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Functional programming for parallel computing 

L.V. Gorodnyaya 

Abstract .The  paper is devoted to modern trends in the application of functional 

programming to the problems of organizing parallel computations. Functional 

programming is considered as a meta-paradigm for solving the problems of developing 

multi-threaded programs for multiprocessor complexes and distributed systems, as well as 

for solving the problems associated with rapid IT development. The semantic and 

pragmatic principles of functional programming and consequences of these principles are 

described. The paradigm analysis of programming languages and systems is used, which 

allows assessing their similarities and differences. Taking into account these features is 

necessary when predicting the course of application processes, as well as when planning 

the study and organization of program development. There are reasons to believe that 

functional programming is capable of improving program performance through its 

adaptability to modeling and prototyping. A variety of features and characteristics inherent 

in the development and debugging of long-lived parallel computing programs is shown. 

The author emphasizes the prospects of functional programming as a universal technique 

for solving complex problems burdened with difficult to verify and poorly compatible 

requirements. A brief outline of the requirements for a multiparadigm parallel 

programming language is given. 

Keywords: Functional programming, parallel computing, programming languages, 

programming system, programming paradigm, multi-paradigm 

Introduction 

 A large number of parallel programming languages and systems have already been 

created to solve the numerous problems of developing multithreaded programs for 

multiprocessor complexes and distributed systems. Interestingly, the ideas of functional 

programming and their practical application to the analysis of the problems and methods 

of organizing parallel computations are becoming more popular. Recent studies in 

functional programming have focused on finding more efficient solutions to parallel 

programming problems [1].  

The results of the analysis of the modern trends in functional programming allow us to 

consider it as a methodology for solving the problems of organizing parallel computations.  

The paradigm analysis of languages and programming systems is involved. This allows us 

to describe the semantic and pragmatic principles of functional programming and their 

consequences. Taking into account the paradigmatic features is useful when predicting 

program application processes and when planning their study and development. 

Functional programming helps us to improve the performance of programs by 

preprocessing their prototypes Functional programming is especially promising as a 

universal method for solving complex problems burdened with difficult-to-verify and 

poorly compatible requirements. It makes it possible to consider many features and 

characteristics inherent in the development and debugging of parallel computing 

programs.  
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The presentation begins with a brief description of a number of parallel computing 

paradigms supported in well-known programming languages. Then, the author dwells on 

the basic principles of functional programming and their concretization, which arise when 

functional programming methods are transferred to parallel computations. Also, we have 

considered several parallel computing paradigms supported in a notable number of 

programming languages. In conclusion, the requirements for a modern parallel 

programming language are described. 

1. Paradigmatic characteristic   

It should be noted that many parallel programming languages have 

already been created. A possible challenge for the developers of parallel 

computing programs is the hidden multiplicity of paradigms [2-4]. The 

developers have to consider simultaneously a variety of aspects at different angles  

in different paradigms. Usually, a separate paradigm is convenient for solving 

isolated subtasks if a full set of subtasks cannot be solved in the common 

environment. Obviously, the tasks of scaling computations, synchronizing 

interactions in multi-threaded programs, representing natural asynchronous 

parallelism and achieving high program performance are different. Moreover, it is 

a separate task to learn the phenomena of parallelism in order to give specialists 

an intuitive idea of the methods for solving the problems depending on unusual 

phenomena. Recent research in functional programming is aimed, in fact, at 

finding more stable solutions to parallel programming problems, allowing their 

correctness to be checked on models and debugging on prototypes. 
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1.1. Paradigms of parallel programming languages  

To solve the main of these tasks in different paradigms, many languages and 

programming systems supporting parallel computing have been created  (see 

Table 1). 

 

 Table 1.  
Support for parallel computing problems and paradigms in different programming 

languages 

problems paradigms programming languages and 

tools 

Scaling Multiprocessor 
programming  

VHDL, XC, SIGMA, bash, 

Occam, mpC, EL’-76, Limbo, 

Kotlin, MPI 

Thread Synchronization Sync programming  APL, VAL, Sisal, Alef, E, X10, 

LuNA, Charm, Go, Java, Scala, 

Rust, Pifagor, OpenMP  

Problems 

Statement 
Asynchronous 
programming  

BARS, Haskell, Erlang, 

JavaScript, Python, C#  

Programs Performance High performance 

programming  

 

Setl, HPF, G, Sparkel, mpC, 

Sanscript, D, Rest, F# 

Concurrency 

Familiarization 
Instructional 
programming  

Logo, Robik, Karel, OZ,  

A++, Sinkhro, Lsl 

 

