = 3 in the following way. The
alphabet A, used in @, is extended to another one, more than three times
larger, so that A = A°U A’U A”, where A9 in its turn is the extended A, so
that A= AU {),-}, A indicating the idleness of the cell, and “—” being
a “don’t care” symbol.

- Each microoperation 0i(my,), substituting (a,m,) for (¢,mp) is simu-
lated by the following sequence of cell-state changings:

a=(ac), (ac)=¢", ' =>e¢, (18)

where a,c € A, (ac)’ € A’, ¢" € A”. These changes are performed by the
execution of a sequence of microoperations: 09(m,), ©' — i(m,), Q7 (my).

The following restrictions are thus seen to be imposed on the applica-
bility of the simulating PSS.

1. An execution of ©9(m,) is allowed only if the states of all input neigh-
bours of m, belong to A° or to A’. This condition makes sure that the
cell has already read out all initial t-aged states from its input neighbours,
which allows the cell to make a decision whether ©7 is applicable. If the
decision is positive, then the new state (ac) should contain both states:
{(which is the initial t-aged state) and ¢ (which is an initial t+1-aged state).
The first is needed because there are input cell-neighbours which have not
yet read out the cell-state of the current age. The second is needed for
saving the knowledge of the cell-state of the next age. Otherwise, after the
applicability test is over the information about the applicable substitution
s Jost.

2. An execution of ©(m,) is allowed only if the states of all input neigh-
bours of m, belong to A’ or to A”. The substitution of ((ac)',m,) for
(".m,) makes sure that all neighbours have already perceived the initial
t-aged state a. Hence, the cell state may lose the information about the
state g, preserving only that about the state e.

40 O.L. Bandman

3. An execution of O is allowed only if all input neighbours of the cell
_ named m, have the states from A” or from A°. The substitution of (¢, m,)
for (¢,m,) indicates that the transition to the age ¢ + 1 has occured.

Proposition 3. In the simulating computation a cell undergoes the transi-
tion from the age t to the age t+1 no matter whether the initial t-aged state
is to be changed or not.

It means that even in the case when at the ¢-th iteration of a syn-
chronous computation the state of the cell named m, is not to be changed
(the cell is said to be idle), nevertheless, in the simulating computation it
should undergo three changes

a=(Xa), (Aa) = d", a"=a.

The above three propositions determine the extension of the alphabet
A to A, as well as the substitutions of a simulating PSS &’.
. According to Proposition 1 the alphabet A (with # = 3) consists of three
subsets: A = AU A’ U A", each pair of them having empty intersection,
where

A=AU{)-), A =8(Ax A%, A"=4"(40), (19)

where &' and §” are one-to-one mapping. Further, to be short, they are
denoted as follows:

&'(a,b) = (a,b) and §"(a) = a".

In order to represent substitutions of & in a compact form let us use
some additional symbols, which are logical constructs of symbols from A,
if regarded as variables

a is either a or (a-),
(ab) is either (ab) or b,
@' is either a” or a,

where a, b are arbitary symbols in A°.

A substitution containing a configuration component with @ as a state
should be regarded as two substitutions: one of them having @ instead of
@, and the other — having (a,—)" instead of @ . Thus, the above addi-
tional symbols allow to enclose in a single expression a set of substitutions
corresponding to all possible combinations of states in the configuration
components instead of symbols with overbars.

Synchronous-asynchronous transformation of cellular algorithms 41

Since a functional substitution is also to be used, A should be argu-
mented by a set of variables {x1,...,2,} and a function y = F(zy,...,2,)
with the domain in A.

