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Spatial functions approximation
by Boolean arrays

0. Bandman

Since Cellular Automata attract a growing interest as a model to be used in
simulating spatial dynamics, the problem arises of Boolean data compatibility with
continuous spatial functions widespread in physics. To solve this problem, a method
to approximate real functions in discrete space by Boolean arrays and vice versa
is proposed. The approximation errors are assessed, and techniques of decreasing
them are considered. Arithmetic operations in the domain of Boolean and real
arrays are considered.

1. Introduction

Fast development of supercomputers, clusters and special purpose cellu-
lar processors brought about the activization of searching for appropriate
mathematical means for spatial dynamics simulation, most interest being
attracted to discrete models encompassed with the concept of fine-grained
parallelism [1, 2]. All of them have their origin in classical Cellular Automa-
ton (CA) and are either its modifications or a certain kind of its extension.
The motivation for investigating CA capabilities in spatial dynamics mod-
eling is based on their “complex systems” properties [3]. The term implies
a class of systems composed of many very simple identical processors which
act in cooperation and exhibit a very complex overall behavior, such that
cannot be described by any other mathematical model.

Although CAs have been announced as an alternative to the convention-
ally used partial differential equations (PDEs) [4], the latter have a funda-
mental theoretical and methodological basis, and are nowadays the most
often used for the spatial dynamics studies. Undoubtedly, such a situation
will remain for a long time. Meanwhile, the scope of CA-modeling is growing
fast. There are now many physical, chemical, biological and other phenom-
ena, whose CA-models are known and well studied. For some of them it
is proved that they have certain advantages as compared to PDEs, being
computationally stable and accurate, easy to program, and admitting any
kind of parallel realization [3]. Naturally, the problem arises of making the
CA approach compatible with mathematical physics. First, an interface is
needed between the usual continuous spatial functions and their representa-
tion in the form of Boolean arrays used in CA. Moreover, such an interface
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is urgently required when the process under simulation is to be expressed
as a combination of two subprocesses, one of them being represented as CA
evolution and another one being given in the form of a real function [5].

The transfer from a continuous spatial function to a Boolean array has
two stages: 1) discretization of space, which results in a real cellular array —
a set of cells with real entries (in numerical methods one deals with a dual of
a cellular array, referred to as a “grid”), 2) approximation of a real cellular
array by a Boolean cellular array, referred to as a Boolean discretization.
Since the first stage is a well-known procedure used in all numerical methods,
it is of no interest here. So, the approximation of a real cellular array by
a Boolean one is the subject of the paper, the transform being extended to
perform the main arithmetic procedures over the arguments of both data
types. Clearly, since the transformation of a Boolean array to a discrete
spatial function, as well as the inverse one is approximate, the approximation
accuracy is also considered.

Apart from Introduction and Conclusion, the paper has four sections.
The second section contains formal definitions and relations between a cel-
lular array with real states and its Boolean discretization. The procedure
of Boolean discretization is presented in the third section. In the fourth
section a few techniques for accuracy improvement are presented. The fifth
section concerns arithmetic procedures on the arrays.

2. Main concepts and definitions

To simulate of natural phenomena in space and time is to compute a function
u(x,t), where u is a scalar, representing a certain physical value, which may
be pressure, density, velocity, concentration, temperature, etc., ¢ stands for
time. A vector « represents a point in a continuous space. In the case of D-
dimensional Cartesian space the vector components are its coordinates. For
example, with D = 2, @ = (z1,z3). Since, in the sequel, spatial functions
are of interest, the function u(e) with a fixed ¢ is under consideration.

When numerical methods of PDE solution are used for simulation of
spatial dynamics, the space is converted into a discrete grid, which is further
referred to as a cellular space according to the cellular automata terminology.
For the same reason the function u(z) is represented in the form of a cellular
array

U(R,M) = {(u,m): ue R, me M}, (1)

which is a set of cells, each being a pair (u,m), where u is a state variable
with the domain in a set of real numbers R, m € M is the name of a cell.
To indicate the state value of the cell named m the notation u(m) is also
used. A set of cell names is called a naming set. In practice, the names are
given by the cells coordinates in a cellular space. For example, in the case
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of the cellular space represented by a 2D Cartesian lattice, the names are
M = {('L,]) : Z,] = 0,1,2. . .}, where 7 = .’Bl/hl, ] = :132/h2, h1 and h2 being
space discretization steps. For simplicity we take h; = hy = h. In theory, it
is more convenient to deal with a generalized notion of the naming set M,
considering m € M as a discrete spatial variable.