Thus, for each of the hard-to-solve problems of parallel computing, a separate 

paradigm convenient for its solution has been formed and a number of programming 

languages to support it have been created. The difference between paradigms is in 

prioritizing the means and methods used when solving a separate problem; different 

problems require a different ordering. Typically, only one paradigm is used at each stage 

of program development. Accordingly, there is only one main paradigm in every 

programming language. The requirements for solving rather complex problems of parallel 

computing are associated with certain difficulties. This implies the need to use different 

paradigms at certain stages of their creation and phases of their lifecycle, especially for 

long-lived programs. During the transition to programming technology, it is important to 

obtain practical results, which requires the support of a full range of paradigms used at the 

different stages of program development its lifecycle is formed. As a rule, to facilitate the 

simultaneous use of different paradigms in solving the same problem, multilingual 

systems are created that enable us to move from one paradigm to another without the need 

to learn different interfaces and systems. It is hence expedient to create a multi-paradigm 

parallel computing language which will simultaneously support all the main paradigms of 

parallelism. Importantly, at each stage of program development only one paradigm should 

be used, with its relatively small set of tools and methods within one way of thinking. The 

use of the BARS and Haskell languages shows that in these cases it is convenient to 

decompose the programming language definition into separate sublanguages supporting 
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the main paradigms or monads aimed at specific models for  developing and presenting 

programs. Then each paradigm has its own content of the categories of semantic systems 

and its own order of their role in the programming process [5, 6].  

Multiprocessor programming tools usually rely on data structures and characteristics of 

the available architecture, including the underlying multiprocessor complex and 

relationships between its elements. Operating the complex allows one to initiate the 

functioning of separate processors, as well as their blocking, resumption and cancellation. 

During these processes, data exchange is possible via certain protocols, the final results of 

which can be considered as the goal of the program. Decision making begins with 

defining the space of possible multiprocessor complexes, which can be considered as a 

special kind of memory with its own discipline of functioning and interaction of elements. 

The next step is the selection of suitable configurations and appropriate structuring of the 

iteration space of the processes intended to be executed on separate processors. Then the 

resulting process control scheme is filled with actual actions performing calculations. 

Generally, routines without recursion are preferable since they are free from the 

complexities of computation control and hard-to-predict side effects of shared memory. A 

multiprocessor program being built allows one to reconfigure a multiprocessor complex 1 

dynamically.   

In synchronous multi-threaded programming, clear computation control schemes are 

determined and regular sections and typical program models that are convenient for 

parallelization are identified. Usually, memory fragments free from side effects are found 

and non-imperative control of the execution time of program threads is allowed, which 

takes into account the hierarchy of the program control scheme and some timing relations. 

Decision-making begins with the choice of standard control schemes using the concept of 

"iteration space," which can be structured depending on the data distribution and methods 

of storage, which can affect the efficiency and discipline of multi-level memory 

processing. Iteration control can use arbitrary predicates. The control scheme over the 

stream iteration space is filled with the fragments relatively easy to debug, possibly 

debugged in advance or programmed independently. To return the results of the program, 

special means are allocated for generating the results of calculations obtained on single-

level threads of a multi-threaded program. Thus, a multi-threaded program is obtained 

with a dynamically variable space of threads over local memory with the possibility of 

episodic synchronization of their individual fragments2.  

Asynchronous programming is aimed at representing independent program elements 

reflecting the nature of the problem being solved, which can be the basis of maximum 

parallelization, provided that special schemes for computing organization are identified, 

taking into account the characteristics of the available equipment. Decision-making begins 

with the choice of action control schemes and with the definition of conditions to start 

them. Actions can use one or another discipline of processing different types of memory. 

An implicit and programmable variety of memory access disciplines are supported, 

                                                           

1 https://mooc.tsu.ru/mooc-openedu/mpi/ "Parallel 

programming using OpenMP and MPI" 

 

2 https://habr.com/ru/post/121925/ "MPI Basics" 

 

https://mooc.tsu.ru/mooc-openedu/mpi/
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including a heterogeneous memory hierarchy and computation schemes designed to 

include the fragments that are procedures or library units. The result is a program which is 

a synchronizing network diagram which asynchronously controls the execution of actions  

provided they are ready for execution. High-performance programming requires a 

transition from a single program run to the consideration of the prospects for its repeated 

use and  optimization. This makes it possible to take advantage of the underused 

capacities of a multiprocessor complex and to execute separate program fragments for the 

upcoming calculations taking into account the data which may be required in the 

forthcoming runs of the program. Decision-making begins with computation schemes and 

models, possibly over shared memory, but with local memory priority.  

For the problems of program performance improvement, debugging control should take 

into account the need to re-execute a program during testing and take advantage of the 

inheritance of results between program runs and of the comparison of the measured 

characteristics of the program versions performance. Finally, we have several improved 

versions of the program, and the one chosen may be better at taking into account the 

conditions of application, including the configuration of a multiprocessor complex and the 

requirements for program quality.  

