
Bull. Nov. Comp. Center, Comp. Science, 45 (2021), 29-48

@ 2021 NCC Publisher

Functional programming for parallel computing

L.V. Gorodnyaya

Abstract .The paper is devoted to modern trends in the application of functional

programming to the problems of organizing parallel computations. Functional

programming is considered as a meta-paradigm for solving the problems of developing

multi-threaded programs for multiprocessor complexes and distributed systems, as well as

for solving the problems associated with rapid IT development. The semantic and

pragmatic principles of functional programming and consequences of these principles are

described. The paradigm analysis of programming languages and systems is used, which

allows assessing their similarities and differences. Taking into account these features is

necessary when predicting the course of application processes, as well as when planning

the study and organization of program development. There are reasons to believe that

functional programming is capable of improving program performance through its

adaptability to modeling and prototyping. A variety of features and characteristics inherent

in the development and debugging of long-lived parallel computing programs is shown.

The author emphasizes the prospects of functional programming as a universal technique

for solving complex problems burdened with difficult to verify and poorly compatible

requirements. A brief outline of the requirements for a multiparadigm parallel

programming language is given.

Keywords: Functional programming, parallel computing, programming languages,

programming system, programming paradigm, multi-paradigm

Introduction

 A large number of parallel programming languages and systems have already been

created to solve the numerous problems of developing multithreaded programs for

multiprocessor complexes and distributed systems. Interestingly, the ideas of functional

programming and their practical application to the analysis of the problems and methods

of organizing parallel computations are becoming more popular. Recent studies in

functional programming have focused on finding more efficient solutions to parallel

programming problems [1].

The results of the analysis of the modern trends in functional programming allow us to

consider it as a methodology for solving the problems of organizing parallel computations.

The paradigm analysis of languages and programming systems is involved. This allows us

to describe the semantic and pragmatic principles of functional programming and their

consequences. Taking into account the paradigmatic features is useful when predicting

program application processes and when planning their study and development.

Functional programming helps us to improve the performance of programs by

preprocessing their prototypes Functional programming is especially promising as a

universal method for solving complex problems burdened with difficult-to-verify and

poorly compatible requirements. It makes it possible to consider many features and

characteristics inherent in the development and debugging of parallel computing

programs.

30 L.V. Gorodnyaya

The presentation begins with a brief description of a number of parallel computing

paradigms supported in well-known programming languages. Then, the author dwells on

the basic principles of functional programming and their concretization, which arise when

functional programming methods are transferred to parallel computations. Also, we have

considered several parallel computing paradigms supported in a notable number of

programming languages. In conclusion, the requirements for a modern parallel

programming language are described.

1. Paradigmatic characteristic

It should be noted that many parallel programming languages have

already been created. A possible challenge for the developers of parallel

computing programs is the hidden multiplicity of paradigms [2-4]. The

developers have to consider simultaneously a variety of aspects at different angles

in different paradigms. Usually, a separate paradigm is convenient for solving

isolated subtasks if a full set of subtasks cannot be solved in the common

environment. Obviously, the tasks of scaling computations, synchronizing

interactions in multi-threaded programs, representing natural asynchronous

parallelism and achieving high program performance are different. Moreover, it is

a separate task to learn the phenomena of parallelism in order to give specialists

an intuitive idea of the methods for solving the problems depending on unusual

phenomena. Recent research in functional programming is aimed, in fact, at

finding more stable solutions to parallel programming problems, allowing their

correctness to be checked on models and debugging on prototypes.

 Functional programming for parallel compuing 31

1.1. Paradigms of parallel programming languages

To solve the main of these tasks in different paradigms, many languages and

programming systems supporting parallel computing have been created (see

Table 1).

 Table 1.
Support for parallel computing problems and paradigms in different programming

languages

problems paradigms programming languages and

tools

Scaling Multiprocessor
programming

VHDL, XC, SIGMA, bash,

Occam, mpC, EL’-76, Limbo,

Kotlin, MPI

Thread Synchronization Sync programming APL, VAL, Sisal, Alef, E, X10,

LuNA, Charm, Go, Java, Scala,

Rust, Pifagor, OpenMP

Problems

Statement
Asynchronous
programming

BARS, Haskell, Erlang,

JavaScript, Python, C#

Programs Performance High performance

programming

Setl, HPF, G, Sparkel, mpC,

Sanscript, D, Rest, F#

Concurrency

Familiarization
Instructional
programming

Logo, Robik, Karel, OZ,

A++, Sinkhro, Lsl

Thus, for each of the hard-to-solve problems of parallel computing, a separate

paradigm convenient for its solution has been formed and a number of programming

languages to support it have been created. The difference between paradigms is in

prioritizing the means and methods used when solving a separate problem; different

problems require a different ordering. Typically, only one paradigm is used at each stage

of program development. Accordingly, there is only one main paradigm in every

programming language. The requirements for solving rather complex problems of parallel

computing are associated with certain difficulties. This implies the need to use different

paradigms at certain stages of their creation and phases of their lifecycle, especially for

long-lived programs. During the transition to programming technology, it is important to

obtain practical results, which requires the support of a full range of paradigms used at the

different stages of program development its lifecycle is formed. As a rule, to facilitate the

simultaneous use of different paradigms in solving the same problem, multilingual

systems are created that enable us to move from one paradigm to another without the need

to learn different interfaces and systems. It is hence expedient to create a multi-paradigm

parallel computing language which will simultaneously support all the main paradigms of

parallelism. Importantly, at each stage of program development only one paradigm should

be used, with its relatively small set of tools and methods within one way of thinking. The

use of the BARS and Haskell languages shows that in these cases it is convenient to

decompose the programming language definition into separate sublanguages supporting

32 L.V. Gorodnyaya

the main paradigms or monads aimed at specific models for developing and presenting

programs. Then each paradigm has its own content of the categories of semantic systems

and its own order of their role in the programming process [5, 6].

Multiprocessor programming tools usually rely on data structures and characteristics of

the available architecture, including the underlying multiprocessor complex and

relationships between its elements. Operating the complex allows one to initiate the

functioning of separate processors, as well as their blocking, resumption and cancellation.

