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An inverse problem
of electromagnetoelasticity:
simultaneous determination of elastic
and electromagnetic parameters and the
unknown source of elastic oscillations*

A.V. Avdeev, E.V. Goruynov, and V.I. Priimenko

This paper describes a numerical method for the solution to the inverse problem
for the equations of electromagnetoelasticity. We consider the case when electro-
magnetic waves are generated by elastic deformations. At the same time, we neglect
the reverse influence of the electromagnetic field on the elastic oscillations.

We focus our attention on one of the simplest versions of the system of the
equations of electromagnetoelasticity which, at the same time, preserves the ba-
sic properties of more adequate model. The solution to the inverse problem (the
unknown elastic and electromagnetic medium parameters) is sought by means of
minimization of the data misfit functionals which are the mean square deviations
of the registered fields from the fields calculated for some “test” medium models.

Results of numerical experiments are given to illustrate the efficiency of the
method.

Introduction

We consider one of the possible statements of inverse problems connected
with electrodynamics of vibrating elastic media. In order to introduce cor-
responding equations, we need some preliminary discussion.

The motion of an elastic conductive medium in the electromagnetic field
is described by two sets of equations: that of elasticity and that of electrody-
namics. Just as in magnetic hydrodynamics [1], these equations are interde-
pendent due to the presence of additional terms that account for effects re-
lated to the motion of the elastic conductive medium in the electromagnetic
field. The waves arising in the result of this interaction are usually referred to
as electromagnetoelastic. The first attempts to apply the theory of electro-
magnetoelasticity to the study of the process of wave propagation in elastic
conductive media were made by L. Knopoff [2], P. Chadwick [3], J. Dunkin
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and A.Eringen [4], V.I. Keilis-Borok and A.S.Monin [5], V.I. Kalinin [6],
and G. Paria [7]. L.Knopoff studied the influence of electromagnetic fields
on the propagation of elastic waves and arrived at the conclusion that in
the class of geophysical problems the effect of electromagnetic phenomena
on the process of elastic waves propagation is negligible, at least in the case
of not too large electromagnetic disturbances.

1. Basic equations

We assume that the model under consideration satisfies the basic hypothe-
ses of continuum mechanics: continuity, euclidity, and absoluteness of time.
The first hypothesis means that an uninterrupted continuum is considered,
the second one implies the possibility to introduce a Cartesian frame of
reference for all points, and according to the third hypothesis relativistic
effects are not taken into account. Moreover, the model is inapplicable in
the case of strong magnetic fields. We also assume that electromagnetoe-
lastic waves arise under the action of mechanical perturbations, and that
one can neglect the effect of electromagnetic waves on the process of prop-
agation of elastic oscillations and also neglect the displacement currents as
compared with conduction currents. Lastly, we will consider the fields of
small perturbations.

Now we can write down our equations. The assumption that we con-
sider the fields of small perturbations allows us to consider the linearized
statement of the problem when the displacement vector U, the vector of the
electric field intensity £, and the vector of the magnetic field intensity #£
can be represented in the form

(u,g,%)=(0,0,H0)+(’u,E,H), (1)

where (0,0, H?) is the value related to the unperturbed state of the medium
(HO is a constant vector); and the vectors u = (u;, ug, u3) (displacement of
the points of the medium from the reference configuration), E = (E, E;, E3)
(intensity of the electric field), and H = (H;, Hz, H3) (intensity of the mag-
netic field) correspond to small perturbations of the elastic and electromag-
netic fields. Besides, in view of our assumptions one can consider that the
process of elastic waves propagation is governed by the usual system of dif-
ferential equations of the theory of elasticity:

%u; OTij(u .
o = Z Oz ’ e @

where the stress tensor T;;(u) is defined in terms of the components u; of the
displacement vector and in the case of an isotropic magnetoelastlc medium
has the form .
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Here p, A, k denote the density of the medium and the Lamé coefficients
respectively, and §;; is the Kronecker symbol.