Educational programming is intended to fill the gaps in recommendations for 

imperative solutions to any problems. Such gap points make it difficult to study 

programming methods in general, even more so in parallel computing. The development 

of game programs (game writing), such as robot visualization, can encourage learning all 

paradigms of parallel computing. This is sufficient reason for multi-paradigm natureof 

educational programming languagers, which usually support the means of parallel 

computations representation [7-9].  

Long-lived programming languages, as well as new programming languages, are 

usually multi-paradigm. Successful parallel programming practice requires support for a 

full range of parallel computing paradigms. Their development, replenishment and 

application should be considered as necessary, ensuring the transition to the next 

paradigm without changing the programming languages and system environment.  

2. Principles of functional programming   

While the number of programming languages is now growing rapidly, the paradigms 

are not many. The basic ideas of functional programming were proposed by John 

McCarthy 3 in his early works on artificial intelligence [10]. Functional programming is 

one of the first paradigms aimed not only at the efficient implementation of  the 

algorithms developed, but also at solution of new information processing problems with a 

research component [10-19]. This situation allows for a fairly complete comparison and 

selection of characteristics for a clear differentiation of paradigms and understanding the 

                                                           

3  In December 1968, John McCarthy read a series of lectures on the Lisp 

language at the Computing Center of the Siberian Branch of the Academy of Sciences in 

the office of A.P. Ershov. 
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reasons for their diversity. When considering the results of the task analysis, means and 

methods of parallel computations organization, one can draw attention to the obvious 

variety of problem settings and corresponding priorities in decision-making at the 

different stages of program development and debugging. A methodology of programming 

language comparison presented in [20-24] is based on an informal definition of the term 

"programming paradigm" given in [25], stating that paradigm comparison requires 

highlighting the distinctive testable features. When making decisions at the different 

stages of program development and debugging, we have assumed ordering priorities to be 

these features. This should be taken into account when predicting the complexity of the 

processes of program application, starting from planning, investigation and organization 

of the development of long-lived programs [26-29].  

A general description of the functional programming paradigm often begins with the 

assertion that its characteristic feature is that the same formulas in the same context have 

the same meaning. This leads to the elimination of assignments, global variables, side 

effects, and control transfers.  

First of all, it should be noted that the concept of "context" is somewhat ambiguous. It 

is both a program fragment, sometimes called the scope of existence, or visibility, and a 

context table of the correspondence between the symbols used in this fragment and their 

meanings. A programming language may have two or more context tables for one 

fragment - static and dynamic - and, in addition, global and local contexts. Programming 

systems for one language can solve the problem of the order of iterations in different ways 

through the context tables to determine the  value of the formula. Moreover, this order can 

be changed by the options from the program or task for its compilation. If a line segment 

between two adjacent assignments is considered as context, then this characteristic does 

not distinguish the functional programming paradigm from other paradigms. Meanwhile, 

in the process of compilation, precisely this kind of program decomposition is practiced to 

solve memory allocation problems. When compared to functional programming, each 

such interval can be thought of as a separate context where each value is associated with 

its own local variable. In general, the above formula will be valid in any paradigm 

allowing programs to be represented as single assignment sections.  

As for global variables, side effects and control transfers, McCarthy also noted that the 

outermost local variable plays the role of a global one [10]. The purely functional 

programming language Haskell introduced the concept of monads to exploit side effects. 

In many functional programming languages, the lack of control transfers is compensated 

by exception, extension and continuation mechanisms.  

Functional programming usually implies the support of a number of semantic and 

pragmatic principles that contribute to the creation of functional models at the stage of 

computer experiments useful in solving new problems. When developing a program, the 

programmer follows semantic principles. Pragmatic principles are provided by the 

programming system, freeing the programmer from insignificant solutions independent of 

the nature of the problem. Most of these principles were laid down by J. McCarthy in the 

first implementations of the Lisp language [10].  

2.1. Semantic principles   

Functional programming supports semantic principles for algorithm representation, 

such as universality, self-applicability, and parameter independence. 
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Universality. The concepts of "function" and "value" are represented by the same 

symbols as any data for computer processing. Each function applied to any given data 

produces a result or a diagnostic message in finite time. A historically related concept is 

the stored program principle. 

This principle allows one to build representations of functions from their parts and 

calculate the parts as data arrive and are processed. In principle, there are no restrictions 

on the manipulations with language means, functions from the definition of the language 

semantics, constructions for the implementation of the language in a programming 

system, or program expressions.  

Everything needed for the implementation of a programming language can be helpful 

when the language is used. This determines the openness of functional programming 

systems. Strictly speaking, programming, unlike mathematics, does not deal with any 

values or functions but with data that can represent values or functions. This was noted 

long ago by S.S. Lavrov [14, 20].  

There are no obstacles to processing function representations in the same way as data 

are processed. Therefore, representations of functions can be built from their parts – 

symbols. They can even be formed  during the computation process and when processing 

the information about them. Any information necessary for computer processing can be 

represented using symbols [10]. 