A cell named m is called empty if its state is zero. A cellular array with
all the cells being empty is called an empty array. It is further denoted as
Q={0,m): Vm € M}.

The most profound discretization of a spatial function is its approxima-
tion by a Boolean array

V(B,M)={(v,m): vEB, me M}, B=1{0,1}. (2)

In order that this type of approximation be defined a concept of averaging
should be introduced. It is based on the following definitions. A set of cells

Av(m) = {(v,¢x(m)), ve€ B, k=0,1,...,q} (3)

is called the averaging area of a cell named m with ¢ = |Av(m)| being its
cardinality, ¢y : M — M is a “naming function”, indicating to the name of
a cell in the averaging area. In the naming set M = {(i,7)}, the naming
functions are usually in the form of shifts, ¢x(¢,7) = (¢ +a,j +b), a, b being
integers not exceeding a fixed 7, called a radius of averaging.

The averaged state of a cell named m is

q

w(m) = v(¢r(m)). (4)

k=0

The averaging procedure of a Boolean array V (B, M) is to obtain the cel-
lular array Av(V) = W(Ay, M), where w(m) for each m € M is com-
puted according to (4), W (A, M) being referred to as the averaged form
of V(B,M). According to (4), the domain of the state variable w(m) is a
finite set of numbers forming a discrete alphabet 4,, = {0,1,2,...,q}.

The relation between the real states in the cells (u,m) € U(R, M) and
the averaged values in the cells (w,m) € W(A,, M) depends on the scaling
parameters, which are ¢ = |Av(m)| and umax. The latter value comes from
the assumption (which is usual in mathematical physics) that the function
u(@,t) under simulation is bounded in the simulation domain. This means
that at any ¢ and « its value does not exceed a certain value upy,y. So,
the normalized real values y = u/umax may be used, the normalized cellular
array being Norm(U) = Y (A,, M) = {(y,m) : y € Ay, m € M}, A, € [0,1].
The averaged form W (A,,M) = Av(V) of a Boolean array can also be
normalized resulting in Norm(W) = Z(4,,M) = {(z,m) : z € A,, m €
M}, where A, = {0,1/q,2/q,...,1}, the normalized averaged state being
computed as follows.
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g

2(m) = =3 v(gn(m)). (5)

L

From (5) it is seen that z(m) = 1 can take place when all the cells in the
averaging area of V(B, M) have states equal to “1”.

Hence follows that a Boolean array represents a spatial function through
the distribution of “ones” over a discrete space. Averaging is the procedure
of computing the density of this distribution, which transfers a Boolean
array into a cellular array with real state values from a discrete alphabet.
The inverse procedure of obtaining a Boolean array representation of a given
cellular array with real state values is more important and more complicated.

A Boolean array V (B, M) which averaged form W (A, M) = Av(V) ap-
proximates a given cellular array U(R, M) is called its Boolean discretiza-
tion. Consequently, V(B, M) is a Boolean discretization of Y (4,, M) =
Norm(U) if Norm(Awv(V)) = Z(A,, M) approximates Y (A,, M). The ap-
proximation error should be limited by a certain value, which is more con-
venient to express through normalized values, i.e.,

z(m) —y(m) <e forany m € M, (6)

where € is an admissible approzimation error.