Let the substitutions ©; € ® be stationary with the identical first
naming function ¢i(m) = m, and be given in the following form:

01: {(a1,m)...(an, en(m))} * {(b1, ¥1(m)). .. (bpy ¥p(m))} =
{(cln m) e (cns (Pn(m)}‘

Let the input and output neighbourhoods (Definition 7) be as follows:

N'(m)={41,...,4.} and N"(m)={¢1,...,¢,}

respectively.
Then according to Proposition 2 each substitution ©; € ® has in the
simulating PSS two following corresponding ones:

0 : {(a1,m)(az, p2(m))...(an, Pn(m))}*
{51, 91(m)).. . (bp, p(m))} =
{((a1c1)',m). .. ((anen)', pn(m))};

07 1 {(cr, m)(c3, pa(m))...(cl, pn(m))}+
{51, 91(m)) ... (B}, p(m))} >
{(c1,m)...(cn, pa(m))}.

The substitution ©f simulates the applicability recognition of ©; € ®,
the substitution @ simulates the act of replacing states. According to
Proposition 2 there should be one substitution more which checks whether
all input neighbours have already read out the cell state of the current age.
This substitution, let it be ©’, is one and the same for all 0, € &, and
hence, it can be expressed in terms of a functional substitution as follows:

GI : {(271, 21‘}-', m} * {((.’L‘g, 22)’! (}5;1(7”,)), Tty ((‘Tu! Zu)’, ¢;—1(m))} =
" (
{(zl ’ m)}s

where z;, 2; are variables in A?, q&;l(m) are inverses of input neighbour-
hood components, j = 1,...,u.

Three more substitutions should be added for simulating the cell tran-
sition to the next age without changing the state. The indication of a cell
idleness is obtained by executing the following functional substitution:

(20)

21)

42 O.L. Bandman

Q°: {(21,m)} + {(Z2, 82(m)) ... (Fu, $u(m))} > {(f (215, 2,), m)}, (22)

where r,,...,, are variables in A; #$1(m), ..., ¢u(m) are naming functions
determining the set of input neighbourhood components of a cell named m

f(z Ty) = (Az1)’, if no substitution is applicable at m,
breeee B — otherwise.

For preserving the same initial state when entering the next state no
microoperations should be applicable not only at the cell itself, but also at
all those cells, to whose output neighbourhoods the cell belongs. Hence,
the transition of a cell from the state of A’ to a state of A” caused by its
output neighbour is performed by the following substitution:

2 A(Qar) m)}+{(wa), 97 (m) .. (), 97 (m))} =
{((=1)",m)},

where z1,...,z, are variables in 4 and ;! (m),..., $;1(m) are the inverse
naming functions, determining the output cell neighbourhood.

The transition to the next age is completed by the execution of the
substitution

(23)

Q" {(af,m)} + {(&3r, 071 (m)) ... (&), 671 ()} = {(z,m)}. (24)

Theorem 2. A synchronous computation @(W)l ® = {0,,. 50}, We
K(A, M), is simulated by the asynchronous one V), VeK(A M), AC
A, if the following conditions hold:

1) A=Ay A’y A", constructed according to (19),

2) ¢ ={09y,...,00,01,...,0",0 00 Q' Q"}, all substitutions being
obtained according to (20)(24).

Proof. According to Definition 19 it is sufficient to show that for any
my € M all 5;(m,) in (V) are £5-extensions of d(my) in ®(W). It means
that any Gi(m;,) meets five conditions of Definition 18. The first three con-
ditions, concerning the properties of the alphabet follow immediately from
the construction of A according to (19). The forth condition is evident from
the construction of the substitutions. As for the fifth condition, it looks as
follows: Pr(h(d;(m,) = A) = &(m,) for all di(mp) in ®'(W). According
to Definitions 16 and 17 the left-hand side represents the sequence of ini-
tial states in &;(m,). This sequence is one and the same for all Gi(my) in
®'(V'), which follows from the determinacy of each transition from a t-aged

Synchronous-asynchronous transformation of cellular algorithms 43

from the fact that the substitutions in ® have no critical intersections by
construction, which is clearly seen from (20)—(24). Besides, from @' it is
evident that each replacement of the t-aged initial state of a cell named
myp results in the same state that the cell with the same name has after
the ¢-th iteration in ®(W). Since all above is true for any m, € M, all
conditions of Definition 18 are fulfilled, which completes the proof. a

Example 7. An z.j.ichronous PSS simulating the PSA = (®,K(A,M)),
where & = {0,,02}, A = {a,b,c}, M =N,

O (e} +{(ai= 1} = (5,0} 02:{(ai)} = {(5,0));
is to be constructed.

