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 2003 NCC PublisherSpatial functions approximationby Boolean arraysO. BandmanSince Cellular Automata attract a growing interest as a model to be used insimulating spatial dynamics, the problem arises of Boolean data compatibility withcontinuous spatial functions widespread in physics. To solve this problem, a methodto approximate real functions in discrete space by Boolean arrays and vice versais proposed. The approximation errors are assessed, and techniques of decreasingthem are considered. Arithmetic operations in the domain of Boolean and realarrays are considered.1. IntroductionFast development of supercomputers, clusters and special purpose cellu-lar processors brought about the activization of searching for appropriatemathematical means for spatial dynamics simulation, most interest beingattracted to discrete models encompassed with the concept of �ne-grainedparallelism [1, 2]. All of them have their origin in classical Cellular Automa-ton (CA) and are either its modi�cations or a certain kind of its extension.The motivation for investigating CA capabilities in spatial dynamics mod-eling is based on their \complex systems" properties [3]. The term impliesa class of systems composed of many very simple identical processors whichact in cooperation and exhibit a very complex overall behavior, such thatcannot be described by any other mathematical model.Although CAs have been announced as an alternative to the convention-ally used partial di�erential equations (PDEs) [4], the latter have a funda-mental theoretical and methodological basis, and are nowadays the mostoften used for the spatial dynamics studies. Undoubtedly, such a situationwill remain for a long time. Meanwhile, the scope of CA-modeling is growingfast. There are now many physical, chemical, biological and other phenom-ena, whose CA-models are known and well studied. For some of them itis proved that they have certain advantages as compared to PDEs, beingcomputationally stable and accurate, easy to program, and admitting anykind of parallel realization [3]. Naturally, the problem arises of making theCA approach compatible with mathematical physics. First, an interface isneeded between the usual continuous spatial functions and their representa-tion in the form of Boolean arrays used in CA. Moreover, such an interface



2 O. Bandmanis urgently required when the process under simulation is to be expressedas a combination of two subprocesses, one of them being represented as CAevolution and another one being given in the form of a real function [5].The transfer from a continuous spatial function to a Boolean array hastwo stages: 1) discretization of space, which results in a real cellular array {a set of cells with real entries (in numerical methods one deals with a dual ofa cellular array, referred to as a \grid"), 2) approximation of a real cellulararray by a Boolean cellular array, referred to as a Boolean discretization.Since the �rst stage is a well-known procedure used in all numerical methods,it is of no interest here. So, the approximation of a real cellular array bya Boolean one is the subject of the paper, the transform being extended toperform the main arithmetic procedures over the arguments of both datatypes. Clearly, since the transformation of a Boolean array to a discretespatial function, as well as the inverse one is approximate, the approximationaccuracy is also considered.Apart from Introduction and Conclusion, the paper has four sections.The second section contains formal de�nitions and relations between a cel-lular array with real states and its Boolean discretization. The procedureof Boolean discretization is presented in the third section. In the fourthsection a few techniques for accuracy improvement are presented. The �fthsection concerns arithmetic procedures on the arrays.2. Main concepts and de�nitionsTo simulate of natural phenomena in space and time is to compute a functionu(x; t), where u is a scalar, representing a certain physical value, which maybe pressure, density, velocity, concentration, temperature, etc., t stands fortime. A vector x represents a point in a continuous space. In the case of D-dimensional Cartesian space the vector components are its coordinates. Forexample, with D = 2, x = (x1; x2). Since, in the sequel, spatial functionsare of interest, the function u(x) with a �xed t is under consideration.When numerical methods of PDE solution are used for simulation ofspatial dynamics, the space is converted into a discrete grid, which is furtherreferred to as a cellular space according to the cellular automata terminology.For the same reason the function u(x) is represented in the form of a cellulararray U(R;M) = f(u;m) : u 2 R; m 2Mg; (1)which is a set of cells, each being a pair (u;m), where u is a state variablewith the domain in a set of real numbers R, m 2 M is the name of a cell.To indicate the state value of the cell named m the notation u(m) is alsoused. A set of cell names is called a naming set. In practice, the names aregiven by the cells coordinates in a cellular space. For example, in the case