When a program is compiled, memory is allocated for functions, variables, and 

constants. The efficiency of such a distribution depends on the due consideration of the 

specifics of the basic means for machine code processing, usually formulated as a data 

type convenient for computer processing but somewhat contradictory to the principle of 

universality.  

Аn idea similar to that of a stored program was first formulated in the description of 

Charles Babbage's analytical engine. A hundred years later, it was implemented in the 

computers of Konrad Zuse and in the definition of the Turing machine, and later 

proclaimed in John von Neumann’s architecture [30]. As a result, a code or symbolic 

representation of information is possible, in which there is no fundamental difference in 

the nature of data for depicting values and functions. Consequently, there are no obstacles 

to processing function representations by the same means as data are processed.  

Self-applicability. Function representations can use themselves directly or indirectly, 

which allows for a construction of clear concise recursive symbolic forms.  Вoth values 

and functions can have a recursive representation.  

Examples of self-applicability are given by many mathematical functions, especially 

recursive ones, such as factorial, Fibonacci numbers, series summation and many other 

functions  defined by mathematical induction. In programming technology, the methods of 

step-by-step, or continuous, development of programs, as well as extreme programming, 

have some similarities. These methods reduce the organization of the programming 

process to a series of steps, each of which provides either a workable part of a program or 

a tool for performing the next development steps. Thanks to this principle, it is possible to 

apply in practice the method of step-by-step program development, in which a minimal 

kernel is selected and implemented, and then the steps of its expansion are performed. For 

the first implementations of the Lisp language, the interpreter and compiler were 

described in Lisp itself, and the descriptions took less than two pages [10]. The same is 

true for the development of the C language [31].  

Equal rights of parameters. The order and method of evaluating the parameters is 

irrelevant. The function parameters are independent of each other.  
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One can note that when a function is called, its parameters are calculated at the same 

level of hierarchy and in the same context. Some of the parameters are calculated before a 

function call, while others can be calculated later but in the same context. Therefore, a 

representation of any highlighted formula from a function definition can be turned into a 

parameter of this function. This means that parts of the function representation can be 

calculated depending on the intermediate results, and functions can be constructed taking 

into account the conditions of their use, in particular, the location of their definitions and 

calls at different levels of the program representation hierarchy. Any symbolic form in a 

function definition can be extracted from it as a parameter and, conversely, substituted 

into it.   

Data reuse is ensured by naming. Parameters have names, often called variables, 

although in functional programming they do not change values within the same context. 

Purely at the level of concepts, a variable is a named part of memory intended for multiple 

access to mutable data while a constant insures access to immutable data. In functional 

programming, changing the relationship between a name and a value is possible only by 

moving to another context, which is equivalent to changing the name. Functional variables 

are admissible and equal to regular constant functions and can be argument values or 

generated as the results of other functions. When implementing a method for the 

execution of a certain algorithm, the process of calculation on given arguments is often 

viewed as the execution of an immutable program, a predefined constant construction. In 

practice, in addition to such constant functions, variable functions are quite admissible. A 

function is a correspondence between arguments and results, both of which as well as the 

correspondence itself can be the values of variables. The lack of skills in working with 

functional variables only means that it is necessary to study this option since its potential 

can exceed expectations now that programming is becoming more component-oriented.  

2.2. Pragmatic principles   

Functional programming supports pragmatic principles for computations, such as 

flexibility of constraints, immutability of data, and strictness of the result. Pragmatic 

principles are supported by a programming system or, more precisely, by its developers.  

Flexibility of constraints. On-line analysis of memory allocation and cleaning is 

supported to prevent unreasonable memory downtime.  

Sometimes, there is enough memory for the entire task but not enough for some data 

blocks which may be of little importance for the task solution. In functional programming 

systems, such problems are solved by the principle of the flexibility of total constraints on 

spatial characteristics. Situations arise when some of these memory parts are exhausted, 

while others have underutilized space. To solve this problem, a special function is used – a 

"garbage collector" – which tries to automate memory reallocation or cleaning when some 

memory area is insufficient. This means that data may be of any size. New efficient 

implementations of garbage collection take into account the advantages of bottom-up 

processes on large amounts of memory. Many up-to-date programming systems include 

these mechanisms regardless of the paradigm.  

Immutability of data. The representation of each result of a function is placed in a new 

part of free memory without distorting the arguments of this function, which can be useful 

for other functions.  
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Access to evaluated data is possible any time, which greatly simplifies program 

debugging and ensures the reversibility м of any actions. This ensures that all 

intermediate results are saved, can be analyzed and reused at any time. If the definition of 

a function is a static construct, the process can be viewed as a composition of functions 

unfolded  dynamically according to this construct. A separate aspect is associated with 

transition from integers to real numbers, possibly requiring a change in the representation 

accuracy during calculations. Logically, they remain constants, but the programming 

system treats them as variables.  