3. Boolean discretization method

The problem of Boolean discretization is stated as follows. Given a nor-
malized cellular array Y (Ay, M), and an admissible approximation error e,
a Boolean array V(A4,, M) = Disc(Y) should be obtained, such that the
condition (6) be satisfied. The problem solution is based on the fact, that
for any m € M the probability of the event v(m) =1 is equal to y(m), i.e.,

Ply(m)=1) = y(m). (7)

The above simple rule follows directly from the probability definition,
provided y(m) is assumed to be constant on the averaging area. The rule
results in a Boolean array, where the expected value u(y(m)) is equal to the
mean state y'(m) over the averaging area Av(m), i.e.,

1 q q

(y(m) = = 3 0(64(m)) Pagay (m) 1) = 3 S y(du(m)) = y'(m).  (8)

910 k=0

From (8) follows that the approximation error e vanishes in those cells,
where
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y(m) =y'(m) = = > y(¢r(m)). (9)

A set of such cases includes, for example, all linear functions and parabolas
of odd degrees, considered on the averaging area relative to a coordinate
system with the origin in the cell named m. When (9) is not satisfied, the
error of Boolean discretization e(m) = z(m) —y(m) # 0 is the largest in the
cells where y(m) has extremes.

A discretization algorithm which pretends to be accurate can be also
obtained. Its main part should comprise the construction of a cellular array
Y(Ay,M) = {(y,m)} such that for all its cells the mean value over the
averaging area be equal to the corresponding cell state of the initial cellular
array Y (Ay, M), i.e.,

q
y(m) = = > y(gu(m).
7 =0
This method requires great computational costs, because a determination
of each cell state in T(A,, M) includes the solution to a system of |Av(m)|
equations. Since these computations should be made in the floating-point
format, the complete accuracy may not be ensured. So, we consider this
method impractical and further propose some practical techniques to in-
crease the accuracy of the above approximate simple rule (7).

From (8) it is clear that the error e(m) depends on the function behavior
in Av(m) and the cardinality ¢ = |Av(m)|, these two parameters being
conditioned by a spatial discretization step h. The latter should be small,
allowing ¢ to be chosen large enough to smooth function extremes.

There is one more parameter which determines the accuracy of Boolean
discretization. It is the error dispersion o, which characterizes the coarse-
ness of discrete function representation. In the cellular automata theory it is
called automata noise and considered as an important parameter, closely re-
lated to computation errors. Hence, it is better to express the discretization
accuracy by the two values:

1/2

B= % Y e(m), o= (% ) (e(m)E)2> T

meM meM

So, the accuracy requirements should be given as a pair of inequalities,
E <, o <n, (11)

where € and 7 are admissible values of the approximation error and the error
dispersion.

The above two requirements may be contradictory. This occurs, when
the function has sharp extremes. In this case the dispersion minimization
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requires large ¢ = |Av(m)|, while for the mean error decrease it should be
taken small enough. The latter is due to the fact that for functions which are
either convex or concave on a certain spatial interval, the difference between
the mean and the extreme values increases with an increase of the interval.
The only way to satisfy both requirements is to increase the cardinality of
a naming set. There is two ways of doing this, shown in the next section.

4. Providing Boolean discretization accuracy

The first way to provide Boolean discretization accuracy is to take a naming
set of large cardinality, allowing the averaging area size be also chosen large
enough. The following example shows how the accuracy parameters depend
upon the averaging area size.

Example 1. Boolean discretization of a half of one-dimensional wave y =
sinz with 0 < z < 7 is to be obtained in order that an experimental
assessment of the discretization accuracy be performed. Taking h = /N
for the space discretization, the normalized cellular array

y(4) :asin%z, i=0,1,...,N,

is found. Two Boolean discretizations V7 (B, M;) and Vo(B, M5), with M; =
{0,1,...,179} and M, = {0,1,...,359}, of Y (A,, M) are obtained accord-
ing to (7). For both of them, a number of averaged cellular arrays with
different averaging area size have been obtained, and the mean error to-
gether with the dispersion have been calculated for each case (Table 1).