Spatial functions approximation by Boolean arrays 3of the cellular space represented by a 2D Cartesian lattice, the names areM = f(i; j) : i; j = 0; 1; 2 : : :g, where i = x1=h1, j = x2=h2, h1 and h2 beingspace discretization steps. For simplicity we take h1 = h2 = h. In theory, itis more convenient to deal with a generalized notion of the naming set M ,considering m 2M as a discrete spatial variable.A cell named m is called empty if its state is zero. A cellular array withall the cells being empty is called an empty array. It is further denoted as
 = f(0;m) : 8m 2Mg.The most profound discretization of a spatial function is its approxima-tion by a Boolean arrayV (B;M) = f(v;m) : v 2 B; m 2Mg; B = f0; 1g: (2)In order that this type of approximation be de�ned a concept of averagingshould be introduced. It is based on the following de�nitions. A set of cellsAv(m) = f(v; �k(m)); v 2 B; k = 0; 1; : : : ; qg (3)is called the averaging area of a cell named m with q = jAv(m)j being itscardinality, �k : M !M is a \naming function", indicating to the name ofa cell in the averaging area. In the naming set M = f(i; j)g, the namingfunctions are usually in the form of shifts, �k(i; j) = (i+a; j + b), a, b beingintegers not exceeding a �xed r, called a radius of averaging.The averaged state of a cell named m isw(m) = qXk=0 v(�k(m)): (4)The averaging procedure of a Boolean array V (B;M) is to obtain the cel-lular array Av(V ) = W (Aw;M), where w(m) for each m 2 M is com-puted according to (4), W (Aw;M) being referred to as the averaged formof V (B;M). According to (4), the domain of the state variable w(m) is a�nite set of numbers forming a discrete alphabet Aw = f0; 1; 2; : : : ; qg.The relation between the real states in the cells (u;m) 2 U(R;M) andthe averaged values in the cells (w;m) 2W (Aw;M) depends on the scalingparameters, which are q = jAv(m)j and umax. The latter value comes fromthe assumption (which is usual in mathematical physics) that the functionu(x; t) under simulation is bounded in the simulation domain. This meansthat at any t and x its value does not exceed a certain value umax. So,the normalized real values y = u=umax may be used, the normalized cellulararray being Norm(U) = Y (Ay;M) = f(y;m) : y 2 Ay; m 2Mg, Ay 2 [0; 1].The averaged form W (Aw;M) = Av(V ) of a Boolean array can also benormalized resulting in Norm(W ) = Z(Az;M) = f(z;m) : z 2 Az; m 2Mg, where Az = f0; 1=q; 2=q; : : : ; 1g, the normalized averaged state beingcomputed as follows.



4 O. Bandmanz(m) = 1q qXk=0 v(�k(m)): (5)From (5) it is seen that z(m) = 1 can take place when all the cells in theaveraging area of V (B;M) have states equal to \1".Hence follows that a Boolean array represents a spatial function throughthe distribution of \ones" over a discrete space. Averaging is the procedureof computing the density of this distribution, which transfers a Booleanarray into a cellular array with real state values from a discrete alphabet.The inverse procedure of obtaining a Boolean array representation of a givencellular array with real state values is more important and more complicated.A Boolean array V (B;M) which averaged formW (Aw;M) = Av(V ) ap-proximates a given cellular array U(R;M) is called its Boolean discretiza-tion. Consequently, V (B;M) is a Boolean discretization of Y (Ay;M) =Norm(U) if Norm(Av(V )) = Z(Az;M) approximates Y (Ay;M). The ap-proximation error should be limited by a certain value, which is more con-venient to express through normalized values, i.e.,z(m)� y(m) � � for any m 2M; (6)where � is an admissible approximation error.3. Boolean discretization methodThe problem of Boolean discretization is stated as follows. Given a nor-malized cellular array Y (Ay;M), and an admissible approximation error �,a Boolean array V (Av ;M) = Disc(Y ) should be obtained, such that thecondition (6) be satis�ed. The problem solution is based on the fact, thatfor any m 2M the probability of the event v(m) = 1 is equal to y(m), i.e.,P(v(m)=1) = y(m): (7)The above simple rule follows directly from the probability de�nition,provided y(m) is assumed to be constant on the averaging area. The ruleresults in a Boolean array, where the expected value �(y(m)) is equal to themean state y0(m) over the averaging area Av(m), i.e.,�(y(m)) = 1q qXk=0 v(�k(m))P(v(�k(m))=1) = 1q qXk=0 y(�k(m)) = y0(m): (8)From (8) follows that the approximation error � vanishes in those cells,where