During these processes, data exchange is possible via certain protocols, the final results of

which can be considered as the goal of the program. Decision making begins with

defining the space of possible multiprocessor complexes, which can be considered as a

special kind of memory with its own discipline of functioning and interaction of elements.

The next step is the selection of suitable configurations and appropriate structuring of the

iteration space of the processes intended to be executed on separate processors. Then the

resulting process control scheme is filled with actual actions performing calculations.

Generally, routines without recursion are preferable since they are free from the

complexities of computation control and hard-to-predict side effects of shared memory. A

multiprocessor program being built allows one to reconfigure a multiprocessor complex 1

dynamically.

In synchronous multi-threaded programming, clear computation control schemes are

determined and regular sections and typical program models that are convenient for

parallelization are identified. Usually, memory fragments free from side effects are found

and non-imperative control of the execution time of program threads is allowed, which

takes into account the hierarchy of the program control scheme and some timing relations.

Decision-making begins with the choice of standard control schemes using the concept of

"iteration space," which can be structured depending on the data distribution and methods

of storage, which can affect the efficiency and discipline of multi-level memory

processing. Iteration control can use arbitrary predicates. The control scheme over the

stream iteration space is filled with the fragments relatively easy to debug, possibly

debugged in advance or programmed independently. To return the results of the program,

special means are allocated for generating the results of calculations obtained on single-

level threads of a multi-threaded program. Thus, a multi-threaded program is obtained

with a dynamically variable space of threads over local memory with the possibility of

episodic synchronization of their individual fragments2.

Asynchronous programming is aimed at representing independent program elements

reflecting the nature of the problem being solved, which can be the basis of maximum

parallelization, provided that special schemes for computing organization are identified,

taking into account the characteristics of the available equipment. Decision-making begins

with the choice of action control schemes and with the definition of conditions to start

them. Actions can use one or another discipline of processing different types of memory.

An implicit and programmable variety of memory access disciplines are supported,

1 https://mooc.tsu.ru/mooc-openedu/mpi/ "Parallel

programming using OpenMP and MPI"

2 https://habr.com/ru/post/121925/ "MPI Basics"

https://mooc.tsu.ru/mooc-openedu/mpi/

 Functional programming for parallel compuing 33

including a heterogeneous memory hierarchy and computation schemes designed to

include the fragments that are procedures or library units. The result is a program which is

a synchronizing network diagram which asynchronously controls the execution of actions

provided they are ready for execution. High-performance programming requires a

transition from a single program run to the consideration of the prospects for its repeated

use and optimization. This makes it possible to take advantage of the underused

capacities of a multiprocessor complex and to execute separate program fragments for the

upcoming calculations taking into account the data which may be required in the

forthcoming runs of the program. Decision-making begins with computation schemes and

models, possibly over shared memory, but with local memory priority.

For the problems of program performance improvement, debugging control should take

into account the need to re-execute a program during testing and take advantage of the

inheritance of results between program runs and of the comparison of the measured

characteristics of the program versions performance. Finally, we have several improved

versions of the program, and the one chosen may be better at taking into account the

conditions of application, including the configuration of a multiprocessor complex and the

requirements for program quality.

Educational programming is intended to fill the gaps in recommendations for

imperative solutions to any problems. Such gap points make it difficult to study

programming methods in general, even more so in parallel computing. The development

of game programs (game writing), such as robot visualization, can encourage learning all

paradigms of parallel computing. This is sufficient reason for multi-paradigm natureof

educational programming languagers, which usually support the means of parallel

computations representation [7-9].

Long-lived programming languages, as well as new programming languages, are

usually multi-paradigm. Successful parallel programming practice requires support for a

full range of parallel computing paradigms. Their development, replenishment and

application should be considered as necessary, ensuring the transition to the next

paradigm without changing the programming languages and system environment.

2. Principles of functional programming

While the number of programming languages is now growing rapidly, the paradigms

are not many. The basic ideas of functional programming were proposed by John

McCarthy 3 in his early works on artificial intelligence [10]. Functional programming is

one of the first paradigms aimed not only at the efficient implementation of the

algorithms developed, but also at solution of new information processing problems with a

research component [10-19]. This situation allows for a fairly complete comparison and

selection of characteristics for a clear differentiation of paradigms and understanding the

3 In December 1968, John McCarthy read a series of lectures on the Lisp

language at the Computing Center of the Siberian Branch of the Academy of Sciences in

the office of A.P. Ershov.

34 L.V. Gorodnyaya

reasons for their diversity. When considering the results of the task analysis, means and

methods of parallel computations organization, one can draw attention to the obvious

variety of problem settings and corresponding priorities in decision-making at the

different stages of program development and debugging. A methodology of programming

language comparison presented in [20-24] is based on an informal definition of the term

"programming paradigm" given in [25], stating that paradigm comparison requires

highlighting the distinctive testable features. When making decisions at the different

stages of program development and debugging, we have assumed ordering priorities to be

these features. This should be taken into account when predicting the complexity of the

processes of program application, starting from planning, investigation and organization

of the development of long-lived programs [26-29].

A general description of the functional programming paradigm often begins with the

assertion that its characteristic feature is that the same formulas in the same context have

the same meaning. This leads to the elimination of assignments, global variables, side

effects, and control transfers.

First of all, it should be noted that the concept of "context" is somewhat ambiguous. It

is both a program fragment, sometimes called the scope of existence, or visibility, and a

context table of the correspondence between the symbols used in this fragment and their

meanings. A programming language may have two or more context tables for one

fragment - static and dynamic - and, in addition, global and local contexts. Programming

systems for one language can solve the problem of the order of iterations in different ways

through the context tables to determine the value of the formula. Moreover, this order can

be changed by the options from the program or task for its compilation. If a line segment

between two adjacent assignments is considered as context, then this characteristic does

not distinguish the functional programming paradigm from other paradigms. Meanwhile,

in the process of compilation, precisely this kind of program decomposition is practiced to

solve memory allocation problems. When compared to functional programming, each

such interval can be thought of as a separate context where each value is associated with

its own local variable. In general, the above formula will be valid in any paradigm

allowing programs to be represented as single assignment sections.