Table 1. Dispersion o, main error E, and the error e(N/2) experimentally obtained
for Boolean discretization of y = sinz with different averaging area size

N =180 N = 360

e - B e(90) - B e(180)

15 0.1 0.070 0.000 0.011 0.075 0.000

29 0.066 0.070 0.000 0.005 0.057 0.000

51 0.031 0.034 —0.019 0.002 0.047 0.000
61 0.030 0.030 ~0.049 0.001 0.041 0.000
101 0.033 0.089 ~0.079 0.001 0.025 ~0.001
105 0.041 0.099 —0.0086 0.001 0.024 —0.095
201 0.021 0.073 ~0.0089

From Table 1 the following is clearly seen:

1. Both accuracy parameters: dispersion and mean error are the smaller
the larger is the naming set cardinality, i.e., the smaller is the spatial step. It
should be mentioned, that a correct comparison is the one made between the
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Boolean arrays having equal averaging area size, and those measured in the
initial continuous space, i.e., having equal hq. In our case, compared should
be pairs of the cases for which gy—180 = 2qn—360. For example, the case
gn—180 = 51 should be compared to the one with gy_360 = 101, resulting
in the fact that both accuracy parameters with N = 360 are about 5 times
better than those with V = 180.

2. The mean error and the dispersion considered versus the averaging
area size have minimum values with gy—1890 = 61 and with gy—360 = 105,
which corresponds to gmin ~ N/3.

3. With the growth of the averaging area the error on the function
extreme increases. In our example it is shown by the error e(IN/2)/q.

The second method of improving Boolean discretization parameters is to
take the naming set of a Boolean discretization one dimension larger than
that of the initial cellular array. Hence, in order that Boolean discretization
of a cellular array Y (A,, M) be obtained Boolean array V (B, M x L) is to
be constructed, whose naming set is a multilayered structure

L
M=JM, M={m] . =P
=1
The state values y(mz(l)) are obtained in all the layers in one and the same
way according to the rule (7). The averaging area determined according to
(3) in each layer forms a multilayer subarray of the total size Q = ¢ x L. The
averaged array W (A,, M) is again a one-layer array, where the cell states
are computed as follows:

w(m) = Z zq: v(¢pp (mM) Vmgl) € M, (12)

1=1 k=0
the normalized averaged state being z(m) = w(m)/Q.

Example 2. The above method of increasing Boolean discretization accu-
racy has been experimentally verified as follows. For the function y = sinx
from Example 1 Boolean discretization V (B, M x L) with |M| = N = 360,
L = 10 have been obtained according to (7), as applied to all the layers cells.
The averaging of V (B, M x L) has been performed with different values of
g. The results presented in Table 2 show that better accuracy parameters
are achieved than those in a one-layer array with the same IN. The price is
a tenfold increase of the Boolean array size.

One more error elimination method called extreme compensation method
is further proposed, which is useful when a cellular array Y (A,, M) under
Boolean discretization has sharp extremes or breaks of the initial function
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Table 2. Dispersion o, the main error E,

gxL o E ¢(180) .
and the error e(N/2) experimentally ob-
5x10 | 0.064 | 0.048 0.000 tained for a number of multilayered Boolean
15x10 | 0.028 | 0.031 0.000 discretizations of y = sinz

29x10 | 0.022 | 0.026 0.000
51x10 | 0.017 | 0.0122 0.000
61x10 | 0.015 | 0.019 —0.003
101x10 | 0.008 | 0.008 —0.014

y(m). The cells, where the function has the above peculiarities, are fur-
ther referred to as extremal cells denoted as m*. The method provides for
replacing each subarray Av(m*) by another one, Av*(m*), called the wvir-
tual averaging area. After such a replacement a new virtual cellular array is
obtained, i.e.,

Y*(Ay, M) :Y(Ay,M)\ Z Av(mj) U Z Av*(mj), (13)

where {m],...,m},...,m}} is a set of extremal cells names.
Each set Av*(m]) differs from Av(m]) in the cell states, whose values
y*(¢r(m*) should satisfy the condition,

z(m) —y(m) <€ V(z,m) € Av(Disc(Y*(4,, M))), (14)

where ¢ < e. Condition (14) means that after the discretization of
Y*(Ay, M) and averaging the result the array Z(A,, M) is obtained, ap-
proximating Y (Ay, M) with a very small error. To obtain these values each
y(dr(m*)) € Av(m*) should be augmented by a value (¢ (m*)), symmetric
to y(m) relative to the constant function ¢(m) = y(m*) Vm € Av(m*), ie.,