Spatial functions approximation by Boolean arrays 5y(m) = y0(m) = 1q qXk=0 y(�k(m)): (9)A set of such cases includes, for example, all linear functions and parabolasof odd degrees, considered on the averaging area relative to a coordinatesystem with the origin in the cell named m. When (9) is not satis�ed, theerror of Boolean discretization e(m) = z(m)� y(m) 6= 0 is the largest in thecells where y(m) has extremes.A discretization algorithm which pretends to be accurate can be alsoobtained. Its main part should comprise the construction of a cellular array�(Ay;M) = f(
;m)g such that for all its cells the mean value over theaveraging area be equal to the corresponding cell state of the initial cellulararray Y (Ay;M), i.e., y(m) = 1q qXk=0
(�k(m):This method requires great computational costs, because a determinationof each cell state in �(Ay;M) includes the solution to a system of jAv(m)jequations. Since these computations should be made in the 
oating-pointformat, the complete accuracy may not be ensured. So, we consider thismethod impractical and further propose some practical techniques to in-crease the accuracy of the above approximate simple rule (7).From (8) it is clear that the error e(m) depends on the function behaviorin Av(m) and the cardinality q = jAv(m)j, these two parameters beingconditioned by a spatial discretization step h. The latter should be small,allowing q to be chosen large enough to smooth function extremes.There is one more parameter which determines the accuracy of Booleandiscretization. It is the error dispersion �, which characterizes the coarse-ness of discrete function representation. In the cellular automata theory it iscalled automata noise and considered as an important parameter, closely re-lated to computation errors. Hence, it is better to express the discretizationaccuracy by the two values:E = 1M Xm2M e(m); � = � 1M Xm2M (e(m)�E)2�1=2: (10)So, the accuracy requirements should be given as a pair of inequalities,E < �; � < �; (11)where � and � are admissible values of the approximation error and the errordispersion.The above two requirements may be contradictory. This occurs, whenthe function has sharp extremes. In this case the dispersion minimization



6 O. Bandmanrequires large q = jAv(m)j, while for the mean error decrease it should betaken small enough. The latter is due to the fact that for functions which areeither convex or concave on a certain spatial interval, the di�erence betweenthe mean and the extreme values increases with an increase of the interval.The only way to satisfy both requirements is to increase the cardinality ofa naming set. There is two ways of doing this, shown in the next section.4. Providing Boolean discretization accuracyThe �rst way to provide Boolean discretization accuracy is to take a namingset of large cardinality, allowing the averaging area size be also chosen largeenough. The following example shows how the accuracy parameters dependupon the averaging area size.Example 1. Boolean discretization of a half of one-dimensional wave y =sinx with 0 < x < � is to be obtained in order that an experimentalassessment of the discretization accuracy be performed. Taking h = �=Nfor the space discretization, the normalized cellular arrayy(i) = a sin �iN ; i = 0; 1; : : : ; N;is found. Two Boolean discretizations V1(B;M1) and V2(B;M2), withM1 =f0; 1; : : : ; 179g and M2 = f0; 1; : : : ; 359g, of Y (Ay;M) are obtained accord-ing to (7). For both of them, a number of averaged cellular arrays withdi�erent averaging area size have been obtained, and the mean error to-gether with the dispersion have been calculated for each case (Table 1).Table 1. Dispersion �, main errorE, and the error e(N=2) experimentally obtainedfor Boolean discretization of y = sinx with di�erent averaging area sizeq N = 180 N = 360� E e(90) � E e(180)15 0.11 0.070 0.000 0.011 0.075 0.00029 0.066 0.070 0.000 0.005 0.057 0.00051 0.031 0.034 �0.019 0.002 0.047 0.00061 0.030 0.030 �0.049 0.001 0.041 0.000101 0.033 0.089 �0.079 0.001 0.025 �0.001105 0.041 0.099 �0.0086 0.001 0.024 �0.095201 0.021 0.073 �0.0089From Table 1 the following is clearly seen:1. Both accuracy parameters: dispersion and mean error are the smallerthe larger is the naming set cardinality, i.e., the smaller is the spatial step. Itshould be mentioned, that a correct comparison is the one made between the