As for global variables, side effects and control transfers, McCarthy also noted that the

outermost local variable plays the role of a global one [10]. The purely functional

programming language Haskell introduced the concept of monads to exploit side effects.

In many functional programming languages, the lack of control transfers is compensated

by exception, extension and continuation mechanisms.

Functional programming usually implies the support of a number of semantic and

pragmatic principles that contribute to the creation of functional models at the stage of

computer experiments useful in solving new problems. When developing a program, the

programmer follows semantic principles. Pragmatic principles are provided by the

programming system, freeing the programmer from insignificant solutions independent of

the nature of the problem. Most of these principles were laid down by J. McCarthy in the

first implementations of the Lisp language [10].

2.1. Semantic principles

Functional programming supports semantic principles for algorithm representation,

such as universality, self-applicability, and parameter independence.

 Functional programming for parallel compuing 35

Universality. The concepts of "function" and "value" are represented by the same

symbols as any data for computer processing. Each function applied to any given data

produces a result or a diagnostic message in finite time. A historically related concept is

the stored program principle.

This principle allows one to build representations of functions from their parts and

calculate the parts as data arrive and are processed. In principle, there are no restrictions

on the manipulations with language means, functions from the definition of the language

semantics, constructions for the implementation of the language in a programming

system, or program expressions.

Everything needed for the implementation of a programming language can be helpful

when the language is used. This determines the openness of functional programming

systems. Strictly speaking, programming, unlike mathematics, does not deal with any

values or functions but with data that can represent values or functions. This was noted

long ago by S.S. Lavrov [14, 20].

There are no obstacles to processing function representations in the same way as data

are processed. Therefore, representations of functions can be built from their parts –

symbols. They can even be formed during the computation process and when processing

the information about them. Any information necessary for computer processing can be

represented using symbols [10].

When a program is compiled, memory is allocated for functions, variables, and

constants. The efficiency of such a distribution depends on the due consideration of the

specifics of the basic means for machine code processing, usually formulated as a data

type convenient for computer processing but somewhat contradictory to the principle of

universality.

Аn idea similar to that of a stored program was first formulated in the description of

Charles Babbage's analytical engine. A hundred years later, it was implemented in the

computers of Konrad Zuse and in the definition of the Turing machine, and later

proclaimed in John von Neumann’s architecture [30]. As a result, a code or symbolic

representation of information is possible, in which there is no fundamental difference in

the nature of data for depicting values and functions. Consequently, there are no obstacles

to processing function representations by the same means as data are processed.

Self-applicability. Function representations can use themselves directly or indirectly,

which allows for a construction of clear concise recursive symbolic forms. Вoth values

and functions can have a recursive representation.

Examples of self-applicability are given by many mathematical functions, especially

recursive ones, such as factorial, Fibonacci numbers, series summation and many other

functions defined by mathematical induction. In programming technology, the methods of

step-by-step, or continuous, development of programs, as well as extreme programming,

have some similarities. These methods reduce the organization of the programming

process to a series of steps, each of which provides either a workable part of a program or

a tool for performing the next development steps. Thanks to this principle, it is possible to

apply in practice the method of step-by-step program development, in which a minimal

kernel is selected and implemented, and then the steps of its expansion are performed. For

the first implementations of the Lisp language, the interpreter and compiler were

described in Lisp itself, and the descriptions took less than two pages [10]. The same is

true for the development of the C language [31].

Equal rights of parameters. The order and method of evaluating the parameters is

irrelevant. The function parameters are independent of each other.

36 L.V. Gorodnyaya

One can note that when a function is called, its parameters are calculated at the same

level of hierarchy and in the same context. Some of the parameters are calculated before a

function call, while others can be calculated later but in the same context. Therefore, a

representation of any highlighted formula from a function definition can be turned into a

parameter of this function. This means that parts of the function representation can be

calculated depending on the intermediate results, and functions can be constructed taking

into account the conditions of their use, in particular, the location of their definitions and

calls at different levels of the program representation hierarchy. Any symbolic form in a

function definition can be extracted from it as a parameter and, conversely, substituted

into it.

Data reuse is ensured by naming. Parameters have names, often called variables,

although in functional programming they do not change values within the same context.

Purely at the level of concepts, a variable is a named part of memory intended for multiple

access to mutable data while a constant insures access to immutable data. In functional

programming, changing the relationship between a name and a value is possible only by

moving to another context, which is equivalent to changing the name. Functional variables

are admissible and equal to regular constant functions and can be argument values or

generated as the results of other functions. When implementing a method for the

execution of a certain algorithm, the process of calculation on given arguments is often

viewed as the execution of an immutable program, a predefined constant construction. In

practice, in addition to such constant functions, variable functions are quite admissible. A

function is a correspondence between arguments and results, both of which as well as the

correspondence itself can be the values of variables. The lack of skills in working with

functional variables only means that it is necessary to study this option since its potential

can exceed expectations now that programming is becoming more component-oriented.

2.2. Pragmatic principles

Functional programming supports pragmatic principles for computations, such as

flexibility of constraints, immutability of data, and strictness of the result. Pragmatic

principles are supported by a programming system or, more precisely, by its developers.

Flexibility of constraints. On-line analysis of memory allocation and cleaning is

supported to prevent unreasonable memory downtime.

Sometimes, there is enough memory for the entire task but not enough for some data

blocks which may be of little importance for the task solution. In functional programming

systems, such problems are solved by the principle of the flexibility of total constraints on

spatial characteristics. Situations arise when some of these memory parts are exhausted,

while others have underutilized space. To solve this problem, a special function is used – a

"garbage collector" – which tries to automate memory reallocation or cleaning when some

memory area is insufficient. This means that data may be of any size. New efficient

implementations of garbage collection take into account the advantages of bottom-up

processes on large amounts of memory. Many up-to-date programming systems include

these mechanisms regardless of the paradigm.

