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Application of Parallel Substitution
Algorithm for spatial dynamics
simulation

O. Bandman

Parallel Substitution Algorithm (PSA) is a formal model of fine-grained parallel
computation. It has been developed and used for design and investigation of highly
parallel algorithms and digital systems architecture. Here it is shown, that its
expressive capabilities allow also to use PSA formalisms for representing a wide
range of spatially distributed algorithms. As illustrations, PSA of discrete and
continuous, synchronous and asynchronous, deterministic and stochastic models of
spatial dynamics are presented.

1. Main features of PSA

PSA has evolved when algorithmically oriented highly parallel architecture
design methods came into demand. The attempt to use Cellular Automa-
ton for this purpose showed that it lacks of means for formal representation
of complex digital devices and for creation computer aided design tools for
elaborating and simulating fine-grained cellular algorithms. So, CA was
strongly enriched by including in it some additional expression capabilities.
The new model was called Parallel Substitution Algorithm, or PSA for short
[1]. After some experience of PSA exploiting for discrete algorithms investi-
gation it became clear that PSA may be successfully used also for modeling a
wide class of natural phenomena used to be described by Partial Differential
Equations (PDE) or Artificial Neural Networks. The following properties of
PSA make it powerful.

® PSA processes cellular arrays which are sets of cells W € Ax M, where
A is a finite alphabet, M is a naming set (in general case a countable one).
A cell (a, m) is characterized by a state a € A and a name m € M. The state
is an abstraction of a data item, it may be a symbol, a number, a vector,
an image. The name is a label assigned to a processing element. The most
frequently used naming set is the set of Cartesian coordinates. On the set M
a function ¢ : M — M is defined, ¢(m) being a neighbour for any m € M.
A set of naming functions form a template T'(m) = {¢;(m) : j =0,...,q}
which for a given cell (ag, mg) € W determines its neighborhood

N(mo) = {(ao, mo), 5§ (a1,¢j(mo)) = J = ]., 3% .,q}. (1)
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e Operations over a cellular array are specified by a set & = {0},
1 =1,...,n, of parallel substitutions
O, : C,-(m) * Sz(m) — S:(m) (2)

In (2), Ci(m), Si(m) and Si(m) are local configurations

Ci(m) = {(yir, di(m)) :. k=0,...,q,},
Si(m) = {(zij, 4i;(m)): 7=0,...,¢}, (3)
Sim) = {(fa(X,¥), éu(m) : 1=0,...,q:},

where

1) no pair of naming functions (¢;;, ;) are identical, ‘
2) z;; € X, yir € Y are state variables or constants and f;;(X,Y) are
cellular functions with the domain from A.

o A substitution s applicable to W € A x M, if there is at least one cell
named mg € M such that '

C; (mo) U Si(mo) C W, (4)

cells (z,m) being thought of as included in W, if (a,m) € W and a € A.
Application of a substitution at a cell (a, mg) € W (mo-microoperation) is
the replacement of the subset S;(mg) € W by S!(mq), i.e.,

Wing (¢ + 1) = (W \ Si(mo)) U S{(mq). (5)

A local configuration S;(m) in a substitution is called its base. It de-
termines the neighbors of a cell named m which are changed, when the
substitution is applied. A local configuration C;(m) is not changed during
the substitution. So, it is called a context. ‘

® There are three modes of parallel substitutions application.

1) Synchronous mode, when all substitutions are applied at all cells at
each step at once. At this case in order to provide determinism of the
computation, one should be careful not to allow the substitutions be
contradictory when |S!(m)| > 1 [1].

2) Asynchronous mode, when any substitution is applied at a cell when it
" is applicable, only one application being allowed at a time. This mode
is used when only an averaged result is needed to be determinate.

3) n-steps synchronous mode, when each time-step is divided into n sub-
steps executed in turn, all substitutions of each subset being applied
to a subset of cells at each substep at once.
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e A Parallel Substitution Algorithm is defined by a set of substitutions
together with the indication of the mode of application. Implementation
of a PSA over a cellular array W is the iterative procedure, where at each
step a set of microoperations (5) is executed at a set of cells, according to
the given mode. The algorithm stops at a step T if no substitutions are
applicable to the cellular array W(T), i.e., W(T + 1) = W(T).