The process of electromagnetic waves propagation through an elastic
conductive medium is described in our case by the following system of equa-
tions:

) + J;j)\divu, ,7=1,2,3. (3)

tot. H =.J, %?:—rotE, div B =0, 4)

where, in virtue of our assumptions, the constitutive relations are written
as

B = u(H® + H), J:a(E-p%—‘t‘xm). (5)
Here p is the magnetic permeability, and ¢ is the conductivity of the me-
dium. Such are, in general outline, the differential equations describing the
process of interaction of electromagnetic and elastic waves in our case.

Now we proceed to the statement of the direct problem for differential
equations (2)-(5). Consider the rectangular Cartesian frame of the reference
(z1,22,23) = x. Let the plane z3 = 0 be the interface of two media of the
types “air” (3 < 0) and “conductive ground” (z3 > 0). Electromagnetic
and elastic characteristics of the ground are described by piecewise constant
functions with break planes parallel to the plane z3 = 0. Let us introduce
the notation

[fIe = fle+ = flp-»

i.e., the symbol [f]r denotes the jump of the function f on the oriented
surface I' in the direction from the inner to the outer side of I'. We assume

that elastic oscillations arise under the action of a force source concentrated
at the origin of coordinates

Tk 3(u)lyy=0 = Ok3f(t)d(21,22),  k=1,2,3, (6)

where 6(-) is the generalized Dirac delta.

As concerns the force source and initial data, we assume that the function
f(t) and the electromagnetoelastic field are absent before the moment ¢t = 0,
i.e.,

(f’uaEaH)|t<OEO' (7)

To single out the unique solution to the direct problem, one has to require
the fulfillment of the radiation condition at infinity:

lim (E,H) = 0. (8)

|x| =0

Moreover, on the planes where the coefficients of the problem have breaks
we require the fulfillment of standard consistency conditions



52 A.V. Avdeev, E.V. Goruynov, and V.I. Pritmenko

[um] = [B] = [Hi] = [Tna(w)] =0, k=1,2, m=1,23. 9)

Thus, the direct problem consists in finding the vector functions u, E, H
satisfying equations (2)-(9) providing that we know the elastic and electro-
magnetic characteristics of the medium and the constant vector H® charac-
terizing the magnetic field of the Earth.

Our main task will consist in showing the possibility of applying the op-
timizational approach to the simultaneous determination of electromagnetic
and elastic characteristics of the medium and the function f(t) from the sys-
tem (2)—(9) basing on some additional information on the components of the
vector functions u, E. We will study a special case of the formulated prob-
lem which, however, will reflect many principal points of the more general
case.

It should be noted that the problem of determination of elastic and elec-
tromagnetic characteristics of a medium with account of interaction of two
fields was considered also in the works by A. Lorenzi and V.G. Romanov (8],
M.M. Lavrent’ev (jr.) and V.I. Priimenko [9], A.Lorenzi and V.I.Priimen-
ko [10], V.G. Romanov [11], and I.Z. Merazhov and V.G. Yakhno [12]. One
should also mention the work by O.A.Klimenko [13], where a numerical al-
gorithm to determine the coefficient of the electromagnetoelastic coupling
was proposed.

As concerns the form of the sensing signal (i.e., the function f(t)), in
most of cases of real geophysical investigations it is either unknown or is
given only approximately, while its accurate estimate is necessary for prac-
tical solution to many inverse problems. Note that problems of simulta-
neous reconstruction of the structure of the medium and the form of the
sensing signal were studied theoretically by A.S.Blagoveschenskij [14] and

K. G. Reznickaya [15]. The most complete bibliography on the questions of
numerical solution can be found in the work by P.Carrion et al [16].

2. Statement of the inverse problem

Now let us state the inverse problem that will be studied in the present
paper. Let 2 denote the variable z3. Consider the functions

o= (42" - (2)"

where V(2) is the speed of longitudinal waves and c¢(2) is that of the diffusion
process of electromagnetic waves.