Strictness of the result. Any number of function results can be represented in a single 

symbolic form, from which the desired result can be selected if necessary.  

This practice is convenient for describing the means of program interpretation. The 

boundary between arguments and results placed on the stack is always clear: the result of 

the function evaluated last is at the top of the stack. This principle is often interpreted as a 

requirement for a single value of a mathematical function, which leads to doubts about the 

validity of functions of integer division, root extraction, inverse trigonometric functions 

and many other categories of mathematical functions. This situation was considered by 

Fichtengolts in the first edition of a textbook on mathematical analysis.  

Long before the advent of computers, ways to define and implement functions were 

quite varied. Approaches to storing the results of functions also differed; a common way 

to store data were mathematical tables or special devices, such as a slide rule. Methods for 

solving the same problems also vary. For example, there are more than twenty sorting 

methods giving the same results. The choice of a particular method depends on the 

conditions of program application, characteristics of the sorted data and efficiency criteria. 

The choice of a technique for implementing a function usually depends on how the 

definition of the rule and on the methods for obtaining the result according to the rule 

given. 

They often use numbers and codes to ensure reliability and safety and to reduce the 

human factor. Nevertheless, many modern information services have solutions that 

essentially decrease their reliability and security. Password tools often provide a button to 

display the text. The dialogue with a "personal account" often contains a simple procedure 

for changing the password. User identification on the websites dealing with money and 

documents is done by the IP address, which ignores the fact that a computer can have 

many users. 

2.3. Consequences    

Presenting an algorithm in the form of a functional program result has important 

practical consequences. Constructiveness, self-applicability and factorization follow from  

semantic principles. Pragmatic principles lead to the hidden grammar of continuous  

processes, reversibility of actions and unary functions. These consequences are the basis 

for the intuitive construction of functional models and make it possible to carry out and 

understand a direct computer experiment. In addition, a number of semantic and 

pragmatic principles support the development of the functional models of the programs 

for organizing parallel computations, which can be reduced to the complexes of non-

deterministic threads.  

Constructiveness is a consequence of the universality principle, which allows program 

representations to be processed in the same way as any data.  
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Data representing a value or a analogy or similarity to the processed data or prototypes. 

Mixed and partial computations are possible, as well as optimizing transformations, 

macro-generation and many other tools necessary for the development  for selecting a 

fragment to be substituted as a data part, as well as a parameter or a function definition. 

This provides support for meta-compilation, including syntax-driven methods of program 

generation and analysis. Also, uniform representations of programs are supported, 

externally preserving the analogy or similarity to the processed data or prototypes. Mixed 

and partial computations are possible, as well as optimizing transformations, macro-

generation and many other tools necessary for the development of operating systems and 

programming systems.  

Provability is based on the connection of the self-determination principle with the 

methods of recursion, mathematical induction and logic.  

It becomes possible to deduce logically separate properties of programs and, owing to 

this, to detect some subtle errors. If the representation of an object is similar to some 

inference logic, its properties can be inferred using this logic. Thanks to factorization, it is 

possible to construct projections similar to a scheme admitting a proof. Most of the 

software verification systems are created within the framework of functional 

programming. This increases the reliability and security of programs, although it does not 

allow solving the correctness problem in full. Difficulties are associated with the 

insufficiency of classical logic in relation to the non-classical logic of programming.  

Factorization directly follows from the principle of parameter independence taking 

into account the principle of universality.  

Parts of data and any subformulas are the equivalents of the function parameters. For 

any data element with one or several selected fragments, it is possible to represent a 

function the parameters of which will be the fragments selected.  Their substitution 

produces a data element equivalent to the original one, which allows using the concept of 

selection or partial computation.  

Any marked set of program fragments can be removed from the data representing the 

program and associated with a certain name in order to allow the original representation to 

be restored. You can note that the parameters of a function call are calculated at the same 

level of hierarchy, in the general context, according to the principle of data immutability. 

Therefore, the order of evaluating the parameters can be arbitrary. Owing to this feature, 

we can decompose a program into autonomously developed modules, accumulate 

correctness, and represent parallel threads, lazy or early computations. We can say that a 

program can be represented in a factorized form according to various parameters, 

depending on the purpose of its transformation and further development. Due to the 

reversibility of actions, i.e., data immutability, the process of program debugging acquires 

convergence and allows one to bring the program to the limit of compliance with the 

problem statement.  

The consequences of supporting the pragmatic principles in functional programming 

systems form intuitive images, such as process continuity (infinity), reversibility of 

actions, and unary functions, which provide the basis for functional models construction. 

In addition, a complex of semantic and pragmatic principles provides support for the 

development of the functional models of programs for organizing parallel computations, 

which can be reduced to complexes of non-deterministic threads.  