Immutability of data. The representation of each result of a function is placed in a new

part of free memory without distorting the arguments of this function, which can be useful

for other functions.

 Functional programming for parallel compuing 37

Access to evaluated data is possible any time, which greatly simplifies program

debugging and ensures the reversibility м of any actions. This ensures that all

intermediate results are saved, can be analyzed and reused at any time. If the definition of

a function is a static construct, the process can be viewed as a composition of functions

unfolded dynamically according to this construct. A separate aspect is associated with

transition from integers to real numbers, possibly requiring a change in the representation

accuracy during calculations. Logically, they remain constants, but the programming

system treats them as variables.

Strictness of the result. Any number of function results can be represented in a single

symbolic form, from which the desired result can be selected if necessary.

This practice is convenient for describing the means of program interpretation. The

boundary between arguments and results placed on the stack is always clear: the result of

the function evaluated last is at the top of the stack. This principle is often interpreted as a

requirement for a single value of a mathematical function, which leads to doubts about the

validity of functions of integer division, root extraction, inverse trigonometric functions

and many other categories of mathematical functions. This situation was considered by

Fichtengolts in the first edition of a textbook on mathematical analysis.

Long before the advent of computers, ways to define and implement functions were

quite varied. Approaches to storing the results of functions also differed; a common way

to store data were mathematical tables or special devices, such as a slide rule. Methods for

solving the same problems also vary. For example, there are more than twenty sorting

methods giving the same results. The choice of a particular method depends on the

conditions of program application, characteristics of the sorted data and efficiency criteria.

The choice of a technique for implementing a function usually depends on how the

definition of the rule and on the methods for obtaining the result according to the rule

given.

They often use numbers and codes to ensure reliability and safety and to reduce the

human factor. Nevertheless, many modern information services have solutions that

essentially decrease their reliability and security. Password tools often provide a button to

display the text. The dialogue with a "personal account" often contains a simple procedure

for changing the password. User identification on the websites dealing with money and

documents is done by the IP address, which ignores the fact that a computer can have

many users.

2.3. Consequences

Presenting an algorithm in the form of a functional program result has important

practical consequences. Constructiveness, self-applicability and factorization follow from

semantic principles. Pragmatic principles lead to the hidden grammar of continuous

processes, reversibility of actions and unary functions. These consequences are the basis

for the intuitive construction of functional models and make it possible to carry out and

understand a direct computer experiment. In addition, a number of semantic and

pragmatic principles support the development of the functional models of the programs

for organizing parallel computations, which can be reduced to the complexes of non-

deterministic threads.

Constructiveness is a consequence of the universality principle, which allows program

representations to be processed in the same way as any data.

38 L.V. Gorodnyaya

Data representing a value or a analogy or similarity to the processed data or prototypes.

Mixed and partial computations are possible, as well as optimizing transformations,

macro-generation and many other tools necessary for the development for selecting a

fragment to be substituted as a data part, as well as a parameter or a function definition.

This provides support for meta-compilation, including syntax-driven methods of program

generation and analysis. Also, uniform representations of programs are supported,

externally preserving the analogy or similarity to the processed data or prototypes. Mixed

and partial computations are possible, as well as optimizing transformations, macro-

generation and many other tools necessary for the development of operating systems and

programming systems.

Provability is based on the connection of the self-determination principle with the

methods of recursion, mathematical induction and logic.

It becomes possible to deduce logically separate properties of programs and, owing to

this, to detect some subtle errors. If the representation of an object is similar to some

inference logic, its properties can be inferred using this logic. Thanks to factorization, it is

possible to construct projections similar to a scheme admitting a proof. Most of the

software verification systems are created within the framework of functional

programming. This increases the reliability and security of programs, although it does not

allow solving the correctness problem in full. Difficulties are associated with the

insufficiency of classical logic in relation to the non-classical logic of programming.

Factorization directly follows from the principle of parameter independence taking

into account the principle of universality.

Parts of data and any subformulas are the equivalents of the function parameters. For

any data element with one or several selected fragments, it is possible to represent a

function the parameters of which will be the fragments selected. Their substitution

produces a data element equivalent to the original one, which allows using the concept of

selection or partial computation.

Any marked set of program fragments can be removed from the data representing the

program and associated with a certain name in order to allow the original representation to

be restored. You can note that the parameters of a function call are calculated at the same

level of hierarchy, in the general context, according to the principle of data immutability.

Therefore, the order of evaluating the parameters can be arbitrary. Owing to this feature,

we can decompose a program into autonomously developed modules, accumulate

correctness, and represent parallel threads, lazy or early computations. We can say that a

program can be represented in a factorized form according to various parameters,

depending on the purpose of its transformation and further development. Due to the

reversibility of actions, i.e., data immutability, the process of program debugging acquires

convergence and allows one to bring the program to the limit of compliance with the

problem statement.

The consequences of supporting the pragmatic principles in functional programming

systems form intuitive images, such as process continuity (infinity), reversibility of

actions, and unary functions, which provide the basis for functional models construction.

In addition, a complex of semantic and pragmatic principles provides support for the

development of the functional models of programs for organizing parallel computations,

which can be reduced to complexes of non-deterministic threads.

Process continuity intuitively follows from the pragmatic support of the principle of

the flexibility of constraints.

 Functional programming for parallel compuing 39

An execution of any function can be followed by an execution of another function. The

STOP command is not a function as it has no arguments or results; it is just a signal to the

processor to stop working. When executing any function, one can simultaneously execute

other functions and before executing any function, other functions can be executed. This

allows a significant part of work to be done on the basis of the unlimited memory model

without much concern about its boundaries and the variety of characteristics of the speed

of access to different data structures. Many functional programming languages support the

imitation of work with infinite data structures.

Reversibility of actions is based on the illusion of data immutability, the mechanisms of

which are hidden in the programming system.

After the execution of any function, you can return to the point of its call. Any function

can be repeated with the same parameters; otherwise, it can be interpreted in a different

way, or any other function can be executed instead. Their application requires almost no

attention on the part of the programmer and debugger. The necessary data changes, such

as memory reuse, are easy to automate, which allows supporting the mechanism for

memorizing functions on the previously processed arguments. The programmer does not

have to interfere with the implementation of such facilities as long as there are no

performance problems.