Definition. We will say that the functions V'(2), ¢(2), and f(t) belong to
the class M, if there exist positive constants Vi, ¢m, fm, 2m, 2!, tm such
that - X
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Vi,  z€(2),_1,21), m=1k+1
V(2) :{ " (, 1 7m) ’ (10a)
Vk+1, Z>2k+1,
Cmy z2€ (zm=1,2m), m=1,n+1,
c(z) = { (2m—1, 2m) + (10b)
Cntly, 22> Zn4i,
my t€ (tm-1,tm), =1,1+1,
i = 7 n-trfm),  m =114 (10¢)
0$ t>tm+ls

where 29 = 2 = to = 0; n,k,l € N.

Henceforth we will always assume that the functions V'(z), ¢(2), f(¢)
belong to the class M.

Consider the functions

u(z,t) = Re Fxlwz(u3)|u.=u2=0a (11a)
E(z,t) = Re F,,,,(E})| (11b)

v =r2=0?

where Fy .,(+) denotes the generalized Fourier transform in the variables
x1, ¢2; and (v, v2) are the variables dual to them. Starting from equations
(2)-(9), we can write down the system of relations for the functions u, E in
the domain z > 0 '

*u 9, 0% ,
W =V (Z)"a‘z—z, (t, Z) €ERxQ y (12&)
U0 =0, (12b)
du
5| = F, (120)
du
) —— —] =0, m=1,k+1, (12d)
" 0z =zl
JE O*E 9%u
E—C(Z)"@—ﬂHW‘, (t,Z)ERXQ, (13&)
El,.o =0, z]Ll]go E=0, (13b)
OE '
97l 0, (13c)
(Ele=zm = [%—f =0, m=Ln+l1, (13d)
where |
Q=R \{z=2,,m=1,k+1},
QO = Ri\{z=2zn,m=1,n+1},
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F(t) = (A(0) +2k(0))~1f(t), and H is the constant characterizing the mag-
netic field of the Earth.

Now we formulate the inverse problem that will be studied below.

Inverse problem. Find the functions V(2), ¢(2), f(t) € M (i.e., the set of
numbers ¢, Vin, fm), if the following additional information on the solutions
to the problems (12), (13) is known:

|- = uo(t), (14)
E|,_o = Eo(t), t € [0,+00), (15)

and the numbers pu, H are known also.

Remark. Without any loss of generality we will assume that 1 = pg, where
Ko is the magnetic permeability of vacuum.

3. An optimizational method of solution to the
inverse problem of electromagnetoelasticity

To numerically solve the inverse problem stated above an optimizational ap-
proach was employed based on minimizing the objective residual functionals
of observed data and data computed in solving “test” direct problems.

3.1. The first stage

At the first stage the initial-boundary value problem (12) describing the
propagation of elastic waves in a vertically inhomogeneous medium was con-
sidered. '

It should be noted that in spite of its simplicity the vertically inhomo-
geneous model of the medium not only allows one to study the basic char-
acteristic features of the processes of arising and propagation of geophysical
fields, but also in a number of cases describes rather well real geophysical
conditions (e.g., the presence of a layered sediment cover). At the same
time, when employing this model, one encounters main mathematical dif-
ficulties, the change-over to more realistic models (media with absorption,
with anisotropy, multi-dimensionally inhomogeneous media, etc.) being im-
possible without their resolution.

In this model a medium is modelled by a stack of homogeneous layers
lying on the homogeneous half-space. A semi-analytic method described
in [17] allows one to obtain the exact solution in this case and, what is
especially important, to organize the process of constructing the solution to
the inverse problem in the most efficient way. -
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As concerns the set of equations (12), we considered the inverse problem
of reconstructing the functions V'(z), f{t) € M by the additional information
(14).

Applying the Fourier transform in the variable ¢, we rewrite the original
statement (12), (14) in the following form:

2
— 2 o /
e u(z,w) + viu(z,w) =0, ze, (16a)
du(z,w) _
7 - = F(w), (16b)

d
[u(z,w)]=. = [_u(;;_w)] =0, m=1,k+1, (16¢)

where v? = WV ~2(2),

400

F(w) = / F(t) exp(—iwt)dt.