§(¢r(m*)) = 2y(m™) — y(dr(m7)) (15)

with ¢g(m) = ¢o(m*) = m*. The augmentation of the state values in the
virtual averaging areas are done as follows

v (grm*) = 3 (u(gr(m™) + §(Bu(m*))) = y(m®). (16)

From (16) it is easily seen, that when the function under Boolean dis-
cretization is piecewise linear, all the cell states in Av*(m*) are equal to

y(m*), i.e.,
Av*(m*) = {(y(m*),¢e(m")) : k=0,...,q}. (17)

So, in many cases it makes sense to obtain a piecewise linear approxima-
tion of Y(A4,, M), and then perform Boolean discretization with the use of
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Figure 1. Boolean discretization of a
piecewise linear function: the initial
function y(m) (dashed line) and the
averaged Boolean z(m) (solid line) ob-
tained by applying the rule (7) to y(m)

»
»

Figure 2. Boolean discretization of a
piecewise linear function: the virtual
function y*(m) (dashed line) and the
averaged Boolean z(m) (solid line) ob-
tained by the extreme compensation

method

the extreme compensation method. Of course, a spatial discretization step
should be chosen in such a way that the distance between the two nearest
extremes be larger than 2r, r being a radius of the averaging area. The ef-
ficiency of the method is illustrated by the results of Boolean discretization
of a piecewise linear function Y (m), shown in Figures 1 and 2. From them,
it is clearly seen that the use of the extreme compensation method is much
more accurate.

5. Cellular array arithmetic

Simulation of the complex spatial dynamics with cellular automata requires
the perform once of a few operations on Boolean arrays. The most im-
portant are the following: 1) addition (subtraction) of two Boolean arrays,
2) addition (subtraction) of a real cellular array to a Boolean one, 3) mul-
tiplication of two Boolean arrays, and 4) multiplication of a Boolean array
by a real cellular array. All these operations are determined in the domain
and range of a set of cellular arrays, belonging to one and the same class
K(M,T), characterized by a naming set M, and a set of the naming func-
tions T = {(¢x(m)),k = 0,...,q} in Av(m). Particularly, a Boolean array
V(B,M') with Av'(m') = {(v, ¢} (m')), v = 0,1, k = 0,...,q} belongs to
the class K(M,T) if

1) M' =M,

2) In Av'(m’), the set {¢},(m'): k=0,...,¢} =T.

Boolean arrays addition (subtraction). A Boolean array V (B, M) is
called a sum of V4 (B, M) and Va(B, M), which is written down as

V(B,M) =Vi(B,M) & V5(B, M) (18)
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if its averaged normalized form Z(A,, M) = Norm(Av(V')) is a matrix-like
sum of Z;(A,, M) = Norm(Av(Z;)) and Z2(A,, M) = Norm(Av(Z3)).

This means that for any m € M z(m) = z1(m) + z2(m), where (z,m),
z1(m), z2(m) are the cell states in Z(A,, M), Z1(A,, M), Zy(A,, M), re-
spectively, or, according to (5)

q q q

> v(p(m)) = D vi(gr(m)) + Y va(bx(m)). (19)

k=0 k=0 k=0

Using (7), the resulting array can be obtained by allocating the “ones”
in the cells of an empty array Q = {(0,m) : Vm € M} with the probability

Py = ¢ (2 or(oulm) + 3 walgum) ) = 5(m) + (). (20)

k=0 k=0

When the Boolean array addition is used as an intermediate operation,
it is more convenient to obtain the resulting array by means of updating one
of the operands so that it be equal to the resulting Boolean array. This can
be done as follows. Let Vi(B, M) be changed into V4 (B, M) & V5(B, M).
Then some cells (v, m) € V1(B, M), out of those, where v;(m) = 0, should
invert their states. Hence, the probability of such an inversion should be the
relation of the value to be added to the amount of “zeros” in the averaging
area Av(m) € V1(B, M).

