Bull. Nov. Comp. Center, Comp. Science, 1(1993)
© 1993 NCC Publisher

Colour roundoff via octree algorithm

O.E. Baklanova and V.A. Vasilenko

Special -colour roundoff problem arises in the visualization of the colour images in the
<computer screen under restricted palette after real valued treatment of the inmitial im-
age, connected for example with the compression of colour components, and also in the
scanning of colour images, palette exchanges and so on. An effective algorithm of colour
roundoff based on octrees is presented in this paper.

1. Introduction

The various complicated numerical algorithms in digital colour image pro-
cessing are used in recent time, and often they require the calculation with
the real values. In this situation the initial colour image described by
integers transforms to the few real arrays, corresponding for example to
the red-green-blue components. We have here some problem for the visu-
alization of the output image in the computer screen because its palette
is restricted (under IBM standard only 256 colour combinations in the
palette are possible). So, the colour roundoff problem arises in the natural
way. Other reasons for the colour roundoff are also possible: an effective
scanning of the colour images, the exchange of palette (Dali’s picture in
Gogen’s palette?), data compression and so on. However in every case we
need to treat all pixels, and for the huge image we need to minimize the
computational expenses.

An effective colour roundoff algorithm, based on the octrees technology,
is presented in this paper. Three-dimensional bisections provide the fast
search of the “nearest colour“ from the given restricted palette.

2. Geometric approach to the colour roundoff
process and octree codes

Let us connect the three-dimensional Cartesian coordinate system with the
_intensities of red-green-blue components in the colour image and consider



2 _ O. E. Baklanova, V. A. Vasilenko

Figure. 3D-bisections

three-dimensional cube
Q = [0,63] x [0,63] x [0, 63].

Every integer valued vector P = (r,9,b) corresponds to the colour red-
green-blue combination. Let '

= {Pﬁ = (ﬂ',gi,bi),i = 1g2,o--,256}

be some palette, and each point P; is situated inside cube Q, r;, gi, b; are
integers. The palette II forms in Q) some scattered set, and our aim is to
organize the fast algorithm to find the nearest point P; € Il with respect to
arbitrary real valued point Q = (z,y,2) that lies inside cube Q or outside
of it. .

Let us produce three-dimensional bisection of the cube £, ie., cut it
into eight equal cubes i, i =0,1,.. ., 7. If some cube §; does not contain
any points of the palette II, we call this cube “white“, if it contains one
point from II then this cube is “black“, in other situation this cube is
“grey“. In the following step we produce 3D-bisections of the grey cubes
i, R,y i, and obtain white-black-grey cubes Qi,5, k¥ = 1,2,...,3,
j=0,1,...,7. We take again only grey cubes from them and repeat this
procedure. As a result of this process we obtain white-black structure of
cubes without grey colour. In every black cube one point of palette II is
situated, and white cubes are empty. : ‘

For every palette point P; we have some multi-number of the suitable
black cube (q,&'l),q,(;), ...,qg)), where 0 < qg-') <7,j=12,..,k, 1< ki <
6 (because 64 = 2%), i = 1,2,...,256. This integer vector we call octocode
of the point P; € I

It is possible to cut the computational expenses for the construction of
the octocode table by the suctessive calculations of palette point octocodes



Colour roundoff via octree algorithm 3

with the memorizing of previous results. In every case the octocode tabu-
lation for 256 colours in the palette is not éxpensive procedure.

3. Restructuring of the octocode table and fast
search '

First of all we need to provide the fast search in the octocode table. By
these means some restructuring of the table is necessary. It looks like the
fairly organizing content in the book, or more exactly in the dictionary. It
is natural to organize at first the lexicographical reordering of the octocodes
in the table and in addition the special recursive structure like “content
in content in content...“. After the construction of this modified table of
octocodes we can begin the colour roundoff process.

Let P = (z,y,2) be real valued vector. Transform it to the vector
P' = (z',y,#') by the rule

¢’ = min(63, max(0,z)),
¥ = min(63, max(0,y)),
Z = min(63,max(0, z)).

It is clear that P’ lies inside cube . After that we calculate the full
octocode (g1,¢2,...,06) of the length six for the point P/, 0 < ¢ <1,
t=1,2,...,6. If there are no octocodes in the table with ¢1 in the first
position (rare but possible case!), we need to compare the distances (for
example in the uniform norm) between P’ and every palette point and
select the minimum (expensive but rare operation!). If the octocodes with -
¢1 in the first position exist in the table, we look for octocodes with %
in the second position only among them and so on. Any number s does
exist such that octocodes of the type (q1,¢qs,...,¢s, Qs41,%,...,%) are in the
table, but there are no octocodes of the type (41,925 -- -1 qss Go1s %, - - - 5 *).
Then the search process is over and we determine the nearest point in
palette among the points with ¢;,¢s,...,q, in the positions 1,2,...,s. The
particular case is s = 6, and in this situation we have the full identification
because (¢1,¢92,...,¢6) is exactly in the table.

If we use some reasonable processing of the initial ‘image, then the
palette II is not very “far“ from the initial colouring of the picture and we
obtain only few comparisons of distances in the last step of the octocode
identification.

This colour roundoff algorithm was realized in the computer IBM PC
AT 286. The execution time for the construction of modified octocode



4 O. E. Baklanova, V. A. Vasilenko

table was 3.39 seconds for 256-colour palette. The roundoff process of the
standard computer screen with 320 x 200 = 64000 colour pixels requires
about 39 seconds. :

References
[1] H. Samet, The quadtree and related hierarchical data structures, ASM Comput.
Surveys, 16, No.2, 1984, 187-260.

(2] H. Samet, Implementing ray tracing with octrees and neighbor finding, Computer
and Graphics, 13, No.4, 1989, 445-460.

(3] K. Yamaguchi, T.L. Kuni, K. Fujimura, Octree-related data structures and algo-
rithms, IEEE Computer Graphics and Applications, January, 1984, 53-59.