o If in the substitution set there is at least one ©;, such that |S;(m)| <
|S#(m)|, then the cardinality of a cellular array under processing is growing
during the PSA execution. If, in addition to that, T;(m) C T{(m), then the
growth of the array is without the loss of a single cell name, T;(nt) and T](m)
being the underlying templates of S;(m) and S!(m), respectively. Similarly,
when T!(m) C T;(m) the array diminishes in size and may completely disap-
pear. Such type of substitutions determines the nonstationary PSAs which
are used in modeling natural processes, especially the artificial life. If all
substitutions ©; € ® meet the condition

T,(m) = Ti' (m), (6)

they are called stationary. They are used to model processes in cellular
array of fixed structure.

e A PSA may process not only one but a few arrays W = {Wy,..., Wi}
as well. In this case, each substitution ©; is allowed to be applied to only
one array. It means that its base S;(m) is located in only one W; € W,
i.e., m € Mj. As for the context Cj(m), it may be located at any array,
moreover, it may be composed of a number of local configurations, located
in different arrays, i.e., '

Ci(m) = Cit(mj1) * ... % C;k(mjk), k<L (7)

2. PSA representation of diffusion models

2.1. PSA of finite-difference representation of diffusion PDE

Diffusion is a process which aims at a stable distribution of concentration in
a system which is the result of a disordered wandering of system elements.
In the simple two-dimensional case diffusion is represented by the following
Partial Differential Equation (PDE)

Ou
ot
where Au = g;—g + %;‘j is a Laplacian, u(t,z,y) is a concentration, d is a

diffusion coefficient (assumed to be constant), z, y are the Cartesian coor-
dinates of the plane space. When solving this equation by finite-difference

dAu, (8)
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method, time and space are discretized, so that z = ih,, y = 7hy, and
t = nt, 1, j, n being integers. If h = h, = h, = 1, equation (1) takes the
following discrete form:

Ui j(t 4+ 1) = i+ Td(Uimr; + wigrj + i j1 + vijor — dug;).  (9)

In (9) and further, u(t) is written as u for short. Since time and space in
finite difference methods are discrete, the PSA representation is admissible.
It is obtained as follows: i

1. The alphabet is the set of all real numbers A = R, variables uy
(k=0,...,4), and functions u,(¢ + 1) having the same domain.

2. The naming set is a set of coordinate pairs of a 2D Cartesian lattice
of finite size P x Q, M = {{,7): i=0,...,P, j=0,...,Q}.

3. The substitution set consists of a single stationary substitution

e s {(un, G+ 1,5 = 1)) (us, (3,5 + 1)) (s, (2 + 1, 7)) (ua, (2~ 1,5)) } *
(w0, (£, 7)) = (uo(t + 1), (i, 7)), (10)

with
uo(t + 1) = uo + D(uy + uz + usz + ug — 4up),

where D is the normalized diffusion coefficient, D = dr. The choice of
T depends on convergence conditions which are known to be met with
(dr)/(h?) < 1/4. Hence, further it is reasonable to take D = 1/4 with
h=1. '

2.2. PSA of asynchronous deterministic cellular automata
diffusion model

There are several CA models of diffusion [2]. To ensure that they are ade-
quate to real life diffusion, the transition rules should provide:

1) the conservation of mass and momentum, i.e., the number of “ones”
-in the array should be constant during the computation process,

2) the symmetry in space, i.e., the rule should be invariant relative to a
rotation at a certain angle.

One of the most primitive model, satisfying the above conditions is a “naive
diffusion”, proposed in 1D variant in [3]. A 2D variant has been described
and investigated in [2].

Informally CA model is as follows: each cell interchanges states with
one of its neighbor with the probability p = 1/q, where ¢ is the amount
of its neighbors. Such a rule being applied to an array in synchronous
mode is “contradictory”, i.e., two different state values may occur in a sin-
gle cell, resulting in disappearance or in emergency of “particles” which is
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in contradiction of the conservation laws. So, only asynchronous mode of
computation is admissible. To provide a random choice (with p = 1/4) of a
neighbour with whom to exchange states, and to provide a random choice
of the cell in the array where the substitution is applied, two special context
cells should be used. Hence, PSA acts on a composition of 3 cellular arrays:

1. The main array with cells named from My = {(¢,5): i =0,...,P —
1; j=0,...,0~1}, and the alphabet Ay = {0, 1} with a state variable
u, representing the concentration of the substance under the diffusion.