To single out the unique solution, we assume that the principle of the
limit absorption is satisfied, i.e.,

u(z,w) = EE’IEO u(z,w — 1€), (17)
where, in its turn,
lim u(z,w—ie) =0. (18)
2—¥+00

The additional information (14) is rewritten as follows:

u(2,w)| =9 = uo(w)- (19)

As was shown in [17], realization of the process of the search for the min-
imum point of the objective functional in the frequency domain w allows one
to substantially reduce the computational resources necessary for multiple
solution of the direct problem and, moreover, to carry out a detailed analysis
of the spectra of wave fields at each stage of calculations. In view of this
result we will look for the solution to the inverse problem as the minimum
peint of the functional

@[n(2), F@)] = [ uo(w) - Biln(2), F@)l@)f o, (20)

where (wy,wy) is the range of temporal frequencies defined by the spectral
contents F(w) of the sensing signal, and Bj[n(z), F(w)] is a nonlinear op-
erator mapping the functions n(z) = V~2(z) and F(w) into the solution to
the direct problem (16)—(18)-at z = 0. '
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One can prove the Frechét differentiability of the functional (20) with
respect to its arguments n(z) and F(w) and then obtain the following ex-
pressions for its gradients:

Vn(z)QI [n(z)a F(w)](f) =

~ 2Re / (wie) 2 F(w)[uo(w)~Bi[n(2), F(w)](@)]xC1 (€, w)dw, (21)
VF(w)(I)l[n(z)v F(w)](w) =

~ 2Re[u0(w) = Bifn(2), F(@))(w)] x T (6, )

— 2iTm[uo(w) — Ba[n(2), F(w)]()] x Ga (€, ), (22)

where G (§,w) is the solution to problem (16)—(18) for F(w) = 1, and the
bar over the symbol of the function denotes the complex conjugation.

Let there exist a point (s, F;) at which the gradients of the functional
vanish. Then from (21), (22) one can easily obtain the following expression:

91(0, w) : U()(w)
Fs(w) lglz(oy w)|2 ’ (23)
where G; (0, w) is the solution to problem (16)—(18) for F(w) = 1 and n(z) =
n,(2) taken at the point z = 0.

V.A. Cheverda and T.A. Voronina [18] proposed to use a formula anal-
ogous to (23) for computing the impulse Fj(w) on the k-th iteration when
solving the inverse problem of VSP (vertical seismic profiling). A.V. Avdeev
and E.V. Goruynov [19] described the application of this algorithm for the
solution to the inverse dynamical problem of seismics with unknown source
in the case when entire wave field is registered on the free surface z = 0.

Using the obtained expressions (21) and (23), we can apply the optimiza-
tional methods of descent of the first order for the search of the minimum
point of the functional (20), i.e., for reconstruction of the unknown func-
tions V(2) and F(t). If we succeed in reconstructing these functions, then,
having solved the direct problem (16)-(18), we can determine the spectrum
of the wave field u(z,w) in the whole of the half-space under study, i.e.,
find the right-hand side in the differential equation for the electric field in
problem (13).

3.2. The second stage

On the second stage the initial-boundary value problem (13) is considered
which after application of the Fourier transform in the variable ¢ can be
written as -2



An inverse problem of electromagnetoelasticity 57

2 :
;;EE(z,w) +7(2) E(2,w) = —iwpoHn*(2)u(z,w), 2€Q, (24a)
BE)l o, (24)

dz z=0
(B0 = [

] =0, m=1,n+1, (24c)
2=2m

where 7%(z) = —iwe™?(2).
The additional information (15) is rewritten as

E(z,0)],=0 = Eo(w)- (25)

We will look for the solution to the inverse problem (24), (25) as the
minimum point of the objective functional

w2

@alo(2)] = [IBo(w) - Balo(2))(w) P, (26)

w1

where Ba[o(z)]is a nonlinear operator mapping the function o(z) (the “test”
value of conductivity) into the solution to the direct problem (24) at z = 0.