Unary function is based on the principle of a rigorous result and similarly allows a

function of any number of arguments to be converted to a unary function with a single

argument.

For any function with an arbitrary number of parameters, you can construct its

equivalent with one parameter. Since results are often arguments to enclosing functions,

the accompanying principle of unary functions logically arises. In addition, the ability to

proceed from a list of parameters or results to a single argument or a strict result allows

replacing the usual scheme of operations (mapping two operands to one result) with

mapping a set of operands to a set of results.

This set of consequences of the principles of functional programming allows refining

and improving the programmed solutions when debugging the algorithms for solving new

problems. It also allows for the multiple definitions of functions when the properties of

the problem being solved are repeated with the same parameters; otherwise, it can be

interpreted in a different way, or any other function can be executed instead. Their

application requires almost no attention on the part of the programmer and debugger. The

necessary data changes, such as memory reuse, are easy to automate, which allows

supporting the mechanism for memorizing programs.

 2.4. Applications to parallel computing

Parallelism arises from a general complex of semantic and pragmatic principles, which

allows, if necessary, considering any amount of represented data and reorganizing the

space of threads. These principles make functional programming convenient for working

with programs aimed at parallel processes organization. The first is the principle of the

equal rights of parameters, which guarantees the same context when the parameters of a

function of the same level are evaluated. It becomes possible to represent independent

threads and combine them into multithreaded or multiprocessor programs and into a

common problem-oriented complex. In addition, parallelism uses the principles of a strict

result and universality, which allows us, if necessary, to consider any number of

40 L.V. Gorodnyaya

represented threads and to reorganize the thread space. The pure functional programming

principles are not adequate to model the interacting and imperatively synchronized

processes. Parallelism clarifies these principles, which facilitates the development of

parallel computing programs.

Repression of small probabilities is aimed at preventing an excessive number of

threads corresponding to highly unlikely situations, which somewhat narrows the

principle of universality.

The principle of universality has two aspects – equal rights of programs and data and

completeness of function definitions. When solving the problems of parallel computing,

universality preserves the equality of programs and data, which is traditionally in demand

in the tasks of operating systems. The completeness of functions, convenient for building

programs from the modules that have already been debugged, can create problems

because the number of threads in multiprocessor programs associated with rare diagnostic

situations increases. Any fragment which is unlikely or impossible to calculate can be

removed from the function representation and converted into a delayed action. Branches

for practically irrelevant situations can be deleted or moved to the debug version.

Sometimes, this problem can be overcome by choosing the expressions that do not require

branching, but more often it is done by checking data types. The amount of necessary

diagnostics can be partially reduced by means of the static analysis of data types.

Load balancing reduces the real runtime of a program, which can be viewed as a

transfer of the principle of flexibility to time constraints.

Lazy, or early, computations provide the ability to redistribute the load quickly. A

complex function definition can sometimes be reduced to two functions, the first of which

performs a part of the definition, postponing the execution of the rest, and the second

resumes the execution of the delayed analogy or similarity to the processed data or

prototypes. Mixed and partial computations are possible, as well as optimizing

transformations, macro-generation and many other tools necessary for the development

leading to a dangerous stack growth. It should be noted here that many functional

programming systems offer a number of practical solutions. These include delayed

actions, memoization, ascending recursion, dynamic programming techniques, and

optimization of recursions by reducing to loops, which in many cases makes it possible to

eliminate an excessive stack swelling. Operations with a stack within the framework of

the principle of flexibility of constraints can be supported more efficiently than in most

programming languages and systems. In addition, the factorization of programs into

schemes and fragments allows components separation according to the level of debugging

complexity and inheriting the correctness of the modules previously debugged. The

functions used do not require a preliminary evaluation of parameters, like macro

technology. Similarly, in the mpC language, the amount of computation is redistributed

when an unbalanced load of processors analogy or similarity to the processed data or

prototypes. Mixed and partial computations are possible, as well as optimizing

transformations, macro-generation and many other tools necessary for the development

parallelization.

Any finite set can act as an iteration space for a function defined on it. If there is a set

of data such that the calculation of a function on one of its elements does not require its

results for other data, then it is convenient to use this set as an iteration space for the

simultaneous execution of this function on all of its elements. The equal rights

(independence from each other) of parameters is becoming increasingly important; it

provides a solution to the problems of thread reorganization, when multiprocessor systems

 Functional programming for parallel compuing 41

requiring the decomposition of program fragments are structured for different

configurations.

The technique and concept of iterating spaces is convincingly supported in the Sisal

language, in which iteration spaces are constructed over enumerable sets using scalar and

Cartesian product operations [33].

Parallelism uses the principles of equal rights for parameters and strict result, allowing,

if necessary, any number of parameters or results to be considered as their common data

structure. This makes it possible to represent independent threads and to combine multi-

threaded or multiprocessor programs into a single complex. In addition, note that the

parameters of a function call are calculated at the same level of hierarchy, according to the

principle of data immutability, in the general context. Therefore, the order of parameter

calculation does not matter; it can be arbitrary. This makes functional programming

convenient for working with programs intended for parallel processes organization.

The solution is somewhat more complicated when pragmatic principles requiring a

revision of system solutions at the level of programming system development are

involved.

Automatic parallelization consists in extracting from the program the autonomous

parts allowing independent execution. Suppose there is a function F with a known

execution time T, which can be decomposed into two functions, F1 and F2, such that the

execution time of each of them is noticeably less than T. Then, if they are independent,

they can be executed in an arbitrary order, and the execution time of the original function

will be less than T.

Identity of repeated runs for the purpose of program debugging and performance

measurement.

The transition to supercomputers has shown that, with too many processors, there is no

longer possibility to observe program re-execution necessary for debugging and

measurements. During the next run, there may be failures on different processors. Here,

functional programming can allow special interpretations of the program by taking into

account the protocols and results of the previously executed runs with tracking the

execution identity.