2. A single cell context array for the random choice of the cell at which
a substitution is applied. The naming set M; = {mo}, the alphabet
is equal to the naming set of the main array A; = {(i,j) : i =
0,...P—1; 7 =0,...,0 = 1}. The cell ((7,j), mg) has two inputs
connected to the generators of random numbers.

3. A single cell context array for random choice of the neighbour with the
naming set My = {m;} and the alphabet Ay = {N, E,S, W}, state
variable being denoted as X. The cell (X,m,) has an input from a
generator of random numbers.

The substitution set is represented by a single parallel substitution

Ox = ((i,j),mg)*(X,ml)*{(uo, ("":.7))(“X:¢N(?’v.7))}
N S N Gk’

~ -

—~

Ci(t) C2(¢) Sx(t)
— i(ux,(@,j))(ﬂo,¢N(2,J))} (11)

Sx (t+1)

Graphical representation of Oy, O, Og, Ow is as follows:

L 1 Zo
— T .
O~ i, 71+ | N |*|%o 1] Ow : 3| * | E *I3’2 To —?'|1‘0|$2|;
Zo 3
Oc:h, 31| S|*|z3 zol; O : [ * |W *IEO‘“‘_} [3:4[170 .

In order to obtain the real (physical) values U;; of concentration, the
procedure of averaging is performed. It consists of taking the average of
total amount of the Boolean “ones” on a square r X r around each cell:

1 r r
Uij =323t (12)
1=1j3=1

PSA simulation of naive diffusion has been used in order to find the
diffesion coefficient Dp.ive of the model. The diffusion coefficient has been
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determined by comparing the function of averaged concentration distribu-
tion Upaive(j) with the similar one UpDE(J), calculated according to (10).
Both functions are taken along the j-axis going via the center of the array
(#=10,7 = 0). A pair of time numbers (Tyaive, TppE), such that two func-
tions: Upaive(j) at Thaive and Uppk(7) at Tppg coincide, are referred to as

compatible times. The diffusion coefficient Dy is computed according to
the following formula with Dppg = 0.25.

Tnaive = 0.25 Tnaive

Dnaive = DPDE P
TrDE Tepg’

(13)
where T aive and Tppg form a pair of compatible times.

The simulation experiments showed that D, ;e is not constant, it de-
creases with the decrease of concentration according to the following law:

Dhaive(u) = 0.5(1 — e™%).

2.3. PSA of stochastic synchronous cellular automata
diffusion model

A stochastic CA diffusion model proposed in [3] and referred to as Block-
Rotation model in [2]is meant to be executed in two-step synchronous mode.
Accordingly, a partition of the array into two parts is to be constructed, both
parts consisting of blocks 2 x 2 cells (Figure 1).

0 1 3 4 i
oﬂ |
AN
. e HH ! 2-step mode
2 | Ll WL LE L 1
L. JIL g J)L . J 1, ] = even, if 7 = even
3 iR R ’ '
E i 1 1 1 i’jzodd’ ifT——.-Odd
L3 B LB |
J L Jjt b Jjvdl
rawk e rt- :
1 11 ) |
| i 1 I
Lo J Lo J L2

Figure 1. Partitioning of a cellular array into even and odd parts

The first part is called the even part, its blocks have even coordinates of
their top right cells. The second is referred to as the odd part its blocks have
top right cells with odd coordinates. Such type of CA partitioning is called
a Margolus neighborhood [3]. Each iteration is divided into two steps. At the
even steps the transition rule is applied to all even blocks, at the odd steps —
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context layer: {(0,1,7)}

=
. = ﬁ
P — =7
| y/ - layer: {{1,1,J
- \ \ /L / e
- N2

— averaged value: {(2,1,7)}
— -

T {mo}

Figure 2. Architecture of Block-Rotation diffusion PSA

to all odd blocks. Such an alternating of even and odd parts in execution
process allows to avoid contradictoriness. The transition rule is one and the
<ame at odd and even steps: at each even (odd) step all even (0odd) blocks
are rotated 7/2 clockwise or counterclockwise with equal probability p.

To investigate the model a composition of two cellular array is chosen:
1) a three layer array M = {(k,i,Ht k =0,1,2, 8,5 = 0,...,Q —1and
2) a single cell array {mo} (Figure 2).

According to PSA architecture the parallel substitution set contains the
following substitution groups.

The substitution representing generation of a timing series which controls
the alternation of even and odd parts of the PSA.

