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Simultaneous identification
of two coefficients in a diffusion equation*

A.V. Avdeev, E.V. Goryunov, M.M. Lavrentiev, Jr., R. Spigler

An algorithm for the simultaneous determination of two coefficients in an in-
verse problem for equations of the parabolic type is presented. The model under
investigation has been proposed in the literature to describe the long-time coastal
profile evolution. The iterative inversion procedure is based on the minimization of
a suitable cost functional. Such a functional is considered in terms of the Laplace
transforms of the solution to the original dynamical problem. Results of numerical
tests are also shown to illustrate the performance of the algorithm.

1. Introduction

This paper is devoted to the numerical treatment of a two-coefficient inverse
problem for a certain linear parabolic differential equation. Inverse problems
for hyperbolic governing equations have been rather well studied in view of
various applications, such as, e.g., Seismology and Electrodynamics. With-
out going into details, we refer the reader to the specialized literature, see for
instance [1-3]. However, a comparatively small number of publications still
deal with parabolic problems, even though such problems arise in a number
of applications too. For example, the long-term coastal profile evolution
could be described in terms of diffusion-transport type model 4, 5].

In order to better describe the content of the paper, we formulate first
one of the simplest inverse problem which corresponds to a version of the
1D Lamé system (see [6], e.g.). Consider the following problem:

uy = (D(2)u,), for t>0, z>0, (1.1)
ult<o = 0, Uz|,—g = 6(2t), (1.2)

where 4(t) represents the Dirac delta function, while the coefficient D(z)
corresponds to the elastic properties of the medium (for example, the ve-
locity of longitudinal or shear waves). In case when additional (measured)
data at the free surface are available,
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u|z=0 = uO(t)1 (13)
an inverse problem could be formulated as follows:

Inverse Problem 1 (IP1). Given the function ug(t), find the unknown
function D(z) (in a certain functional space), such that the solution u(z,?)
o (1.1), (1.2) satisfies the additional condition (1.3).

An approach widely used for the numerical study of this problem, is
based on iterative procedures for the minimization of some cost functional,
with the help of optimization methods, such as steepest descent, conjugate
gradient methods, quasi-Newton methods, e.g. In case of IP1, the cost
functional could be constructed in the following way. Choose, as a first
guess, an approximated diffusion coefficient, solve the direct problem (1:1);
(1.2), find the trace of solution, u(z,t) at the point z = 0, and introduce the
cost functional

3(D(2)] = / [uo(t) - u(0,1)* dt + Bsup |D() - D[, (14)
0

8 being the regularization parameter, and D**(z) (the “estimated” D(z))
is defined by the physical properties of the medium under study. We as-
sume that the global minimum of this functional corresponds to the solution
of IP1.

In view of Parseval identity, the functional ®[D] in (1.4) can be mini-
mized in the so-called “frequency domain”. The frequency variable, which
has a clear physical meaning, for example in geophysical problems [1], is
nothing but the dual variable after the Fourier transforming the problem
with respect to time, ¢.

Let now consider a similar inverse problem but for the parabolic govern-
ing equation:

Inverse Problem 2 (IP2). Given the function v(t), find two functions,
D(z) and B(z), such that the solution v(2,t) to the problem

vy = D¥(2)v,, + B(z)v for t>0, 0<z<H, (L5)
V=0 =0, vz|:=0 =¢1(t), vl=m =0 ‘

satisfies the additional condition v|,—q = vo(t).

Clearly, the present problem differs from the IP1 for several reasons.
First of all, (i) the model equation is of the diffusion type; (ii) there are two
unknown coefficients to be recovered; (iii) the space interval is bounded.
Nevertheless, we shall use a similar approach, namely minimization of some
cost functional, in the frequency domain, to solve the IP2. Therefore, in
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addition to points (i)-(iii) above, we have some other peculiarities. Taking
the Laplace transform of equation (1.5), we obtain an Helmholtz equation,
similar to that obtained in the IP1 after a Fourier transform. However, in
this case we do not have the tool of the Parseval equality, and existence
of the Laplace transform of solutions is part of the problem. Note that we
do not need to resort to the inverse Laplace transform at the end, since
the coefficients D and B only depend on the space variable, and thus the
reconstruction of D and B can be obtained remaining in the frequency
domain. .