Spatial functions approximation by Boolean arrays 7Boolean arrays having equal averaging area size, and those measured in theinitial continuous space, i.e., having equal hq. In our case, compared shouldbe pairs of the cases for which qN=180 = 2qN=360. For example, the caseqN=180 = 51 should be compared to the one with qN=360 = 101, resultingin the fact that both accuracy parameters with N = 360 are about 5 timesbetter than those with N = 180.2. The mean error and the dispersion considered versus the averagingarea size have minimum values with qN=180 = 61 and with qN=360 = 105,which corresponds to qmin � N=3.3. With the growth of the averaging area the error on the functionextreme increases. In our example it is shown by the error e(N=2)=q.The second method of improving Boolean discretization parameters is totake the naming set of a Boolean discretization one dimension larger thanthat of the initial cellular array. Hence, in order that Boolean discretizationof a cellular array Y (Ay;M) be obtained Boolean array V (B;M � L) is tobe constructed, whose naming set is a multilayered structureM = L[l=1Ml; Ml = fm(l)1 ; : : : ;m(l)N g:The state values y(m(l)i ) are obtained in all the layers in one and the sameway according to the rule (7). The averaging area determined according to(3) in each layer forms a multilayer subarray of the total size Q = q�L. Theaveraged array W (Aw;M) is again a one-layer array, where the cell statesare computed as follows:w(m) = LXl=1 qXk=0 v(�k(m(l)) 8m(l)i 2M; (12)the normalized averaged state being z(m) = w(m)=Q.Example 2. The above method of increasing Boolean discretization accu-racy has been experimentally veri�ed as follows. For the function y = sinxfrom Example 1 Boolean discretization V (B;M � L) with jM j = N = 360,L = 10 have been obtained according to (7), as applied to all the layers cells.The averaging of V (B;M � L) has been performed with di�erent values ofq. The results presented in Table 2 show that better accuracy parametersare achieved than those in a one-layer array with the same N . The price isa tenfold increase of the Boolean array size.One more error elimination method called extreme compensation methodis further proposed, which is useful when a cellular array Y (Ay;M) underBoolean discretization has sharp extremes or breaks of the initial function



8 O. Bandmanq � L � E e(180)5�10 0.064 0.048 0.00015�10 0.028 0.031 0.00029�10 0.022 0.026 0.00051�10 0.017 0.0122 0.00061�10 0.015 0.019 �0.003101�10 0.008 0.008 �0.014
Table 2. Dispersion �, the main error E,and the error e(N=2) experimentally ob-tained for a number of multilayered Booleandiscretizations of y = sinx

y(m). The cells, where the function has the above peculiarities, are fur-ther referred to as extremal cells denoted as m�. The method provides forreplacing each subarray Av(m�) by another one, Av�(m�), called the vir-tual averaging area. After such a replacement a new virtual cellular array isobtained, i.e.,Y �(Ay;M) = Y (Ay;M) / sXm�i=1Av(m�i )[ sXm�i=1Av�(m�i ); (13)where fm�1; : : : ;m�i ; : : : ;m�sg is a set of extremal cells names.Each set Av�(m�i ) di�ers from Av(m�i ) in the cell states, whose valuesy�(�k(m�) should satisfy the condition,z(m)� y(m) < �0 8(z;m) 2 Av(Disc(Y �(Ay;M))); (14)where �0 < �. Condition (14) means that after the discretization ofY �(Ay;M) and averaging the result the array Z(Az;M) is obtained, ap-proximating Y (AY ;M) with a very small error. To obtain these values eachy(�k(m�)) 2 Av(m�) should be augmented by a value ~y(�k(m�)), symmetricto y(m) relative to the constant function c(m) = y(m�) 8m 2 Av(m�), i.e.,~y(�k(m�)) = 2y(m�)� y(�k(m�)) (15)with �0(m) = �0(m�) = m�. The augmentation of the state values in thevirtual averaging areas are done as followsy�(�k(m�) = 12�y(�k(m�) + ~y(�k(m�))� = y(m�): (16)From (16) it is easily seen, that when the function under Boolean dis-cretization is piecewise linear, all the cell states in Av�(m�) are equal toy(m�), i.e., Av�(m�) = f(y(m�); �k(m�)) : k = 0; : : : ; qg: (17)So, in many cases it makes sense to obtain a piecewise linear approxima-tion of Y (Ay;M), and then perform Boolean discretization with the use of