0, = (t,mp) — (7, mo)- (14)

The substitution acting on the 0-th context array which performs the
partitioning of the cell set into two parts:

Op : {((21.7)1 (Ovi7j>) (randv (07":’.1 + 1))}
= {(f1, (0,1, ) (f2, (0, 8,5 + 1))}, (15)
where

f _{ ev, if i=-even & j =even, F _{ cl, if rand < 1/2, (16)
1= od, if i=odd & j = odd, 2=\ co, ifrand > 1/2.

The main diffusion process is represented by the set {01, 02,03,04},
acting on the first layer of M.
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O : (1, mq) * (ev, (0,1, 7)) * (cl, (0,4, 5 + 1)) *
{(ur, (1,4, 5)) (ua(l, i+ 1, 5)) (3, (1,0 4+ 1, 5+ 1)) (ua, (1, i+ 1.5))}
~ {(u1, (1,8 + L (u2(l,i4 1,5 + 1))
(u, (1,8 + 1, 5)) (s, (1,4, 5)) }; | (17)
O3 : (1,mo) * (ev, (0,4, 7)) * (co, (0,1, j + 1)) *
{(u1, (1,4, 7)) (a1, 4+ 1, 5)) (uz, (1,44 1, 5 + 1)) (ua, (1,54 1.5))}
= {(u1, (1,4, 5+ 1)) (u2(l, i+ 1,5 + 1))
(u3, (1,44 1,5)) (ug, (1,4, 5 — 1)) }.

In the graphical form ©; and ©, are as follows:

Ug | Uy Uz | Ug
O,: | 1 |*|ev]cl [* =

U3 | U2 Uz | U

U | UL Uy | U2
O,:| 1 |*]|evico|* =

U3 | U2 Ug| U3

The substitutions ©3 and ©4 differ from ©3; and O, in states of cells
named (0,4, j) (0,¢,5 + 1) which are 0 and od instead of 1 and ev, respec-
tively. .

The substitutions for computing the averaged values at even steps.

@2 = (1,mo) * {(urt, (2 i+ k, 5+ 1)) 1 kI = —r/2,...,7/2)
> (F(ug, (2,7, 5)), (18)

where F'(u) is calculated according to (12).

The simulation of Block Rotation model has been performed to deter-
mine the dependence of the diffusion coefficient D = 7d from the concentra-
tion value. In {4] D is proved theoretically to be equal to Dg = 3/2 for the
probability p = 1/2. This value characterizes the abstract diffusion model,
but is too large to be used for simulating any physical process. So, it is
necessary to know how to modify the transition rules to obtain a model of
a rea] required process. Moreover, for the comparison of simulation results
with PDE solutions considered to be correct, the diffusion coefficients should
be equal to that of used in PDE, and, hence, it should meet condition (13).

There are three possibilities to regulate the diffusion coefficient D =
dr/h? of the model:
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1. Variation of time step 7. For example, if a coefficient D is wanted,
then the time step is 7/ = Dr7/D = 3/2D. So, if D = 0.25, 7' is to
be 6 times less than T, i.e., each step should be considered as /6.

2. Variation of the probability p. Taking p’ = pDgr/D, it is pos51ble to
model process with D as a diffusion coefficient.

3. Variation of spatial step h which should be taken as k' = h\/D,/D.

3. PSA of Cellular Neural Networks

3.1. PSA representation of Cellular Neural Associative
Memory

Cellular Neural Associative Memory (CNAM) [5] is a variant of the well-
known Hopfield’s neural network paradigm [6], differing from the latter in
connection structure which is local for CNAM like that of cellular automata.
Storage and retrieval capabilities of CNAM have been investigated, as well
as a number of learning methods have been proposed in several papers [7].

CNAM is a rectangular array of neurons which are bistable elements
with states from {—1,1}. Each neuron interacts with its neighbours through
weighted connections, weights values being real numbers. The neighbour-
hood structure is one and the same for all neurons, but connection weight
values are different. The operation mode of CNAM is iterative and syn-
chronous. At each step all neurons calculate their next states which are
the values of a nonlinear (threshold) function of the weighted sum of their
neighbours states. The operation stops when a stable state of CNAM is
reached, i.e., no state changes occur any more. Operating in such a way
CNAM performs the retrieval of one of the patterns, stored in it in the form
of global stable states (attractors) and called prototypes. Correspondence
between a given set of prototypes and the set of attractors is provided by
the connection weights values which are determined by means of a learning
procedure [7]. When any pattern is input by setting the CNAM in an initial
state, the operation starts. It terminates in the stable state which is equal
to the prototype with the closest resemblance to the input pattern.