Multi-pin fragments, such as control schemes or operations producing more than one

result, at first glance contradict the principle of a strict result.

However, the possibility of transition from a strict result allows one to build multi-

threaded functions taking parameters from a set of peer-to-peer threads and generating a

set of results in terms of the number of threads. Thus, it is possible, as in the functional

parallel programming language Sisal, to switch to the operations mapping a string of

operands to a string of results [33]. This may correspond to the structure of some

hardware nodes and thus allows presenting more efficient solutions.

2.5. Performance increase

In the transition to reusable programs and parallel computing, application

success and program performance become more important than their formal

correctness and efficiency. Pure functional programming can be viewed as a

functional modeling technique for prototyping complex problem solving

programs. A broader paradigm of functional programming applied in production

allows one to move from such functional models and prototypes to more efficient

42 L.V. Gorodnyaya

data structures, making practical decisions and trade-offs in their processing

depending on real conditions, when necessary. In addition to the principles and

their consequences in real programming languages and systems, the production

paradigm of functional programming allows the inclusion of balancing

mechanisms, which look like special functions in a programming language. For

example, Lisp 1.5, Clisp, Cmucl, and other members of the Lisp family typically

provide the following trade-off functions:

 data type control softens the principle of universality by the functions of

static and dynamic analysis of data types;

 data recovery makes it possible to eliminate excessive memory

consumption, partly counteracting the principle of data immutability when

destructive functions having safe analogs are used;

 loops schemes, simulating a slightly expanded variety of familiar

control mechanisms for computations, overcome typical concerns about the

implementation complexity of the principle of self-determination;

 accounting for predictions on memory size and execution speed allows

us to program memory allocation in order to neutralize inaccurate flexibility

constraints;

 pseudo-functions, in addition to result generation, act upon external

memory or interact with devices including the fulfillment of I / O and file

operations, provided by the principle of parameter independence;

 memoization allows a radical reduction in the complexity of repeated

calculations by storing the results for all parameter values, which expands the

principle of the strictness of the result. The results of all threads have equal rights

and all of them can be saved and reused without unnecessary calculations.

 Functional programming for parallel compuing 43

Table 2 presents the general interaction of principles, consequences, applications and

trade-offs in functional programming systems.

Table 2.
Key aspects of the relationship between semantic and pragmatic mechanisms

 Semantics Pragmatics

Principles

universality

self-definition

parameter independence

flexibility of constraints

data immutability

strictness of the result

Consequences constructiveness

provability

factorization

continuity of processes

reversibility of actions

unary functions

Applicatio

ns to

parallel

computing

repression of small

probabilities

load balancing

iteration spaces

automatic parallelization

Identity of repeated runs

multi-pin fragments

Practical trade-off data type control

loops schemes

recovery of data

programmable accounting

for predictions

pseudo-functions

memoization

Within the framework of functional programming, it is possible to take into account the

specifics of parallel computations affecting the choice of methods for their solution,

depending on the priorities in the choice of language means and implementation

possibilities.

Paradigmatic errors found in running highly popular programming systems on modern

multiprocessor and network hardware show that some of them were invisible before the

advent of networks, mobile devices, and supercomputers.

Consequences of the semantic and pragmatic principles of functional programming and

high modeling power of the apparatus of functions, extended with special functions of

practical compromises, make it possible to supplement efficiently the main paradigms of

parallel computing and practical work on program performance improvement.

44 L.V. Gorodnyaya

3. Conclusion

In February 2021, the 22nd conference on modern trends in functional programming

was held [1]. The reports presented convincingly showed that the focus of functional

programming was on solving the problems of parallel computations organization.

Functional programming makes it possible to take into account both the aspects of the

problems solved and programming methods necessary to solve parallel computation

problems. It is possible to form a sequence of comparable program examples, allowing a

comparison of different programming languages.

It is possible to analyze the results of the direct measurement of program performance

and to highlight the features of the basic tools and implementation solutions in

programming systems designed to improve the software products developed. The errors

caused by the choice of paradigms found when operating familiar programming systems

on modern multi-processor equipment show that some of them were simply invisible

before the advent of networks, mobile devices and supercomputers.

Some questions are yet to be answered in practical terms. The emergence of new

paradigms can be associated with new problems, which are still difficult to solve. It is not

clear how appropriate the interaction of paradigms is. The educational problems of

learning new paradigms are left aside. The educational programs of many universities

include teaching parallel computing, which is sufficient to understand the complexity of

new paradigms and set the appropriate research objectives. However, university students

lack practice in parallel computing.

The problem is in the implementation of high-performance programs satisfying the

complicated and difficult to verify criteria of reliability and safety. A characteristic feature

of the functional approach as a programming method is the transition to the classes of

problems in the process of a meaningful analysis of the formulation of any problem. When

solving problems, class boundaries are established. Experiments on supercomputers have

shown that system solutions can contribute significantly to parallel computing

performance, and this contribution may even exceed the theoretical forecasts. This

justifies the need for a more fundamental approach to programming, especially to system

programming and its mathematical foundations, naturally represented in the purely

functional programming [14, 16].

When creating, forming and investigating the mathematical models as the fundamental

basis for solving the difficult problems of software efficiency, reliability and safety, it is

important to develop the models related to time and resources, which are poorly presented

in classical mathematics curricula. However, they are available in functional programming

languages and systems. Extensive development of IT noticeably outstrips human

capabilities to learn new options of IT hardware and tools, which go beyond the user level

supported by the suppliers. The mission of programming is to create the tools intended to

improve the quality of information systems, including search for new solutions to the

problem of reliability and security of information technologies [34, 35].

In addition, paradigm features are only partially expressed at the level of program

representation. Other requirements are expressed at the level of pragmatics or

implementation of the programming language.

Discipline of access to multilevel heterogeneous memory and protocols for interaction

between processes is examples of a problems that has not yet received a convenient

solution. Here it is required to refine the mechanisms of data immutability, possibly in

favor of their recoverability.