Spatial functions approximation by Boolean arrays 9
Figure 1. Boolean discretization of apiecewise linear function: the initialfunction y(m) (dashed line) and theaveraged Boolean z(m) (solid line) ob-tained by applying the rule (7) to y(m) Figure 2. Boolean discretization of apiecewise linear function: the virtualfunction y�(m) (dashed line) and theaveraged Boolean z(m) (solid line) ob-tained by the extreme compensationmethodthe extreme compensation method. Of course, a spatial discretization stepshould be chosen in such a way that the distance between the two nearestextremes be larger than 2r, r being a radius of the averaging area. The ef-�ciency of the method is illustrated by the results of Boolean discretizationof a piecewise linear function Y (m), shown in Figures 1 and 2. From them,it is clearly seen that the use of the extreme compensation method is muchmore accurate.5. Cellular array arithmeticSimulation of the complex spatial dynamics with cellular automata requiresthe perform once of a few operations on Boolean arrays. The most im-portant are the following: 1) addition (subtraction) of two Boolean arrays,2) addition (subtraction) of a real cellular array to a Boolean one, 3) mul-tiplication of two Boolean arrays, and 4) multiplication of a Boolean arrayby a real cellular array. All these operations are determined in the domainand range of a set of cellular arrays, belonging to one and the same classK(M;T ), characterized by a naming set M , and a set of the naming func-tions T = f(�k(m)); k = 0; : : : ; qg in Av(m). Particularly, a Boolean arrayV (B;M 0) with Av0(m0) = f(v; �0k(m0)), v = 0; 1, k = 0; : : : ; qg belongs tothe class K(M;T ) if1) M 0 =M ,2) In Av0(m0), the set f�0k(m0) : k = 0; : : : ; qg = T .Boolean arrays addition (subtraction). A Boolean array V (B;M) iscalled a sum of V1(B;M) and V2(B;M), which is written down asV (B;M) = V1(B;M)� V2(B;M) (18)



10 O. Bandmanif its averaged normalized form Z(Az;M) = Norm(Av(V )) is a matrix-likesum of Z1(Az;M) = Norm(Av(Z1)) and Z2(Az;M) = Norm(Av(Z2)).This means that for any m 2 M z(m) = z1(m) + z2(m), where (z;m),z1(m), z2(m) are the cell states in Z(Az;M), Z1(Az;M), Z2(Az ;M), re-spectively, or, according to (5)qXk=0 v(�k(m)) = qXk=0 v1(�k(m)) + qXk=0 v2(�k(m)): (19)Using (7), the resulting array can be obtained by allocating the \ones"in the cells of an empty array 
 = f(0;m) : 8m 2Mg with the probabilityP(0!1) = 1q� qXk=0 v1(�k(m)) + qXk=0 v2(�k(m))� = z1(m) + z2(m): (20)When the Boolean array addition is used as an intermediate operation,it is more convenient to obtain the resulting array by means of updating oneof the operands so that it be equal to the resulting Boolean array. This canbe done as follows. Let V1(B;M) be changed into V1(B;M) � V2(B;M).Then some cells (v1;m) 2 V1(B;M), out of those, where v1(m) = 0, shouldinvert their states. Hence, the probability of such an inversion should be therelation of the value to be added to the amount of \zeros" in the averagingarea Av(m) 2 V1(B;M). P(0!1) = z2(m)(1� z1(m)) : (21)Subtraction can also be performed in two ways. The �rst is similarto (20), the resulting di�erence V (B;M) = V1(B;M) 	 V2(B;M), beingobtained by allocating the \ones" in the cells of an empty array with theprobability P(0!1) = z1(m)� z2(m): (22)The second is similar to (21), bearing in mind that the inversion should bedone in the cells with the states v1(m) = 1, the probability of the inversionbeing computed as follows: P(1!0) = z2z1 : (23)Addition (subtraction) of real and Boolean cellular arrays. A Bool-ean array V (B;M) is the sum of a Boolean array V1(B;M) and a nor-malized cellular array Z2(Az;M) if in Z(Az;M) = Norm(Av(V )) each cellstate z(m) = z1(m) + z2(m), z1(m), z2(m) being the states of the cells inZ1(Az;M) = Norm(Av(V1)) and Z2(Az;M), respectively, i.e.,