Process continuity intuitively follows from the pragmatic support of the principle of 

the flexibility of constraints.  
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An execution of any function can be followed by an execution of another function. The 

STOP command is not a function as it has no arguments or results; it is just a signal to the 

processor to stop working. When executing any function, one can simultaneously execute 

other functions and before executing any function, other functions can be executed. This 

allows a significant part of work to be done on the basis of the unlimited memory model 

without much concern about its boundaries and the variety of characteristics of the speed 

of access to different data structures. Many functional programming languages support the 

imitation of work with infinite data structures.  

Reversibility of actions is based on the illusion of data immutability, the mechanisms of 

which are hidden in the programming system.  

After the execution of any function, you can return to the point of its call. Any function 

can be repeated with the same parameters; otherwise, it can be interpreted in a different 

way, or any other function can be executed instead. Their application requires almost no 

attention on the part of the programmer and debugger. The necessary data changes, such 

as memory reuse, are easy to automate, which allows supporting the mechanism for 

memorizing functions on the previously processed arguments. The programmer does not 

have to interfere with the implementation of such facilities as long as there are no 

performance problems.  

Unary function is based on the principle of a rigorous result and similarly allows a 

function of any number of arguments to be converted to a unary function with a single 

argument.  

For any function with an arbitrary number of parameters, you can construct its 

equivalent with one parameter. Since results are often arguments to enclosing functions, 

the accompanying principle of unary functions logically arises. In addition, the ability to 

proceed from a list of parameters or results to a single argument or a strict result allows 

replacing the usual scheme of operations (mapping two operands to one result) with 

mapping a set of operands to a set of results.  

This set of consequences of the principles of functional programming allows refining 

and improving the programmed solutions when debugging the algorithms for solving new 

problems. It also allows for the multiple definitions of functions when the properties of 

the problem being solved are repeated with the same parameters; otherwise, it can be 

interpreted in a different way, or any other function can be executed instead. Their 

application requires almost no attention on the part of the programmer and debugger. The 

necessary data changes, such as memory reuse, are easy to automate, which allows 

supporting the mechanism for memorizing programs. 

     2.4. Applications to parallel computing  

Parallelism arises from a general complex of semantic and pragmatic principles, which 

allows, if necessary, considering any amount of represented data and reorganizing the 

space of threads. These principles make functional programming convenient for working 

with programs aimed at parallel processes organization. The first is the principle of the 

equal rights of parameters, which guarantees the same context when the parameters of a 

function of the same level are evaluated. It becomes possible to represent independent 

threads and combine them into multithreaded or multiprocessor programs and into a 

common problem-oriented complex.  In addition, parallelism uses the principles of a strict 

result and universality, which allows us, if necessary, to consider any number of 
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represented threads and to reorganize the thread space. The pure functional programming 

principles are not adequate to model the interacting and imperatively synchronized 

processes. Parallelism clarifies these principles, which facilitates the development of 

parallel computing programs.  

Repression of small probabilities is aimed at preventing an excessive number of 

threads corresponding to highly unlikely situations, which somewhat narrows the 

principle of universality.  

The principle of universality has two aspects – equal rights of programs and data and 

completeness of function definitions. When solving the problems of parallel computing, 

universality preserves the equality of programs and data, which is traditionally in demand 

in the tasks of operating systems. The completeness of functions, convenient for building 

programs from the modules that have already been debugged, can create problems 

because the number of threads in multiprocessor programs associated with rare diagnostic 

situations increases. Any fragment which is unlikely or impossible to calculate can be 

removed from the function representation and converted into a delayed action. Branches 

for practically irrelevant situations can be deleted or moved to the debug version. 

Sometimes, this problem can be overcome by choosing the expressions that do not require 

branching, but more often it is done by checking data types. The amount of necessary 

diagnostics can be partially reduced by means of the static analysis of data types.  

Load balancing reduces the real runtime of a program, which can be viewed as a 

transfer of the principle of flexibility to time constraints.  

Lazy, or early, computations provide the ability to redistribute the load quickly. A 

complex function definition can sometimes be reduced to two functions, the first of which 

performs a part of the definition, postponing the execution of the rest, and the second 

resumes the execution of the delayed analogy or similarity to the processed data or 

prototypes. Mixed and partial computations are possible, as well as optimizing 

transformations, macro-generation and many other tools necessary for the development 

leading to a dangerous stack growth. It should be noted here that many functional 

programming systems offer a number of practical solutions. These include delayed 

actions, memoization, ascending recursion, dynamic programming techniques, and 

optimization of recursions by reducing to loops, which in many cases makes it possible to 

eliminate an excessive stack swelling. Operations with a stack within the framework of 

the principle of flexibility of constraints can be supported more efficiently than in most 

programming languages and systems. In addition, the factorization of programs into 

schemes and fragments allows components separation according to the level of debugging 

complexity and inheriting the correctness of the modules previously debugged. The 

functions used do not require a preliminary evaluation of parameters, like macro 

technology. Similarly, in the mpC language, the amount of computation is redistributed 

when an unbalanced load of processors analogy or similarity to the processed data or 

prototypes. Mixed and partial computations are possible, as well as optimizing 

transformations, macro-generation and many other tools necessary for the development 

parallelization.  