In this paper, we provide some partial answers to the questions above,
and demonstrate some numerical results of the inversion procedure. We
also expect to be able to process numerically some of the measured (real)
data in the nearest future. The rest of the paper is organized as follows.
In Section 2, we give an extended introduction to the diffusion-type mod-
els which describe long-term coastal profile evolution. Qur understanding
is that most of mathematicians interested in Inverse Problems are not yet
acquainted with such an important area of applications. As is proved in
. Section 3, at least in the case of constant coefficients, D and B in (1.5), the
Laplace transform of the solution to equation (1.5) does exist. In Section 4,
we describe some modification of the conjugate gradient method, to min-
imize the relevant cost functional, and give some results of the numerical
tests.

2. Diffusion models for the long-term coastal
profile evolution

Erosion and accretion phenomena are responsible for modifications to the
coastal environment, and thus have been a source of growing concern among
coastal engineers. These modifications occur, in some cases, as artificial
structures, such as, e.g., groins or seawalls, are built, to protect against se-
vere wave action for harbors, or to alleviate the effects of erosion on adjacent
shore property. They may arise as a result of human activities needed to
exploit natural resources (e.g., artificial sand islands created to be used as
drilling platforms for oil exploration). In any case the newly introduced
structure disturbs the dynamic equilibrium of sediment transport and thus
alters the coastal morphology. In order to minimize possible undesirable
effects due to this alteration, it is necessary to investigate the consequent
changes in coastal morphology.

There are in general two basic approaches adopted in coastal engineering
to study this problem, namely:

1. Hydraulic (physical) models;
2. Mathematical models.
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In the case of hydraulic model studies, a small-scale laboratory model
(a prototype) is constructed for the problem under study. From this study,
projections are made about the expected behavior of the prototype. Even
though several problems may arise in such investigations due to scale effects,
the results obtained are valuable in understanding the various mechanisms
acting on the coastal environment. However, such physical models are usu-
ally very expensive and require observations extended over a long time if a
number of options are to be tested.

Since, however, high speed computers are becoming available as well as a
deeper understanding of the coastal processes, the mathematical simulation
is becoming a major tool in coastal engineering as in many other fields.

It should be stressed that the various processes involved can occur over
different time- and space-scales, namely:

1. Small-scale coastal behavior;
2. Meso-scale coastal behavior (over a period of months to a few decades);

3. Large-scale coastal behavior (over a period of decades to a few cen-
turies);

4. Meta-scale coastal behavior (geological evolution of the coastal plain
over centuries to millennia).

These time scales can be divided into long-term and short-term processes.
Short-term processes are rather well studied by hydraulic (hydrodynamic)
models, while long-term modeling of coastal behavior is still far from being
satisfactory.

Even if we would have a sufficient computing power to run small-scale
models for a sufficiently long period of time, this might be not the best
approach for long-term modeling. Processes which are negligible at smaller
scale may have significant long-term effects and conversely. Therefore, it
is important to study long-term processes regardless of the short-term pro-
cesses.

As a result of the complexity of the coastal processes, the coastal engi-
neers usually proceed by simplifying the processes themselves into a number
of modules which can be formulated separately. The results are then as-
sembled together in a quasi-steady process, to form the required model.
For example, the coastal phenomena involved in morphology development,
have been simplified into a 3-stage process of wave transformation, sediment
transport, and erosion/accretion (morphology development), see [5].

The largest and most consistent body of work concerns coastline models
[7], and the equilibrium state of the system, for example, the equilibrium
coastal profiles [8].

One of the key elements in the long-term modeling, is reduction of in-
formation. For example, we need to operate a data reduction which enables
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us to separate the relevant information from the “noise”, and to reduce this
to a tractable (low) number of parameters. For quite a long time, these
two sources of information have been separated, namely, investigations were
made either from an empirical point of view, or from a process-based mod-
eling.

The reduction of information involves essentially four levels, which con-
cern input, physical system (or its model), output, and interpretation (or
generalization). These levels are reflected in the various approaches to long-
term modeling:

1. Input reduction, based on the idea that we can describe long-term
residual effects (e.g. transport fields) with models based on the de-
scription of small-scale processes.

2. Model reduction, based on the idea that, by using more or less formal
analysis and integration methods, the model might be reformulated
at the scale of interest, without describing all details of smaller-scale
effects.

3. Behavior-oriented modeling which attempts to describe the phenom-
ena without going into the underlying process.

All of these approaches have been discussed, for instance, in [5].