Py = % (21)

Subtraction can also be performed in two ways. The first is similar
to (20), the resulting difference V(B, M) = V1(B,M) © V2(B, M), being
obtained by allocating the “ones” in the cells of an empty array with the
probability

Po1) = z1(m) — z2(m). (22)

The second is similar to (21), bearing in mind that the inversion should be
done in the cells with the states v1(m) = 1, the probability of the inversion
being computed as follows:
22

Pi0) = o (23)
Addition (subtraction) of real and Boolean cellular arrays. A Bool-
ean array V(B, M) is the sum of a Boolean array V;(B,M) and a nor-
malized cellular array Z3(A4,, M) if in Z(A,, M) = Norm(Av(V)) each cell
state z(m) = z1(m) + z2(m), z1(m), z2(m) being the states of the cells in
Z1(A,, M) = Norm(Av(V1)) and Z3(A,, M), respectively, i.e.,
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q q

> v(¢r(m)) = Y vi(gr(m)) + z2(m). (24)

k=0 k=0

The resulting array can be obtained by allocating the “ones” in the cells
of an empty array with the probability

P = é;} or(i(m)) + 22(m). (25)

When such an addition is used as an intermediate operation, which is
the case in the hybrid method of the diffusion-reaction simulation [5], the
result is obtained by the inverting states v1(m) = 0 into v1(m) = 1 like in
(21) with the probability

z2(m) .
1130, vi((m)

Similarly, the subtraction V (B, M) = V;(B, M)6& Z3(B, M) is performed
according to one of the two following formulas: either to allocate the “ones”
in an empty array with the probability

Py = (26)

14
P = p > vi(p(m)) — 22(m), (27)
k=1
or to invert the cell states v1(m) =1 in V;(B, M) with the probability
22

T30 vi(¢(m))’

Multiplication of two Boolean arrays. A Boolean array V (B, M) is
called the product of V;(B, M) and V2(B, M), which is written down as:

Pao) = (28)

V(B,M) =Vi(B,M) ® Va2(B, M) (29)

if its averaged normalized form Z(A,, M) = Norm(Av(V')) has cell states,
which are the products of the corresponding cell states z;(m) of Z;(4,, M) =
Norm(Av(V1))) and z2(m)) of Z3(A,, M) = Norm(Av(V2). This means that

q q

LS o((m)) = 3 3" v (i (m)) x é S va(di(m) (30)

710 k=0 k—0

The resulting array may be obtained by allocating the “ones” in the cells
of an empty array with the probability

Posy = = 3 on(du(m) x = 3 va(ge(m). (31)
1 750
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Multiplication of a Boolean array by a real cellular array. A Boolean
array V (B, M) is the product of a Boolean array V; (B, M) and a normalized
cellular array Zs(A,, M), which is written down as:

V(BaM):Vl(BaM)®Z2(Az,M): (32)

if its averaged normalized form Z(A,, M) = Norm(Av(V)) has the cell
states, which are the products of corresponding cell states zi(m) of
Z1(A,, M) = Norm(Av(V1)) and z2(m) of Z3(A,, M), i.e.,

g

LS o (i(m)) = z2(m) 3" i (gi(m)). (33)
k=0

qi= q

The resulting arrays are obtained by allocating the “ones” in the cells of
an empty array with the probability

23(m)
P((Hl) = Z v1(pr(m)), (34)
7 ko

Clearly, the multiplication of a Boolean array Vi(B, M) by a constant
a € A,, A, = {0,1/q,...,1} is the same as multiplication V (B, M) by
Zs(a, M) with all the cells having the equal states zo(m) = a.

6. Conclusion

Methods of transforming spatial continuous functions into their represen-
tation in the form of Boolean arrays are proposed. Such transformations,
as well as the formal arithmetic operations in the domain of cellular ar-
rays, are required when cellular automata models are used to simulate the
spatial dynamics. This is especially important when certain components of
the process under simulation are modelled by cellular automaton evolution
and others are given in the real domain (for example, the diffusion-reaction
processes). As such discrete-continuous transformations are approximate,
some techniques for providing admissible approximation accuracy are also
proposed and investigated.
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