 Functional programming for parallel compuing 45

Data immutability is preserved at the local thread level, but it causes problems when

moving to shared memory. There are data blocks that are different in size, time of access

to them and in the discipline of service, possibly available simultaneously to different

functions and to data storage . If data blocks are available to different functions, then they

can act as protocols, messages, and other representations of dependencies between

functions. Usually such dependencies are represented in shared memory. Possibly, shared

memory mechanisms require data recovery, apart from the mathematical aspects of

working with heterogeneous memory, copies, replicas, etc., which is similar to dynamic

editing of complex structures already illustrated in the problems of working with the DSL

languages [1].

The A.P. Ershov Institute of Informatics Systems SB RAS has been traditionally

engaged in the creation of educational programming languages including familiarization

with the phenomena of parallelism. Currently, the multi-paradigm language SINHRO is

being developed [8]. It is desirable that a modern language for the development and

debugging of long-lived parallel computing programs include sublanguages intended to

support the main parallel programming paradigms, inheriting the experience of the

languages previously created.

References

[1] Koopman P., Michels S., Plasmeijer R.. Dynamic editors for well – typed

expressions // Trends in Functional programming, 22nd International

Symposium TFP 2021, February 17–19, 2021. – 2021. – P. 44–66. – (Lect.

Notes in Comp. Sci.; 12834).

[2] Gorodnyaya L.V., Marchuk A.G. Development of parallelism models in high

level languages (Razvitiye modeley parallelizma v yazykakh vysokogo

urovnya) // Nauchnyy servis v seti Internet: vse grani parallelizma. – P. 342

– 346. – http://agora.guru.ru/abrau2013/pdf/342.pdf (In Russian).

[3] Gorodnyaya, L. On parallel programming paradigms // Proc. CEUR Workshop

2015. – 2015. – No.1482. – P. 587–593.

[4] Gorodnyaya L.V. On the implicit multi-paradigmality of parallel programming

(O neyavnoy mul'tiparadigmal'nosti parallel'nogo programmirovaniya) // Proc.

Nauchnyy servis v seti Internet: XXIII Vserossiyskoy nauchnoy konferentsii,

20 – 23 September 2021. – M.: IPM im. M.V. Keldysha, 2021. – P. 104 – 116.

– https://doi.org/10.20948/abrau – 2021 – 6,

https://keldysh.ru/abrau/2021/theses/6.pdf (In Russian).

[5] Kotov V.Ye. MARS: architectures and languages for parallelism

implementation (MARS: arkhitektury i yazyki dlya realizatsii parallelizma) //

Sistemnaya informatika. Iss 1. Problemy sovremenogo programmirovaniya. –

Novosibirsk: Nauka, 1991. – P. 174 – 194 (In Russian).

http://agora.guru.ru/abrau2013/pdf/342.pdf
https://www.scopus.com/authid/detail.uri?authorId=6504286072#disabled
https://doi.org/10.20948/abrau-2021-6
https://keldysh.ru/abrau/2021/theses/6.pdf

46 L.V. Gorodnyaya

[6] Dushkin R.V. Functional Programming in the Haskell language

(Funktsional'noye programmirovaniye na yazyke Haskell). – M.: DMK –

Press, 2016 (In Russian) .

[7] Gorodnyaya L., Shilov N. Educational value of teaching parallel programming

paradigm // Proc. PSI ’11, School Informatics. – 2011. – P. 1 – 6.

[8] Gorodnyaya L.V. The SINHRO parallel programming teaching language

(Uchebnyj yazyk parallel'nogo programmirovaniya SINHRO) // Proc. Yazyki

programmirovaniya i kompilyatory – 2017 / Ed. D.V. Dubrov. – Rostov-on

Don: Izd. Yuzhnogo federal'nogo universiteta, 2017. – P. 92–97. –

http://plc.sfedu.ru/files/PLC – 2017 – proceedings.pdf (In Russian) .

[9] Shilov N.V., Gorodnyaya L.V., Marchuk A.G. Parallel programming amid

other programming paradigms (Parallel'noye programmirovaniye sredi

drugikh paradigm programmirovaniya) // Prikladnaya informatika. – 2011. –

No.1 (31). – P.120 – 129. – http://agora.guru.ru/abrau2011/pdf/193.pdf

(In Russian).

[10] McCarthy J. LISP 1.5 Programming Manual. – Cambridge: The MIT Press,

1963.

[11] Backus J. Can programming be liberated from the John von Neumann style? A

functional style and its algebra of programs // Commun. ACM. – 1978. –

Vol. 21, Iss.8. – P. 613 – 641.

[12] Khenderson P. Functional Programming (Funktsional'noye

programmirovaniye). – M .: Mir, 1983 (In Russian).

[13] H'yuvenen E., Seppanen Y. The Lisp World (Mir Lispa). – M.: Nauka, 1994

(In Russian).

[14] Lavrov S.S. Functional programming (Funktsional'noye programmirovaniye)

// Komp'yuternyye instrumenty v obrazovanii. – 2002. – No. 2 – 4 (In

Russian) .

[15] Lavrov S. S., Gorodnyaya L.V. Functional programming. The Lisp language

interpreter (Funktsional'noye programmirovaniye. Interpretator yazyka Lisp) //

Komp'yuternyye instrumenty v obrazovanii. – SPb, 2002. – No.5 (In

Russian) .

[16] Gorodnyaya L.V. Functional Programming Basics. Series of lectures. (Osnovy

funktsional'nogo programmirovaniya. Kurs lektsiy). Uchebnoye posobiye.

Seriya «Osnovy informatsionnykh tekhnologiy». – M.: INTUIT.RU, 2004. –

http://www.intuit.ru/studies/courses/29/29/info (In Russian).

[17] Gorodnyaya L.V., Berezin N.A. Introduction to Lisp Programming (Vvedeniye

v programmirovaniye na Lispe). – M.: Internet – Universitet

http://plc.sfedu.ru/files/PLC%20–%202017%20–%20proceedings.pdf
http://agora.guru.ru/abrau2011/pdf/193.pdf
http://www.intuit.ru/studies/courses/29/29/info

 Functional programming for parallel compuing 47

Informatsionnykh tekhnologiy, 2007. – http://www.intuit.ru,
http://www.intuit.ru/studies/courses/1026/158/info (In Russian).