The problem of quantization is important in coastal profile modeling.
Usually, the area under investigation is discretized by a rectangular grid,
using fixed along-shore and cross-shore meshes. Here the depth is allowed
to vary in each grid according to a condition of continuity for sediment
transport. To ensure that the depths are continuous along grid lines, changes
in depth along these lines are found by averaging between adjacent grids.
In an alternative method, the area of studies is divided into a fixed number
of cross-shore strips. Each strip can be analyzed as a single computational
cell, or can be further divided into multiple cells. For computation related
to morphology, the section of the profile within each cell is assumed to
accrete or be eroded uniformly (i.e., the profile translates), in such a way
that the total accretion/erosion equals the net sediment transport into the
cell. The movement of the contours between adjacent cells are found by
linear interpolation.

In the quantitization above, if each strip is analyzed as one single cell,
the whole profile is assumed to move uniformly, and the model is called a
1-line model [9]. In this case, the cross-shore length of the strip should be
extended only to the critical depth (depth at which sediment transport is
negligible). In the sequel, such a depth will be referred to as the depth of
closure.

Alternatively, if each strip is divided into N cells, the profile is divided
into N segments, and each profile segment is used to translate the net sed-
iment transport into each cell as accretion/erosion. In this case, the model
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becomes a N-line model [10]. In order to evaluate the morphology changes
in each cell, it is necessary to compute the sediment transport at the ends
of each cell.

In the paper [9], diffusion equations have been derived applying mass
conservation to the 1-line model of coastal profile. The diffusion coefficient
in the governing equation, having the physical dimension of a square length
divided by time, corresponds to the time scale of shoreline change, following
a disturbance (a wave action). A high amplitude of the long-shore sand
transport rate produces a rapid shoreline response, so that a new state of
equilibrium with the incident waves is attained. Furthermore, a larger depth
of closure indicates that a larger part of the beach profile participates in the
sand movement, leading to a slower shoreline response.

Based on the aforementioned ideas, the following equation to describe
long-term coastal profile evolution:

9(6X) 5, 0%(6X)
ol ol AR -
ot () =22
This equation has been introduced in [5]. Here, §X(z,t) represents the
change of cross-shore position of the coastal profile, D(z) is the diffusion
coefficient, and z is the distance from the shoreline.
Let give some explanations for the special case of the term f(t,z, X,

2(gT)Q). If f = S(z,t), it is possible to introduce the effects of a random
forcing, long-shore transport gradients, and human inference, such as nour-
ishment and sand mining [5]. The choice f = B(z)f)—(gTXl, or f = B(z)dX,
is also interesting in view of applications. In these models, the coefficient
B(z) represents the velocity of long-shore sand waves movement. Thus, the
collective movement of long-shore sand waves can be described in addition
to a particular movement. This means that the sediment motion is char-
acterized by two scales: a relatively rapid movement of sand particles, and
a relatively slow collective movement of sand bodies. Clearly, all process-
based and empirical knowledge is stored in the coefficients D(z) and B(z)
as well as in the boundary conditions.

In this paper, we assume that f = B(z)dX in (2.1). Therefore, consider
the

L (t, 26X, %). 2.1)

Inverse Problem 3. Suppose the function §X(z,t) (the cross-shore posi-
tion of the coastal profile) solves

6(;56) — D?(2) 32;‘?) + B(2) 6X, (2.2)
6 X|eo =0, (2.3)
XY =pe BRSO (2.4)

az z=0
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We want to reconstruct the unknown coefficients, D(z) and B(z), using
the additional information (measurements at the observation surface z = 0)

5X|,_y = 6Xo. (2.5)

3. Theoretical backgroimd

To study the inverse problem above we use the formal Laplace transform.
Reformulating original problem in such a way we obtain the inverse problem
for the Helmholtz equation with parameter. It is necessary to develop some
of the theoretical background. '

For (2,t) € @ = [0, H] x [0, 00) consider the problem

u; = D*u,, + Bu, (3.1)
uli=0 = 0, (3.2)
Uz|z=0 = p1(t), Ulz=pr = 0, (3.3)
ulz=0 = o(t). (3.4)

Problem (3.1)—(3.4) is similar to IP2. For convenience we use the nota-
tion u = §X. To give the desirable theoretical background we also suppose
that D = const and B = const.

Such direct problem is overdetermined. We consider this problem as an
inverse problem, that is to find constants D and B having known ¢y(t) and
e1(t).