The expression for the gradient of the objective functional (26) with
respect to conductivity is written as follows:

Vo ®2[0(2)](€) = A1(€) + A2(¢), (27)

where

w2

A1) = 2HRe [ W [Bow) - Balo(2))@)] x Tal€, ) TE w)dw,  (28)

wy

A2(§) = 2u3HIm [ W[Fow) - Balo ()] x Ta(€,) x
e
f o (1) X G, w)a(r,w)dr dw, (28b)
0

and G3(&,w) is the Green function of problem (24).

Using formulas (27), (28), we can apply the optimizational methods of
descent of the first order for the search for the minimum point of the func-
tional (26), i.e., for reconstruction of the unknown conductivity o(z).



58 A.V. Avdeev, E.V. Goruynov, and V.I. Priimenko

4. Numerical experiments

To carry out numerical experiments a software package was written on the
language Watcom C++ with enhanced graphical interface, this package per-
mitting to reconstruct the functions V'(z), o(2), and f(¢) in interactive mode
employing the optimizational approach.

To organize the interactive process of the search for the minimum points
of objective functionals, the conjugate gradient method in the following
interpretation was used:

fi+1(2) = fj(2) — o Pi(2),
a; = argmin @[f;(2) — aF;(2)),

Po(z) =V @[fo(2)],  Py(2) = V40[f;()] - BiFi(2), > 1,
B; = (Vs0Uf;(2), Vs0lfi-1(2)] - Vs2[f;(2)]),

where the step «; is chosen ‘according to the “golden section” method.

To carry out numerical experiments a rather complex model of a ver-
tically inhomogeneous medium was chosen, this model incorporating sharp
changes of the values of parameters. The reconstruction of the medium
was carried out up to the depth of 1.75km. The medium below this depth
was assumed to be homogeneous. All the medium from the surface to the
1.75 km depth was partitioned into 9 layers of equal width.

As a sensing signal the impulse with a “bell-shaped envelope” was chosen
(the dominating frequency f = 20 Hz):

ri = oo (- (57 ) o (- (572 -
exp(—i-1.75-w/f). (29)

Computations were made for temporal frequencies from 5 to 40 Hz.

To compute the entire wave field
V(z), km/s u(z,w) and the electrical field intensity
144 E(z,w), the semi-analytical method

- [ | described in [17] was used.

To calculate the impulse Fj(w) on

-
-
-
-

1.0 1 the j-th iteration, we used the con-
; dition of vanishing of the gradient of

Velocity . .
0.8 1 the functional (20) with respect to the

function F; on the current velocity
Vj(2), i.e., the expression (23). In Fig-
ure 1 the velocity model of the medium
Figure 1 (solid line) and the initial approxima-

0.6 e S R
0.0 0.5 1.0 1.5 2z, km
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Re[F(w)]
Im[F(w)]
3(;.0 ‘ 86.0 I 136.0 I 186.0 w
Figure 2
F(t)

110 t,s

Figure 3

tion (dashed line) are shown. In Figure 2 the spectrum F(w) of the input
signal impulse F(t) (thick line) and the first approximation to it (thin line)
obtained from formula (23) are shown. In Figure 3 the function F(t) (thick
line) and the first approximation to it (thin line) are shown. In the result of
35 iterations by the method of conjugate gradients we succeeded in recon-
structing with good accuracy both the velocity distribution for this medium
and the functions F(w), F(t). The results of calculations are plotted in Fig-
ures 4-6 (dashed line in Figure 4, thin lines in Figures 5, 6; exact functions
are plotted in thick lines).
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V(z),km/s Here and below, pointing out the
I R m— number of iterations made, we mean
ﬂ a practically complete stop of the iter-
ation process on the considered stage.
The quality of the obtained approxima-
tions was estimated by the closeness of
0.8 Velocity the values of the corresponding func-
tional to zero.
0.6 — — On the next stage, using the recon-

0.0 05 10 L5z km  structed functions V(z) and F(t), we

Figure 4 calculated the spectrum of the wave
field u(z,w) in the whole of the half-
space under study, i.e., the right-hand side in problem (24) was determined.

