Bull. Nov. Comp. Center, Num. Anal., 11 (2002), 1-7
© 2002 NCC Publisher

On CSIR-ILU preconditioning and
its implementation in GMRES(m)

M. Balandin, E. Shurina

An ILU(0) modification for sparse matrices storage technique called the CSIR
is discussed and briefly analyzed. Details of program implementation for the
GMRES(m) preconditioning are described for C language.

1. Introduction. On sparse matrices

When speaking about sparse matrices we first need to introduce some terms
and notations.

Let A be a matrix of the size n: 4 = {aij}7j=1- A subset P4 of the
set of complete indices {1,...,n} x {1,...,n}, which corresponds only to
non-zero elements, will be mentioned as portrait or pattern of the matrix A:

Py = {(1".7) I 1< 11] < n, a;; # 0}

In terms of patterns and non-zero elements all sparse matrices can be
divided into three subclasses:

1. Symmetric matrices, for which a;j = aj;. It is obvious that the pattern
of symmetric matrices is symmetric too, i.e.,

V(i,7) € Pa: (j,i) € Pa. (1)
2. “Slightly non-symmetric” matrices, for which (1) is still correct but
3(%,3) € Pa: aqj # aji.
3. “Absolutely non-symmetric” matrices, for which

3 5) € Pa: (4,4) ¢ Pa.

Actually, matrices of third kind can always be transformed into second kind
by extension of their patterns until (1) is satisfied [4], but it also extends
memory storage and we will not consider this method here.

The matrices of second kind are of our interest, since we always obtain
them in finite element (FE) and finite volume (FV) discretizations of physical
problems. Actually, the mesh connectivity graph is non-oriented and hence

2 M. Balandin, E. Shurina

the P4 (which represents this graph’s structure in global SLE) satisfies (1)
immediately.

Using a non-structured mesh with local refinements, we unavoidably ob-
tain non-structured pattern of the global SLE matrix and therefore cannot
take the advantages of the well-known storage methods widely used in finite
differences methods [6]. Some other techniques should be used for these
matrices.

For further estimations let us introduce a mean number of non-diagonal
non-zero elements in matriz’ row for lower/upper triangle', which will be
referenced to as m. In estimations of storage requirements, we use machine
word (4 bytes) as a unit, since it perfectly describes the case of single-length
float numbers (for a;; etc) and double-length integers (for indices).

Probably the most used storage method for arbitrary sparse matrices is
the CSR? [4, 5, 6], which is basically the list-oriented data organization. In
this scheme, all non-zero elements are stored together with their positions
in the matrix A as three lists ({ai;}, {i}, {7}). Total storage is therefore

VCSR(”) = 3n(2m + 1) (2)

words.

Obviously, the CSR is not effective for “slightly non-symmetrical” ma-
trices as we described them before. The reason is abundance of P4 clearly
visible from (1). Actually, one half of this set can be easily obtained from
another one, while diagonal elements a;; (they are always non-zero in the
FE and the FV!) do not require any indices at all.

The solution is the modification of the CSR known as the CSIR3. Let
us store the main diagonal of A, its lower and upper triangles A; and Ay
separately, then only half-size subset of P4 should be stored to completely
describe the matrix A:

Pi ={(i,4) | (i,5) € Pa, i 2 j} C Pa.
Therefore, A can be presented as formal structure
ACSR — (D 1,J,L,U), (3)
where '
e D = {aj;}~, are diagonal elements;

e L and U store non-diagonal elements of lower and upper triangles,
respectively, listed in the same order (row-oriented for L and column-
oriented for U); '

!This number is closely related to geometrical quality of the mesh and the FE/FV
order of approximation [6].

*Compressed Sparse Row.

}Compressed Sparse low-triangle Row.

On CSIR-ILU preconditioning and its implementation in GMRES(m) 3

e J stores column indices for a;; € L (and, at the same time, row indices
for a;; € U);

e I stores numbers of non-zero elements of each row in L (and, at the
same time, of each column in U).

' One can easily calculate total storage for the CSIR, which is equal to
Vesir(n) = n(3m + 2) (4)
words.’ Then, comparing (2) to (4) we see

VCSR(”)_ _ 6m + 3 N
VCS[R(”) I3m+2 !

which means that the CSIR is twice more effective than the CSR.