In the sequel, we use the formal Laplace transform

(e.0]
v(z,w) = fe“tu(z,t) dt. (3.5)
0
Here we show that in particular case under study such transform is correct.

Let us study the spectrum of equation (3.1) with the homogeneous boundary

conditions
u(0,t) = u(H,t) = 0. (3.6)

Using the standard separation of the variables u(z,t) = Z(z)T(t), we
obtain the following boundary-value problem for the multiplier Z(z):

B -
D2

that, obviously, possesses nontrivial solution for

ZI.I' +

Z=0, 2(0)=ZH) =0,

B;/\ n2n?
o m
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or, what is the same, for

'n.2’n'2 2
An =B — e D*.
Thus, the very right eigenvalue of problem (3.1), (3.6) is as follows:
2
™
M =B- ED? (3.7)

As well-known, for any initial function u(z,0) = ug(z) € L2(0, H) satis-
fying the compatibility conditions, u¢(0) = ug(H) = 0, solution to problem
(3.1), (3.6) satisfies the estimate

sup |u(z,t)| < K eM?.
z€[0,H]

Therefore, the Laplace transform (3.5) is valid for
w< —A1. (3.8)

Due to homogeneous initial condition (3.4) for the values of w satisfying
(3.8), we have

[o.9]

o0
/e”tug(z,t) dt = e“’tult_
0

(e o]
= wfe""tu dt = —wv(z,w).
0

Thus, assuming the proper behavior of the functions ¢;(t) as t — oo,
after using the Laplace transform with w satisfying (3.8) from (3.1)-(3.4),
we obtain the following problem for the Helmgoltz equation with a parameter

d*v(z,w)  B4w

1.7 D2 v(z,w) =0, (3.9)
dv -
@l = .
2. 1(w), V|;=g =0, (3.10)
V=0 = hg (w), (3.11)

where h;(w) = Dfoe“"tpi(t)dt.
0
For w > —B, i.e., for (cf. (3.7) and (3.8))

7r2 )
we (—B, ~B+ =D ) (3.12)

the general solution to the ODE (3.9) with constant coefficients has the from

v(z,w) = Cy(w)eP + Cy(w)e™ (3.13)
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with
B+w
A= (3.14)
Obviously,
d . )
% = i) [C1(w)e — Caw)e™7] . (3.15)

Boundary condition (3.11) implies that
Ch(w)e' B 4 Cre=iHH = 0,
or, what is the same, that
Ca(w) = —e*H2 0y (w). (3.16)
Thus, representation (3.13) takes the form
v(z,0) = Cy(w) [ - eACH=2)] (3.17)

Putting z = 0 in (3.17), we determine the multiplier C;(w) with the
help of one of the functions h;(w) (see (3.10)). The other function h; -
“over-information” in view of general theory of the PDE — could be used for
determination of the parameters D and B.

Indeed, from (3.10) and (3.17), we obtain that

ho(w) = C1(w) [1 - eHHA] (3.18)
and, moreover, that

1+ e2iHA

ha(w) = i Cl(w)[ei,\z + eiA(zH-z)] L =i ho(w)m&m- (3.19)
Summing up, let us write the ratio
b (o' 1 & 2HA
1) _j\Lte (3.20)

ho(w) A T enE

Similar reasons could be used to treat the case of more general boundary
conditions for equation (3.9). Here we are going to give all the necessary
computations with a very few comments. For equation (3.9), consider the
following problem

'Ulz_—,o = hg(w), 'Uzlz:(] = h](w), (3.21)
V=g = go(w), Vzlz= = g1(w). (3.22)

Using conditions (3.21) from representation (3.13), we get
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C1(w) + Ca(w) = ho(w),
i (C1(w) — C2(w)) = hi(w).
Solving the above system, we obtain

_ &
T2

1 1 1

[ho(w)+—h1(w)]; Eileh 2[ho(w)—ah1(w)]. (3.23)

C1(w) Y

Substituting formulae (3.23) into representation (3.13) we obtain the follow-
ing system:
¢HN | g=iHA b () A _ g=iHA
2 iA 2 "
iHX _ ,—iH)\ iHX | ,—iH)\
- e + e
()

go(w) = ho(w)

g1(w) = iAho(w) €

The later system could be rewritten as follows:

g8 g A [ i)\hz—h—% “irgoho — 11 3.24
= RS S (3:24)

o . h2 -1

et _ e7iHA - —2[i,\h§ - ;\1-] [goh1 — g1hao). (3.25)