The PSA representation of CNAM is as follows:

1. The alphabet is combined from two sets: A = A, U A,,, where A, =
{—1,1} serves for pattern (neuron states) representation, A,, = R is used
to represent weight values.

2. The naming set is a multilayer array M = {(k,%,5)}, k = 0,...,¢
representing layer numbers, i = 0,...,P—1and j =0,...,Q — 1 are the
numbers of rows and columns, respectively. The 0-th layer My contains the
cells n;; called neurons, their states are from A,. The layers from M, =
M\ My numbered as k = 1,. .., q have cells whose states are from R, so that
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the cell state named (k, 7, j) is equal to the weight wy (¢, 7} of the connection
between the neuron 7;; and its k-th neighbour.

3. The following naming functions determine the connection structure
of the array. Each neuron n;; is connected with the cells from its neighbour-
hood in My, defined by the template

To(i,j):{¢1(0,i,j),...,¢q(0, za])} (19)

To use the connection weights for calculation its next state the neuron T
should also be connected to the cells defined by the template

T,(k) = {(1,@,]),(‘],3])} (20)

4. The computation process is represented by the following substitution

O : Co((k, 4, 7)) x Cu((k, 4, 7)) * {(z0, (0,7,5))}

= {(F(X(i,7), W(47)),(0,4,5))}, (21)
where ,
GO((Oa l,])) = {(ml(i,j),¢1(0,i,j)),---,(l'q(i,j),¢q(0,'i,j))},
Cw((k’z’Jn = {(wk(z])?<kvz])}1 k= L...q
7 A if q Tp(27)wi(ig ,
FOXG )W) = | 1T A e 20

—1 otherwise.

In (21), the first two sets are contexts generated by the templates Tj and Tw
respectively (Figure 3), X (i, j) = {z,(3, j), . .+ Zq(4,7)} is the set of neigh-
bourhood sell states, W (i, j) = {w;(i,J),.. ., Wq(, 7)}. The base is a single
cell local configuration with the naming space domain M} = {(0, i)}, 1=
L...,P-1,j=1,...,Q - 1}.

If the automatic stop of the algorithm is wanted, then an additional
layer (let it be named k = —1), a counter named ¢, and a signal cell named
s should be added. States from the 0-th layer are rewritten every v iteration
in (-1)-th layer, v being the counter state. When two successive patterns
on this layers coincide, the signal cell transits in the state “stop”. The
automatic stop algorithm is represented by the following substitutions:

O1: {(v, 9} {24, 0,4, 1)} * {wij, (~ 1,4, 1)} = {245, (~1,4,5)},
©2: {(v,e+ D)} = {2, 0,4,5)} * {wi5, (-1, 5, 5) = {(f(z,9),5)}, (22)
©3: {(v,9)} = {((t+ Dmodw: ©)},

where
“stop” if z;; = y;; for all (0,4,3) € M’,

0 otherwise

f(mvy)i__" {
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t
k c r
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i 0
1
; X xo I3
q
zs T4
ig 1
m—1 — x7 | Te rs w
01 n—-1
M Co({0, 1, 5)) Cu((k,1, 7))

Figure 3. Graphical representation of the naming set and
the local configuration of the substitution (21)

The learning process of CNAM by the method, proposed in [5], may
be represented by the PSA with the same architecture as the CNAM to
be taught. This fact significantly simplifies CNAM application both for
software development and all the more for designing the special purpose
hardware.

In the learning process, the cells storing connection weights are iteratively
updated according to the given prototypes which are sequentially input into
the neuron layer. Hence, in the main substitution of the learning PSA the
“neuron” (Mp) and the “weight” (M,) subarrays interchange their roles. A
local configuration generated by T, in the “weight” layers plays the role of
the base, while local configuration, generated by Ty in the “neuron” layer is
a context one (the process of prototypes input into Mp is not considered).
So, the learning substitution is as follows:

O, : Co((0,4,)) * Sw((k,i,3)) — Si,((k, 1, 5)), (23)

where Cp({0, 7, 7)) is identical to (22),

Sw((k,4,9)) = {(we(i,9), kyi)}, k=100,
Su((k, i, 7)) = {(f,(kid)}, k=1,...,0

and

q
wi (3, §) if zo(i,5) Y @, 5)wr(i, 5) > 0,
e k=1

we(i, ) + zo(8, 7)zk(i, j) otherwise.
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3.2. PSA representation of two- layer Cellular Neural
Network