[18] Gorodnyaya L.V. The first implementations of the Lisp language in the USSR

(Pervyye realizatsii yazyka Lisp v SSSR) // Proc. SoRuCom – 2011. –

 P. 95– 100. – https://www.computer –

museum.ru/histsoft/lisp_sorucom_2011.htm (In Russian).

[19] Gorodnyaya L.V. Implementation of the Lisp interpreter (Realizatsiya Lisp –

interpretatora). − VTS SO RAN SSSR, Novosibirsk, 1974. − P. 24 – 35 (In

Russian).

[20] Lavrov S. S. Methods to define the semantics of programming languages

(Metody zadaniya semantiki yazykov programmirovaniya) //

Programmirovaniye. – 1978. – No. 6. – P. 3 – 10 (In Russian).

[21] Gorodnyaya L.V. On the presentation of the results of the analysis of

programming languages and systems (O predstavlenii rezul'tatov analiza

yazykov i sistem programmirovaniya) // Proc. Nauchnyj servis v seti Internet:

XX Vserossijskaya nauchnaya konferencia, 17 – 22 sentyabrya 2018,

Novorossiysk. – M.: IPM im. M.V. Keldysha, 2018. – P. 262–277. –

https://doi.org/10.20948/abrau – 2019 – 03 (In Russian).

[22] Gorodnyaya L. On the presentation of the results of the analysis of

programming languages and systems // Proc. CEUR Workshop. – 2018. –

Vol. 2260. – P. 152–166.

[23] Gorodnyaya L. V. Systematization of programming paradigms based on

decision making priorities (Sistematizatsii paradigm programmirovaniya po

prioritetam prinyatiya resheniy) // Elektronnyye biblioteki. – 2020. –

Vol. 23 –.No.4. – P. 666 – 696. – https://doi.org/10.26907/1562 – 5419 –

2020 – 23 – 4 – 666 – 696 (In Russian).

[24] Gorodnyaya L. Method of paradigmatic analysis of programming languages

and systems // Proc. CEUR Workshop. – 2020. – Vol. 2543. – P. 149 –

158.

[25] Wegner P. Concepts and paradigms of object-oriented programming //

SIGPLAN OOPS Mess. – 1990. – Vol.1. – No.1. – P. 7 – 87. –

https://pdfs.semanticscholar. DOI: http://dx.doi.org/10.1145./

[26] Gorodnyaya L. V. Programming paradigm: Textbook (Paradigma

programmirovaniya: uchebnoye posobiye). – Sankt-Peterburg: Lan', 2019. –

https://e.lanbook.com/book/118647 (data obrashcheniya: 12.11.2021) (In

Russian).

[27] Gorodnyaya L.V. Programming Paradigms (Paradigmy programmirovaniya).

– M.: INTUIT.RU, 2007. – https://intuit.ru/studies/courses/1109/204/info

(In Russian).

http://www.intuit.ru/studies/courses/1026/158/info
https://www.scopus.com/authid/detail.uri?authorId=6504286072#disabled
https://www.scopus.com/authid/detail.uri?authorId=6504286072#disabled
https://www.google.com/url?q=https%3A%2F%2Fpdfs.semanticscholar.org%2F48a6%2F7e434d764769ad66eddd8c4989364a88d708.pdf&sa=D&sntz=1&usg=AFQjCNF0qqjlPKHHvgw3qJzw5t3kQ-wtFg#_blank
http://dx.doi.org/10.1145./
https://intuit.ru/studies/courses/1109/204/info

48 L.V. Gorodnyaya

[28] Gorodnyaya, L. V. Programming Paradigm: Series of Lectures (Paradigma

programmirovaniya: kurs lektsiy). – Novosibirsk: RITS NGU, 2015 (In

Russian).

[29] Gorodnyaya L.V. Programming Paradigms: Analysis and Comparison

(Paradigmy programmirovaniya: analiz i sravneniye). – Novosibirsk: Izd. SO

RAN, 2017 (In Russian).

[30] Gorodnyaya L.V., Kirpotina I.A. On the problem of the reliability of the

historical factography available on the internet (O probleme dostovernosti

dostupnoy v Internete istoricheskoy faktografii) // Proc. SoRuCom – 2017,

Zelenograd, 3–5 October 2017. – Moskva: FGBOU VO “REU im.

G.V.Plekhanova”. – 2017. – P. 40 – 49 (In Russian).

[31] Kernigan, B.W., Ritchi, D.M. The C Programming Language (YAzyk

programmirovaniya Si). – Moskva: Finansy i statistika, 1992 (In Russian).

[32] Lastovetsky A.L. mpC: A Multi – Paradigm Programming Language for

Massively Parallel Computers // ACM SIGPLAN Notices. – 1996. –

 Vol. 31. – No. 2. – P. 13–20.

[33] Kasyanov V.N. Sisal 3.2: functional language for scientific parallel

programming // Enterprise Information Systems. – 2013. – Vol. 7. –

No. 2. – P. 227–236.

[34] Nahhas S., Bamasag O., Khemakhem M. and Bajnaid N. Added Values of

Linked Data in Education: A Survey and Roadmap // Computers. – 2018. –

No. 7. – https://doi.org/10.3390/computers7030045.

[35] Gorodnyaya L.V. The strategically promising programming paradigms of

Academician Andrey P. Ershov (Perspektivno strategicheskie paradigmy

programmirovaniya Akademika Andreya Petrovicha Ershova) // Proc.

SORUCOM, Moskva, 6–8 October 2020. – 2020. – P. 83–97 (In Russian).

[36] Gorodnyaya L. Strategic paradigms of programming initiated and supported

by Academician Andrey Petrovich Ershov // Proc. SoRuCom 2020.

– 2020. – P. 1–11, 946 – 972.

https://doi.org/10.3390/computers7030045
https://www.scopus.com/authid/detail.uri?authorId=6504286072#disabled