From (3.24) and (3.26) it is easy to obtain the relations

eiH)\'_*_ e—-iH)\ _ l)\290h0 +91h1
eHA —e=tHA — i\ gohi — giho ’

iHX _ g—iHA (3.26)

e ; goh1 — g1ho
X 4 il A2 goho + g1h1’

similar to (3.20).
To calculate the integrals in (3.26), we use the residues theory. In (3.20),
do the change (see (3.14))

z=e"H* with A=D"'VB+uo, (3.27)

then, obviously

_ 1 dz

T %H z°
Note that variation of w within admissible interval (3.12) is corresponding

to motion of new variable z in (3.27) along the unit circle of the complex

plane |z| = 1 with z = z + iy. After the above change of variables (3.27),
(3.28) from (3.26) we deduce that

dw =2D*\d)\,  d\ (3.28)
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wy Aw) .
hi(w) dw = ixl +62”“2D AdA
Alwo)
1 dz D? 1—2zdz
e [l Do
Pt aE s w ] e 6
|zj=1 |zj=1
Similarly,

(3.30)

mhl(w) dw /‘ 1+2 dz
H 11—z 2z

ho(w) B+uw +w
0 |z|=1
In order to calculate integrals (3.29) and (3.30), we claim that the unit
circle [z| = 1 of the complex plane is passed exactly once clock otherwise.
It means the following intervals of variation of the parameters w and \:

T 2 D>?
AE [Ao, Ao + E), wE [wQ, wp + —Hz—), (3.31)
which corresponds to assumption (3.12).
Taking into account (3.12) we choose

wop=-B, X =0. (3.32)
As well-known,
1+2zdz 1—-2zdz
l—z z ./ 1+z_;-_'0' (3:33)
|z]=1 |z|=1 '

Therefore, from (3.20), (3.27), (3.28), and (3.33) we have (see also (3.31)
and (3.32))
—-B+n?D?/H?

ho(w) ,
f ) =0 (3.34)

~B+x?D?/H?

h] (w) dw _
_4 ) B 1o =" (3.35)

Similarly, it is easy to verify that (see (3.27), (3.28), and (3.26))

~B+n?D?/H?

go(w)h1 (w) — g1(w)ho(w)
(B + w)go(w)ho(w) + D?g1 (w)hy (w)

dw =0, (3.36)

—B4n2D?/H?
f (B + w)go(w)ho(w) + D%g1(w)h; (w)
(B + w)(g0(w)h1(w) — g1(w)ho(w))

do=0  (3.37)
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in the case of the boundary conditions (3.21), (3.22).
Formulae (2.34), (2.35) (as well as (2.36), (2.37)) for the general bound-
ary conditions) could be used to reconstruct the coefficients D and B.
Consider the following function

Fo() = [ ho(@)hi(€) k. ~ (338)

Relation (3.34) means that for wy = —B the zero w = A of this function
(Fp(A) = 0) corresponds to the parameter D:

212
A—w+ 22 p-E g (3.39)
H? ™

Having known D? we use an indirect function (3.35) to find the param-
eter B. In other words, original inverse problem for differential equation
has been reduced to the system of two indirect equations (3.34), (3.35) or
(3.36), (3.37). Such system does not deal with derivatives, only integrals
are involved. The relations above have been derived only for the constant
coefficients D and B. Howevey, we will use this approach for preliminary
evaluation of the problem parameters.

4. An algorithm for numerical inversion

As a first step to solve the Inverse Problem (2.2)-(2.5) numerically, we apply
the Laplace transform. As it has been shown in the previous section, replac-
ing the original dynamical problem with the Helmholtz equation is correct at
least in some cases. The point is that recovering the space-dependent coeffi-
cients, D(z) and B(z), in the frequency domain, we do not need to go back
to time domain. Therefore, we shall not deal with the delicate task of the
inverting Laplace transforms which is far nontrivial in itself. Here we used
the term frequency domain retaining a formal analogy with inverse prob-
lems for the wave equation, in which case the frequency domain concerning
Fourier images of solutions has a clear physical meaning (see [1], [3]).