Spatial functions approximation by Boolean arrays 11qXk=0 v(�k(m)) = qXk=0 v1(�k(m)) + z2(m): (24)The resulting array can be obtained by allocating the \ones" in the cellsof an empty array with the probabilityP(0!1) = 1q qXk=0 v1(�k(m)) + z2(m): (25)When such an addition is used as an intermediate operation, which isthe case in the hybrid method of the di�usion-reaction simulation [5], theresult is obtained by the inverting states v1(m) = 0 into v1(m) = 1 like in(21) with the probabilityP(0!1) = z2(m)1� 1q Pqk=1 v1(�(m)) : (26)Similarly, the subtraction V (B;M) = V1(B;M)	Z2(B;M) is performedaccording to one of the two following formulas: either to allocate the \ones"in an empty array with the probabilityP(1!0) = 1q qXk=1 v1(�(m)) � z2(m); (27)or to invert the cell states v1(m) = 1 in V1(B;M) with the probabilityP(1!0) = z21q Pqk=1 v1(�(m)) : (28)Multiplication of two Boolean arrays. A Boolean array V (B;M) iscalled the product of V1(B;M) and V2(B;M), which is written down as:V (B;M) = V1(B;M)
 V2(B;M) (29)if its averaged normalized form Z(Az;M) = Norm(Av(V )) has cell states,which are the products of the corresponding cell states z1(m) of Z1(Az ;M) =Norm(Av(V1))) and z2(m)) of Z2(Az;M) = Norm(Av(V2). This means that1q qXk=0 v(�k(m)) = 1q qXk=0 v1(�k(m)) � 1q qXk=0 v2(�k(m)) (30)The resulting array may be obtained by allocating the \ones" in the cellsof an empty array with the probabilityP(0!1) = 1q qXk=0 v1(�k(m))� 1q qXk=0 v2(�k(m): (31)



12 O. BandmanMultiplication of a Boolean array by a real cellular array. A Booleanarray V (B;M) is the product of a Boolean array V1(B;M) and a normalizedcellular array Z2(Az;M), which is written down as:V (B;M) = V1(B;M)
 Z2(Az;M); (32)if its averaged normalized form Z(Az;M) = Norm(Av(V )) has the cellstates, which are the products of corresponding cell states z1(m) ofZ1(Az;M) = Norm(Av(V1)) and z2(m) of Z2(Az ;M), i.e.,1q qXk=0 v(�k(m)) = z2(m)q qXk=0 v1(�k(m)): (33)The resulting arrays are obtained by allocating the \ones" in the cells ofan empty array with the probabilityP(0!1) = z2(m)q qXk=0 v1(�k(m)); (34)Clearly, the multiplication of a Boolean array V1(B;M) by a constanta 2 Az, Az = f0; 1=q; : : : ; 1g is the same as multiplication V (B;M) byZ2(a;M) with all the cells having the equal states z2(m) = a.6. ConclusionMethods of transforming spatial continuous functions into their represen-tation in the form of Boolean arrays are proposed. Such transformations,as well as the formal arithmetic operations in the domain of cellular ar-rays, are required when cellular automata models are used to simulate thespatial dynamics. This is especially important when certain components ofthe process under simulation are modelled by cellular automaton evolutionand others are given in the real domain (for example, the di�usion-reactionprocesses). As such discrete-continuous transformations are approximate,some techniques for providing admissible approximation accuracy are alsoproposed and investigated.References[1] Wolfram S. Theory and Applications of Cellular Automata. { Singapore: WorldScienti�c, 1986.[2] Bandman O. Fine-grained parallelism in mathematical physics // Program-mirovanie. { 2001. { ü 4. { P. 5{20.



Spatial functions approximation by Boolean arrays 13[3] Wolfram S. New Kind of Science. { Champain, USA: Wolfram Media, Inc.,2002.[4] To�olli T. Cellular automata as an alternative to (rather than approximation)to di�erential equations in modelling physics // Physica. { 1984. { Vol. 10 D. {P. 117{127.[5] Bandman O. Cellular-neural automaton: a hybrid model for reaction-di�usionsimulation // Future Generation Computer Systems. { 2002. { Vol. 18. { P. 737{745.[6] Rothman D.H., Zaleski S. Lattice-Gas Cellular Automata. Simple Models ofComplex Hydrodynamics. { Cambridge University Press, 1997.[7] Chua L. CNN: A Paradigm for Complexity. { Singapore: World Scienti�c, 1999.
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