In Figure 7 the plot of the “true” function o(z) (solid line, see also the
same solid line in Figure 8) and the initial approximation to it (dashed
line) are shown. The final approximation computed by 68 iterations of the
conjugate gradient method is plotted in Figure 8 (dashed line). As one
could expect (see [20]), the deeper layers were reconstructed much worse
than those lying close to the day surface.

It is conceived that one of the ways out of such a situation is the search for
good initial approximations (i. e., the ones containing low-frequency compo-
nents of the parameters of the medium) with the aid of an unequally scaled
basis as was done in [18]. Another possible approach is the consideration
of combined inverse problems [21, 22]. In this case the solution is sought
as the minimum point of a comprehensive objective functional which takes
into account a priori connections between the parameters of a medium under
investigation.

1.2 1

1.0 1

Re[F(w)]

Im[F(w)]

30.0 80.0 130.0 180.0 w
Figure 5 -
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F(t)

| —— A

1.0 t,s

Figure 6
o,0Om™'km™! . ,0m™km™!
0.4 1 ,,»|— 0.4 o [—
Conductivity Conductivity
0.2 — " — " 0.2 —_— — e
0.0 0.5 1.0 1.5 z,km 0.0 0.5 1.0 1.5 z,km
Figure 7 Figure 8

5. Conclusion

In the last years the optimizational approach, i.e., the search for the min-
imum point of the objective residual functional of observed and computed
data, became one of the most popular methods of numerical solution to var-
lous statements of inverse problems. The popularity of this approach can be
attributed to its universal character, the ability to take into account all the
a priori information on the solution on each stage of computations, and to
the development of computers making it possible to solve direct probiems
multiply in acceptable time.

The aim of this work was to demonstrate the possibility to effectively
apply the optimizational a.pproa.ch to solving inverse problems of electro-
magnetoelasticity.
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A rather simple (vertically inhomogeneous) model of a medium was con-
sidered. However the investigation of such models provides us with a possi-
bility to apply the developed techniques to the numerical solution to more
complex formulations of inverse problems (simultaneous determination of
the speeds of longitudinal and transversal waves and conductivity, etc.).
The authors consider the solution to these problems as further stages of
their research.

To conclude with, we would like to emphasize once again that the algo-
rithms for solution to inverse problems of electromagnetoelasticity that were
proposed till now were not realized as working software packages and were
not tested in numerical experiments.

References

[1] Shercliff J.A. A Textbook of Magnetohydrodynamics. — Pergamon Press, 1965.

[2] Knopoff L. The interaction between elastic wave motion and a magnetic field
in electrical conductors // J. Geophys. Res. - 1995. — Vol. 60. — P. 441-456.

[3] Chadwick P. Elastic wave propagatior. in magnetic field // Proc. of the IXth
Intern. Congr. Appl. Mech. — Brussels, 1956. — P. 143-153.

[4] Dunkin J.W., Eringen A.C. On the propagation of waves in an electromagnetic
elastic solid // Intern. J. Eng. Sci. - 1963. — Vol. 1. - P. 461-495.

[6] Keilis-Borok V.I., Monin A.S. Magnetoelastic waves and the boundary of the
Earth crust. - Izv. AN SSSR. Ser. Geophysics. — 1959. — P. 1529-1541 (in Rus-
sian).

[6] Kalinin V.I. The effect of a constant magnetic field on the propagation of
oscillations in a conductive medium / Diploma work. — Moscow Acoustical
Institute, 1954 (in Russian).

[7] Paria G. Magneto-elasticity and magneto-thermoelasticity // Adv. Appl.
Mech. — 1967. — Vol. 10. - P. 73-112.