For simplicity, below we assume z > 0 and w € [w;,wz]|. The coefficients
D(z) and B(z) are supposed to be smooth, D(z), B(z) € C?%(0,00), say,
and the constant for the sufficiently large values of z, D(z) = Dy, = const,
B(z) = By, = const. for z > H.

Consider the following problem:

d*v B(z)+w

P, T B 1)
d

2 =Fw), vls=g=0, (4.2)

dz z=0
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o0 o0
where v(z,w) = [ e“’0X dt and F(w) = [ e“tp;(t) dt (cf. (2.2)-(2.5)).
0 0
The inverse problem, we are interested in, consists in reconstruction of
both functions D(z) and B(z) by using the additional piece of information
v(w) =v(0,w), w; <w < ws, (4.3)

where [w;,ws] is the interval of available frequencies.
We solve the inverse problem (4.1)-(4.3) by minimizing the cost func-

tional
w2

(D, B] = /

w1

Bsup|D — D**| + v sup|B — B®*|, (4.4)
z ¥4

v0(w) ~ K[D, Bl(w)| dw +

where the operator KD, B](w) maps the current “test” values of D(z) and
B(z) into the solution to the boundary value problem (4.1), (4.2), evaluated
at the point z = 0. Here 8 and <y are some weighting regularization param-
eters, 0 < B < 1,0 <v <1, and D** and B®* are estimated values of D
and B, respectively, that could be obtained from physical measurements.

After rather technical calculations (omitted here, since, e.g., a similar
approach can be found in [11]), we obtain the following formulae for the
gradients of the cost functional with respect to D and B:

(Vp®[D, B])(z) = —2Re / (B(2) + w)F(w) x
[vo(w) — F(w)G(0,w)]G"(2,w) dw,  (4.5)
(Vs@[D, B])(z) = —2Re / D2(2)F(w) x

[vo(w) — F(w)G(0,w)]G" (z,w)dw.  (4.6)
Here G(z,w) solves the problem

de_B(z)-{—wG_O dG
dz? D%z) ~ dz

By a bar over F' and G' we mean taking the complex conjugate.

Here, we do not consider the complicated theoretical question of unique-
ness as well as of existence of the global minimum point of the cost functional
(4.4). We refer, instead, the reader to the paper [12], in which similar ques-
tions have been discussed.

The following modification of the conjugate gradient method has been
used to minimize the cost functional (4.4):

=1 Weip =0,

z=0
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Dk+1(z) = Dk(z) — akPk(z), (47)
Qp = arg gl>1](.')1 Q[Dk - O.'Pk,B], (4.8)
Py(z) = Vp®[Dy, B], (4.9)
Pk(z) = VDQ[Dk,B](z) - TkPk—-l(z); k>1, (4.10)

m = (Vp®[Dy, B],Vp®[Dy_1,B] — Vp®[Dy,B]); (4.11)

Bk+1(z) = Bk(z) = akPk(z), (4.12)
o = arg §1>i%1<I>[D,Bk — aPy], (4.13)
Py(z) = Vp®[D, By), (4.14)
Pi(z) = Vp®[D, Bi](2) — % Pe-1(2), k21, (4.15)

7« = (Vp®[D, Bi],Vp®[D, B_1] — Vp®[D,B]), (4.16)

where k is the iteration number and the step aj is chosen by the“golden
section” method.

5. Numerical experiments

Computer codes have been prepared in C++, while Mathematica 3.0 has
been used for verification and visualization. All this can be run on personal
computers. Four different numerical experiments have been performed. On
each iteration, the function §X(z,w) has been computed by the so-called
semi-analytical method described in [12].

In the first experiment, we consider two rather complicated models for
D(z), with B(z) =1 (i.e., with a constant value for B). The space interval
0 < z < H (H = 650 meters) has been divided into 13 layers with identical
thickness of 50 meters.

The regularization parameter § = 0.2 provided the best convergence
rate of the iterative process; 38 iterations of the conjugate gradient method
(3.7)-(3.11) were made in order to reconstruct the function D(z) for the
first model (Figure 1), and 41 iterations were needed for the second model
(Figure 2).