Cellular Neural Networks (CNN}) [8] are fine-grained parallel systems having
all properties of Artificial Neural Networks but the connection structure
which is local like in Cellular Automata. Like in Cellular Automata a CNN
cell is characterized by the internal state € R, an output state y € [-1, 1],
and a set of inputs which are output states of neighbouring cells. Each cell
calculates the next state z(¢ + 1) as a weighted sum of the output states of
neighbouring cells, and a next output as a sigmoid-like nonlinear function
y(t+ 1) = f(z(t)) which is taken as a piece-wise approximation of the form

fly = 2N,

CNN may be regarded as a finite difference representation of reaction-
diffusion Partial Differential Equations: a single layered CNN modeling
the first order phenomena, two-layer CNN - second order ones. The lat-
ter exhibit autowaves propagation [9]. Connection weight allocation to the
neighbours is identical for all cells in each layer, weight values determining
the type of generated autowave (travelling front, travelling impulse, chaotic
behavior). 7

Second order CNN is represented usually by a system of two finite-
difference equations as follows:

(24)

g'(t+1) = az'(t) + ay’( +szy (), (25)
22 (t+1) = B2*(t) + by' (2) +Z'w?y?(t)), (26)
y* = Fle®), k=12 (27)

PSA representation is as follows:

1. The alphabet consists of two subsets Ag U A,. The domain of Ag
is equal to the interval [—1, 1], that of A,, is R for representing connection
weights and internal states.

2. The naming set is a four layer array: two layers, &k = 1, and k = 2,
for storing internal states, and two others, k = 1, and k = 2, for outputs:
M = {(k,i,5)}, k=15,1,,24,2,,:=0,...,P-1,5=0,...,Q — 1.

3. Connection structure is given by 3 templates, T(i, ), T;(i,j), k=
1,2; determining cell interactions in the first and in the second layers, re-
spectively:

frk(2 ]) ha {(kz,Z,J) ( - 19J>1<k$11,.7+ 1)1
(1,1 +1,7), (1x, 5,7 = 1), {(k+ D)mod2, %, )} (28)



PSA for spatial dynamics simulation 13

Tr(i,5) = {(kayi, 1)}, k=1,2. (29)

4. PSA is represented by the following substitutions operating in a two-
step synchronous mode. At the even steps (7 = 0) the internal states are
calcu'ated and at the odd steps (7 = 1) the outputs are obtained according

o (27)

Gf:: (0, )*Ck(7‘$ )*Ck(za]) «{(z y ((kzy 2, 5)) ) —
{(Ff(X?YL( 1:77’?]))}7

Oy i (L) * {(2, ((kwy i, 50} * {(65, 0,4, 50)} =
{(F(=%), (¥, 3,30},

where C¥ (4, j) and C¥(1,7) are local configurations generated by the tem-
plates T%(i, 5) and T;“ (i, 7), respectively,

Ce(3,3) = {(ad, (kay i, 3)), (WF, (01,7 = 1,30, (@5, (kg i, 5+ 1)),
(a'};;: (kwa i+ 17.7)) (3:{4:: (k.'ra 27.7 - 1>)}7

Cki,j) = {y*+meez (ki 5V}, k=1,2.

(30)

The structure of CNN connections is shown in Figure 4.
The function F¥(X,Y) is as follows

Fk(X YY) = ozxo + Z w;y + ay(k“)m"“
=1

The weights o, a, 8, b, wf, ..., wk, k= 1,2, are as in (25), (26).

yd i Z
1 - iy~ /4 E C.(1,4,7)

7 1
A4 Y1
Z 7 7 1 1 1
L L 2 £ Ya Yo Y2 Cy(1,i, )
/ys
E=1 //
// / yl ;
// - vi /v B 0,020 5)
L / L 2 7 /?Js
k:;’ 03(2:7’1.7)

M

Figure 4. The naming set M and the local configurations of CNN PSA
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4. Conclusion

It is shown that the formalisms of PSA is a convenient and universal tool
for representing a wide range of spatially distributed processes. The unified
form of parallel substitutions for representing binary and continuous, syn-
chronous and asynchronous, elementary and functional processes allows to
use one and the same simulation system for designing and investigation all
kinds of spatial dynamics. A special purpose simulation tool WinALT [10]
based on PSA concepts supports PSA use.
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