2. The ILU(0) decomposition for the CSIR
scheme

From programmer’s viewpoint, the key feature of the Krylov sequence meth-
ods is the fact that they do not require the matrix A “as it is”, but only
some ability to calculate the matrix-to-vector product Az — y in order to
find residual vectors [1, 6]. Implementation of corresponding procedure is
not a problem for both the CSR and the CSIR (see algorithms in [4]) but
the ILU preconditioning always leads to certain difficulties since its effective-
ness depends very hard on operations with matrix’ elements and sequential
access to them.

In this section, we present modification of the ILU algorithm suitable for
the CSIR scheme and auxiliary algorithms of upward and backward substi-
tutions. The latter are required for “unpreconditioning” of residual vectors.

2.1. ILU itself

It is well-known that the complete LU factorization of dense matrices can be
written in many modifications [7]. Their common bottleneck is calculating

of sums like
Y Likugj, : ‘ (5)
i

which can be really difficult and slow with sparse matrices?.

Calculation of an ILU factorization can be stated in terms of pattern as
the following formal problem: find the matrices L, U, and R satisfying the
equation A = LU + R and three conditions: ' '

“The reason is complicated access to elements of the matrix. Instead of direct access
through indices we first need to locate corresponding fragment of list L or U and then
search through it (probably unsuccessful, if a;; = 0).

4 M. Balandin, E. Shurina

1. P, C P; and Py C (P3)7;
2. ¥(4,5) € Pa: [LUJj = ayj;
3. PRNPy=0.

It means that we should extend (3) with three additional lists L', U’,
and D' keeping elements of decomposition:

(D,1,J,L,U) - (D,1,J,L,U,D", L",U").

Taking into account the internal nature of presentation (3), we state two
additional requirements to algorithm itself:

1. The order of calculating l;; and u;; must be the same as the order
elements a;; listed in;

2. The sums of the kind (5) must be calculable as easily and fast as
possible.

Using the technique presented in [4], we can derive the CSIR modification
of the ILU(0) decomposition shown in Figure 1.

fori=1ton
for j=1toi—-1

ji—-1
if (i,j) € P4 then I,‘j = ai — ;;1 l,-kuk_.,-

ji-1
— 1
u._.,-.: = E— [a._,-,- - kz_:l ljkuk,-]

increase j
i-1
i »= aii — 3 lLigugi
k=1
u; =1
increase 1

Figure 1. CSIR-ILU(0) algorithm

The first requirement is satisfied since (L, L') are both keeping elements
in row-oriented order, and, symmetrically, (U,U’) in column-oriented one.
Looking on the order of calculation one can see that l;; and u;; are accessed
simultaneously.

The second condition is satisfied too: note how order of access to lij (and
in the same time to u;;) corresponds to the order of storage in L and U.

By this mean, the presented algorithm seems to be a good choice for the
FE/FV matrices. Actually, in [3] it was shown that for these matrices the
CSIR scheme is much more effective than the CSR in all senses.

On CSIR-ILU preconditioning and its implementation in GMRES(m) 5

Please note that sums in the algorithm of Figure 1 cannot be imple-
mented directly; some indirect addressing from I through J to elements of
L and U should be used instead. However, it is quite straightforward and is
easily programming trick. '

Note also that “u;; := 1" couples D' with the lower triangle L', while for
the upper one U’ no storage of diagonal elements is required.

2.2. Auxiliary algorithms

If one wants to use any factorization algorithm as preconditioner in the
Krylov subspace methods, he also needs an algorithm for “unprecondition-
ing” [4, 6]. In the ILU case it means that upward and backward substitution
procedures are required for L' f — z and Q“I f — z, respectively.

Obviously, the basic requirement of previous subsection is still actual:
algorithms and their implementations should use the internal structure of
data storage method (3) to be as fast and effective as possible.

Luckily, in this case it does not lead to any troubles at all. Taking
upward and backward substitution algorithms from [4] and changing them
a bit according to our specific situation (particularly, “u;; := 1”7 again), we
obtain algorithms shown in Figures 2 and 3.

In order to better show the CSIR features and ideas of mplementatmn

linear algebra subroutines for this storage method, we present these algo-
rithms in details.

Note how order of calculations differs for L and U lists according to the
storage order.