Any finite set can act as an iteration space for a function defined on it. If there is a set 

of data such that the calculation of a function on one of its elements does not require its 

results for other data, then it is convenient to use this set as an iteration space for the 

simultaneous execution of this function on all of its elements. The equal rights 

(independence from each other) of parameters is becoming increasingly important; it 

provides a solution to the problems of thread reorganization, when multiprocessor systems 



                       Functional programming for parallel compuing                                           41 

requiring the decomposition of program fragments are structured for different 

configurations. 

The technique and concept of iterating spaces is convincingly supported in the Sisal 

language, in which iteration spaces are constructed over enumerable sets using scalar and 

Cartesian product operations [33].  

Parallelism uses the principles of equal rights for parameters and strict result, allowing, 

if necessary, any number of parameters or results to be considered as their common data 

structure. This makes it possible to represent independent threads and to combine multi-

threaded or multiprocessor programs into a single complex. In addition, note that the 

parameters of a function call are calculated at the same level of hierarchy, according to the 

principle of data immutability, in the general context. Therefore, the order of parameter 

calculation does not matter; it can be arbitrary. This makes functional programming 

convenient for working with programs intended for parallel processes organization.  

The solution is somewhat more complicated when pragmatic principles requiring a 

revision of system solutions at the level of programming system development are 

involved.  

Automatic parallelization consists in extracting from the program the autonomous 

parts allowing independent execution. Suppose there is a function F with a known 

execution time T, which can be decomposed into two functions, F1 and F2, such that the 

execution time of each of them is noticeably less than T. Then, if they are independent, 

they can be executed in an arbitrary order, and the execution time of the original function 

will be less than T.  

Identity of repeated runs for the purpose of program debugging and performance 

measurement.   

The transition to supercomputers has shown that, with too many processors, there is no 

longer possibility to observe program re-execution necessary for debugging and 

measurements. During the next run, there may be failures on different processors. Here, 

functional programming can allow special interpretations of the program by taking into 

account the protocols and results of the previously executed runs with tracking the 

execution identity.  

Multi-pin fragments, such as control schemes or operations producing more than one 

result, at first glance contradict the principle of a strict result.  

However, the possibility of transition from a strict result allows one to build multi-

threaded functions taking parameters from a set of peer-to-peer threads and generating a 

set of results in terms of the number of threads. Thus, it is possible, as in the functional 

parallel programming language Sisal, to switch to the operations mapping a string of 

operands to a string of results [33]. This may correspond to the structure of some 

hardware nodes and thus allows presenting more efficient solutions.  

2.5. Performance increase  

In the transition to reusable programs and parallel computing, application 

success and program performance become more important than their formal 

correctness and efficiency. Pure functional programming can be viewed as a 

functional modeling technique for prototyping complex problem solving 

programs. A broader paradigm of functional programming applied in production 

allows one to move from such functional models and prototypes to more efficient 
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data structures, making practical decisions and trade-offs in their processing 

depending on real conditions, when necessary. In addition to the principles and 

their consequences in real programming languages and systems, the production 

paradigm of functional programming allows the inclusion of balancing 

mechanisms, which look like special functions in a programming language. For 

example, Lisp 1.5, Clisp, Cmucl, and other members of the Lisp family typically 

provide the following trade-off functions: 

 data type control softens the principle of universality by the functions of 

static and dynamic analysis of data types; 

 data recovery makes it possible to eliminate excessive memory 

consumption, partly counteracting the principle of data immutability when 

destructive functions having safe analogs are used;  

 loops schemes, simulating a slightly expanded variety of familiar 

control mechanisms for computations, overcome typical concerns about the 

implementation complexity of the principle of self-determination; 

 accounting for predictions on memory size and execution speed allows 

us to program memory allocation in order to neutralize inaccurate flexibility 

constraints; 

 pseudo-functions, in addition to result generation,  act upon external 

memory or interact with devices  including the fulfillment of I / O and file 

operations, provided by the principle of parameter independence; 

 memoization allows a radical reduction in the complexity of repeated 

calculations by storing the results for all parameter values, which expands the 

principle of the strictness of the result. The results of all threads have equal rights 

and all of them can be saved and reused without unnecessary calculations. 
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Table 2 presents the general interaction of principles, consequences, applications and 

trade-offs in functional programming systems. 