Using the methods from [4] it is easy to check, that the asynchronous
mode of execution of ® is not determinate. It is clearly seen from the
computation graphs ®(W) and (W) with W = {(a,1)(¢,2)} which are
shown in Figure 7 and Figure 8 respectively.

The PSS @’ simulating the given PSA is constructed as follows.

The alphabet A is expanded to A = A%y A’ U A" , where A? =
{a,b,e,A}, A" = {(aa)’, (ab), (cc), (cb)}, A" = {a”, b”,c"}. For the sake of
the simulating PSS compactness the following additional symbols are also
used.

z which stands for either 2 or(z-),
(z7)" which stands for either (zy) or y", and
2" which stands for either 2” or 2,

where z, y are any symbols from A°.
The substitutions simulating ©; and ©; are obtained according to (20)

and (21):
07 {(ei))}#{(@i—1)} = {((cb),)};
Of: {(¥")}+{@",i- 1)} = {(b,9)};
02 {(a,9)} = {((ab),4)};
07: {(®",9)} = {(b,9)};
0" {((m120),)} + {((Fm 7Y i - 1))} = {(a,1)).

The computation graph of ®(W) is shown in Figure 9. It is seen
from the graph that there is no idle cells in the cellular arrays of this.

44 O.L. Bandman

ac ac bff Cb ! ab Ib”
T S %
bb b e ab b b
Figure 7 Figure 8 Figure 9

computation. Hence, the substitutions of the type Q° Q' and ©” are not
needed. So ¢’ = {07, 07, 09,04,0'}.

The complexity of a simulating PSA is easily assessed from the above
method of its construction. Let p be the amount of bits needed for storing
the state from A, v = |®|. Then the amount of bits for storing a symbol
from A and the number of substitutions of & are respectively the following:

w>2u+3, |9 > 244 (25)

As for the amount of steps, it is three times larger, but this increase may be
compensated by the absence of common clock, which yields shorter steps.
Moreover, this assessment is made for the general case. Very often the good
behavioral properties allow to find the PSS with much better complexity,
whose asynchronous mode of execution is equivalent to a given PSA.

References

[1] S.M. Achasova, Correctness of interpretations of parallel substitution systems, J. New
Gener. Comput. Syst., 1, 1991, 19-27.

(2] S.M. Achasova, O.L. Bandman, Correctness of Parallel Computation Processes,
Nauka, Novosibirsk, 1990 (in Russian).

[3] S.M. Achasova, Correctness of synchronous cellular computations, Parallel Computing
Technologies, Proceedings of the International Conference, August 30, September 4,
1993, Ed. V.E. Malyshkin, Computer Center, Novosibirsk, Russia, Vol. 3.

[4] O.L. Bandman, S.V. Piskunov, Parallel substitution algorithms as a model for dis-
tributed computations, J. New Gener. Comput. Syst., 4, 1991, 1, 3-18.

[5] Methods of Parallel Microprogramming, Ed. O.L. Bandman, Nauka, Novosibirsk,
1981 (in Russian).

[6] R.J. Lipton, R.E. Miller, L. Snyderr, Synchronization and Computing Capability of
Linear Asynchronous Structures, J. Comput. and Syst. Sci., 14, 1977, 49-72.

[7] U. Golze, (A)synchronous (Non)deterministic Cell spaces simulating each other, J.
Comp. and Syst. Sci., 17, 1978, 176-193.

(8] P. Rosenstiel, J.R. Fiskel, A. Holliger, Intelligent graphs: network of finite automata

capable of solving graphs problems, Graph Theory and Computers, Ed. R. Reed,
Acad. Press, N-Y, 1972, 219-265.