(8] Lorenzi A., Romanov V.G. Identification of the electromagnetic coefficient
connected with deformation currents // Inverse Problems. — 1993. — Vol. 9. -

P. 301-319.

[9] Lavrent’ev M.M. (jr.), Priimenko V.I. Simultaneous determination of elastic
and electromagnetic medium parameters / Ed. by M.M. Lavrent’ev // Com-
puterized Tomography. Proc. of the Fourth Intern. Symp. Novosibirsk, August
10-14, 1993. - Uirecht: VSP, 1995. — P. 302-308.

[10] Lorenzi A., Priimenko V.I. Identification problems related to electro-magneto-
elastic interactions. — Novosibirsk, 1996. — (Preprint / SB RAS. Sobolev In-
stitute of Mathematics; 28); J. of Inverse and Ill-Posed Problems. — 1996. —
Vol. 4, Ne 2. — P. 115-143. -



An inverse problem of electromagnetoelasticity 63

(11] Romanov V.G. On an inverse problem for a coupled system of equations of elec-

trodynamics and elasticity // J. of Inverse and Ill-Posed Problems. — 1995. -
Vol. 3, \e 4. — P. 321-332.

[12] Merazhov 1.Z., Yakhno V.G. Direct and inverse problems for systems of elect-
romagneto-elasticity equations / Ed. by M.M. Lavrent’ev // Computerized

Tomography. Proc. of the Fourth Intern. Symp., Novosibirsk, August 10-14,
1993. — Utrecht: VSP, 1995. — P. 332-335.

[13] Klimenko O.A. An algorithm for solving a problem in elasto-electrodynamics
/ Ed. by M.M. Lavrent’ev // Computerized Tomography, Proc. of the Fourth
Intern. Symp., Novosibirsk, August 10-14, 1993. - Utrecht: VSP, 1995. —
P. 283-288. '

[14] Blagoveschenskij A.S. Inverse problems for the wave equation with unknown
source // Problems of Mathematical Physics. — Leningrad: Nauka, 1970. -
P. 27-39 (in Russian).

[15] Lavrent’ev M.M., Reznickaya K.G., Yakhno V.G. One-Dimensional Inverse
Problems of Mathematical Physics. — Novosibirsk: Nauka, 1982 (in Russian).

[16] Carrion: P.M., Sacramento S. dos S., Pestana R. da C. Source wavelet and

its angular spectrum from plane-wave seismograms // Geophysics. — 1990. —
Vol. 55, Ne 8. — P. 1026-1034.

[17] Fat’yanov A.G., Mikhajlenko B.G. A method of computation of nonstationary
wave fields in inelastic layered inhomogeneous media // DAN SSSR. — 1988. —
Vol. 301, Ne 4. — P. 834-839 (in Russian).

[18] Cheverda V.A., Voronina T.A. An optimizational approach to process VSP
data // J. of Inverse and Ill-Posed Problems. - Vol. 2, Ne 3. — P. 42-54.

[19] Avdeev A.V., Goruynov E.V. The inverse problem of acoustics: determina-
tion of source wavelet and velocity // J. of Inverse and Ill-Posed Problems
(to appear).

[20] Mastryukov A.F. Solving inverse problem of electrical survey by the optimiza-
tion method // Geology and Geophysics. — 1992. - Ne 1. — P. 138-143.

[21] Alekseev A.S. On combined inverse problems of geophysics for multidisci-
plinary earthquake prediction studies // Bulletin of the Novosibirsk Computer
Center. Ser. Mathematical Modeling in Geophysics. — 1994. - Vol. 1. — P. 1-24.

[22] Avdeev A.V., Goruynov E.V., Skazka V.V. The combined inverse problem
of acoustics and geoelectrics: numerical approach // Bulletin of the Novosi-

birsk Computer Center. Ser. Mathematical Modeling in Geophysics. — 1994. —
Vol. 1. - P. 25-38.