 

 

Table 2. 
Key aspects of the relationship between semantic and pragmatic mechanisms  

 Semantics Pragmatics 

Principles 

 

universality  

self-definition  

parameter independence 

 

flexibility of constraints 

data immutability 

strictness of the result 

Consequences constructiveness  

provability 

factorization 

 

continuity of processes 

reversibility of actions 

unary functions 

 

Applicatio

ns to 

parallel 

computing 

 

repression of small 

probabilities  

load balancing  

iteration spaces 

 

 

automatic parallelization 

Identity of repeated runs 

multi-pin fragments 

 

Practical trade-off data type control  

loops schemes  

recovery of data  

 

programmable accounting 

for predictions 

pseudo-functions 

memoization  

   

 
Within the framework of functional programming, it is possible to take into account the 

specifics of parallel computations affecting the choice of methods for their solution, 

depending on the priorities in the choice of language means and implementation 

possibilities.  

Paradigmatic errors found in running highly popular programming systems on modern 

multiprocessor and network hardware show that some of them were invisible before the 

advent of networks, mobile devices, and supercomputers. 

Consequences of the semantic and pragmatic principles of functional programming and 

high modeling power of the apparatus of functions, extended with special functions of 

practical compromises, make it possible to supplement efficiently the main paradigms of 

parallel computing and practical work on program performance improvement.  
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3. Conclusion  

In February 2021, the 22nd conference on modern trends in functional programming 

was held [1]. The reports presented convincingly showed that the focus of functional 

programming was on solving the problems of parallel computations organization.  

Functional programming makes it possible to take into account both the aspects of the 

problems solved and programming methods necessary to solve parallel computation 

problems. It is possible to form a sequence of comparable program examples, allowing a 

comparison of different programming languages. 

It is possible to analyze the results of the direct measurement of program performance 

and to highlight the features of the basic tools and implementation solutions in 

programming systems designed to improve the software products developed. The errors 

caused by the choice of paradigms found when operating familiar programming systems 

on modern multi-processor equipment show that some of them were simply invisible 

before the advent of networks, mobile devices and supercomputers.  

Some questions are yet to be answered in practical terms. The emergence of new 

paradigms can be associated with new problems, which are still difficult to solve. It is not 

clear how appropriate the interaction of paradigms is. The educational problems of 

learning new paradigms are left aside. The educational programs of many universities 

include teaching parallel computing, which is sufficient to understand the complexity of 

new paradigms and set the appropriate research objectives. However, university students 

lack practice in parallel computing. 

The problem is in the implementation of high-performance programs satisfying the 

complicated and difficult to verify criteria of reliability and safety. A characteristic feature 

of the functional approach as a programming method is the transition to the classes of 

problems in the process of a meaningful analysis of the formulation of any problem. When 

solving problems, class boundaries are established. Experiments on supercomputers have 

shown that system solutions can contribute significantly to parallel computing 

performance, and this contribution may even exceed the theoretical forecasts. This 

justifies the need for a more fundamental approach to programming, especially to system 

programming and its mathematical foundations, naturally represented in the purely 

functional programming [14, 16].  

When creating, forming and investigating the mathematical models as the fundamental 

basis for solving the difficult problems of software efficiency, reliability and safety, it is 

important to develop the models related to time and resources, which are poorly presented 

in classical mathematics curricula. However, they are available in functional programming 

languages and systems. Extensive development of IT noticeably outstrips human 

capabilities to learn new options of IT hardware and tools, which go beyond the user level 

supported by the suppliers. The mission of programming is to create the tools intended to 

improve the quality of information systems, including search for new solutions to the 

problem of reliability and security of information technologies [34, 35].  

In addition, paradigm features are only partially expressed at the level of program 

representation. Other requirements are expressed at the level of pragmatics or 

implementation of the programming language. 

Discipline of access to multilevel heterogeneous memory and protocols for interaction 

between processes  is  examples of a problems that has not yet received a convenient 

solution. Here it is required to refine the mechanisms of data immutability, possibly in 

favor of their recoverability. 
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Data immutability is preserved at the local thread level, but it causes problems when 

moving to shared memory. There are data blocks that are different in size, time of access 

to them and in the discipline of service, possibly available simultaneously to different 

functions and to data storage . If data blocks are available to different functions, then they 

can act as protocols, messages, and other representations of dependencies between 

functions. Usually such dependencies are represented in shared memory. Possibly, shared 

memory mechanisms require  data recovery, apart from the mathematical aspects of 

working with heterogeneous memory, copies, replicas, etc., which is similar to dynamic 

editing of complex structures already illustrated in the problems of working with the DSL 

languages [1].  

The A.P. Ershov Institute of Informatics Systems SB RAS has been traditionally 

engaged in the creation of educational programming languages including familiarization 

with the phenomena of parallelism. Currently, the multi-paradigm language SINHRO is 

being developed [8]. It is desirable that a modern language for the development and 

debugging of long-lived parallel computing programs include sublanguages intended to 

support the main parallel programming paradigms, inheriting the experience of the 

languages previously created.  
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