In the second series of tests, the simpler model for D(z) has been con-
sidered, but the coefficient B(z) has been chosen as shown in Figure 4. Here
the values of B(z) were assumed to be known. Now, 5 layers were consid-
ered, each one of 200 meters. In Figure 3, the result of reconstruction of
D(z) after 34 iterations is shown. The regularization parameter 3 was taken
equal to 0.5.
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132 D(z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 1. Reconstruction of the coefficient D(z) in a simplified model with B = 1.
The solid line shows D(z), while the dashed line represents the initial approximation
(left part), and the result of numerical inversion (right part)
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Figure 2. Numerical results, as in Figure 1, with an alternative choice for D(z) -

D(z)
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2.0 s A —
1.5
10— e
z z
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Figure 3. Numerical test for a case of B(z) # 1. Only the coefficient D(z) has
been reconstructed. For the values of B(z), see the next figure

B(z)

1 z
0 0.2 0.4 0.6 0.8 1.0

Figure 4. Values of the coefficient B(z), cf. Figure 3
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In the third series of experiments, the unknown coefficients D(z) and
B(z) have been reconstructed simultaneously. Here we used the following
scheme:

Step 1 Estimate the initial values of D(z) and B(z) from (3.36), (3.37), and
fix the values of the coefficient B(z).

Step 2 Try to reconstruct D(z) by the method of conjugate gradient, (3.7)-
(8.11), stopping the iterative process when the values of the cost
functional does not change appreciably (within a prescribed accu-
racy).

Step 3 Keep fixed the so-obtained value of D(z), and try to recover the
coefficient B(z) by the method of conjugate gradient, (3.12)-(3.16),
stopping the iteration proceeding as above.

Step 4 Repeat Steps 2 and 3 until the so-obtained functions D(z) and B(z)
do not change appreciably (as above).

We tried to reconstruct the coefficients D(z) and B(Z), approximating
them by piecewise constant functions, over 6 layers, whose width is about
200 meters. The regularization parameters, 8 and <, were chosen equal to
0.3 and 0.2, respectively. The final results, achieved after 98 iterations, are
shown in Figures 5 and 6.

B(z)
4.0 — —_—
sy - T —
3.0 —l___l_l
2.5 .
0 02 04 06 08 1.0 1.2 . 0 02 04 06 08 1.0 1.2

Figure 5. Simultaneous reconstruction of both coefficients, D(z) and B(z). Here
the coefficient B(z) is shown

D(z)

1.8

1.4 P

1.0 —
z

o 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 6. Results of the numerical reconstruction of the diffusion coefficient D(z),
cf. Figure 5
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B(2) D(z)

40 2.0 .
3.5 k=m====g

1.0p —
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0 02 04 06 08 1.0 12 0 02 04 06 08 10 12

Figure 7. Results of simultaneous reconstruction of the coefficients D(z) and B (2).
The initial approximations have been chosen as in Figure 5, 6. Moreover, a normally
distributed random noise in the range of 5%, has been added to the inversion data

v(0,w)
0.5F A
\.\ .
o \'-\-A/
—0.5} \"\
A
‘\
—1.0+ ’
i 1 Al
0 20 40 60 80

Figure 8. The inversion data (trace of solution of the direct problem at the point
z = 0) is represented as a dashed line. The solid line shows corrupted inversion
data, cf. Figure 7

In order to test the robustness of the algorithm, the inversion data have
been artificially corrupted by adding some amount of noise. This has been
done in the last series of numerical experiments, where the same model
considered in the third test has been treated. Here, however, a normally
distributed random noise whose average fluctuations were equal to 5% of the
data amplitudes, has been superimposed to to the inversion data (Figure 8).
The result of the simultaneous identification of two coefficients are shown in
Figure 7. The initial approximations for D(z) and B(Z) were the same as
in the previous test, see Figures 5 and 6.

6. Conclusions
In closing, the following points should be stressed:

1. At the present time, only a few results concerning the mathematical use
of the Laplace transforms for the inverse problems have been obtained.
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2. As it has been demonstrated in this paper, an optimization procedure can
be effectively used to recover a given coefficient of a parabolic equation.

3. The inversion algorithm proposed here has been successfully used also to
determine two coefficients simultaneously.

4. Issues of existence and uniqueness of the global minimum of the cost
functional (4.4) have not been addressed. Both these questions are very
complicated and a separate mathematical analysis is required.

5. Convergence of the iterative process has been investigated only numer-
ically. The regularization parameters, 8 and -y, have also been chosen
experimentally, without any rigorous mathematical background.  These
questions also call for a special theoretical analysis.

6. An a priori knowledge of the global variations of the coefficients D(z)
and B(z) (the so-called “trend components”) may essentially improve the
convergence of the inversion procedure described in this paper.
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