Input: f, D', L', I, J, n
OQutput: z = L7} f
Effects: changing of f
— BEGIN —
for i=1ton
for j=1; to I,+1—1
fi=fi— ZJ,
increase j
Zj 1= f.,;/D:-_
increase 1
— END —

Figure 2. Upward substitution
algorithm for the CSIR

Input: f, U, I, J, n

Output:z =U"'f

Effects: changing of f

— BEGIN —

for i=n to 1 step (-1)
Zi = f,’
for j=1I; to I;;; -1

fJJ' = .fJ_,'_ - inJ,‘

increase j

increase 1

— END —

Figure 3. Backward substitution
algorithm for the CSIR

6 M. Balandin, E. Shurina

3. Program implementation

The algorithms listed above were implemented by the authors in C language.
The basic idea of implementation was fo take all advantages of the CSIR
scheme while keeping in mind the ability to change preconditioner if required.

The whole package consists of four functions: GMRES (GMRES(m) it-
self with ability of preconditioning); LU_itself (CSIR-ILU decomposition
according to Figure 1); UPW_subst (upward substitution according to Fig-
ure 2); BACKW_subst (backward substitution according to Figure 3).

The prototypes should be described in user’s program as follows:

void LU_itself(long n, long *I, long *J,
float *D, float *L, float *U, float *Di,
float *L1, float *Ui);

void UPW_subst(float *f, float *D1, float *L1,
long *J, long *I, long n, float *z);

void BACKW_subst(float *f, float *Ul, long *J,
long *I, long i, float *z);

int GMRES(long R, int M, float *x, float *b,
long n, float EPS);

where R is the restriction for the number of the GMRES iterations; M is the
dimension of the Krylov subspace in GMRES; x is the solution (and, in the
beginning, the initial guess); b is the right-hand part of the SLE Az = b;
EPS is the required solution accuracy (||7k||/||re|| < €). The meaning of other
variables is clear as they exactly correspond to notation we used above.
GMRES returns 1 as the error code in case of insufficient memory and 0 as
OK code.

The user’s program should contain two functions: mat2vec (calculation
of the matrix-to-vector product) and unLUsubst (“unpreconditioning” of
the vector, normally described via UPW_subst and BACKW_subst):

void mat2vec(int n, float *X_input, float *X_output);
void unLUsubst(float *r);

Before calling to GMRES user’s program should call LU_itself to calculate
preconditioner matrix.

There is also an ability to use the package as usual unprecondltloned
GMRES. To do it, a user just defines unLUsubst function as

void unLUsubst(float *r) { return; }

Calling to LU_itself before GMRES is not required in that case.

On CSIR-ILU preconditioning and its implementation in GMRES(m) 7

References

[1]

(2]

[4]
(5]
[6]

[7]

Balandin M., Chernyshev O., Shurina E. Analysis of methods for solving large-
scale non-symmetrical linear systems with sparsed matrices // Proc. 4th Int.
Conf. ”Parallel Computing Technologies” (PaCT-97) / Lecture Notes in Com-
puter Science. — Springer-Verlag, 1997. — Vol. 1277. — P. 336-343.

Balandin M.Yu., Shurina E.P. Some estimations of efficiency for parallel SLE
solving algorithms of Krylov sequence type // Computational Technologies. —
1998. - Vol. 3, Ne 1. — P. 23-30 (in Russian).

Balandin M., Chernyshev O., Shurina E. The ILU preconditioning for systems
of linear equations with sparse matrices of arbitrary structure // Proc. Int.
Conf. Honour. Acad. Godunov “Mathematics in Applications”. — Novosibirsk,
1999. — P. 26-27.

Balandin M.Yu., Shurina E.P. Numerical Methods for Large-Scale SLEs. -
Novosibirsk: NSTU Publishing, 2000 (in Russian).

Chow E., Saad Y. ILUS: an incomplete LU preconditioner in sparse skyline
format // Int. J. for Num. Meth. in Fluids. - 1997. - Vol. 25. - P. 739-748.

Saad Y. Iterative Methods for Sparse Linear Systems. — PWS Publishing Com-
pany, 1996.

Stewart G.W. A Survey of Matrix Algorithms. Vol. 1: Basic Decompositions. —
University of Maryland, 1995. .

