
Bull. Nov. Comp. Center, Comp. Science, 45 (2021), 59 - 68

@ 2021 NCC Publisher

Distributed calculations on multiple independent devices for

PCISPH method

Sergey Khayrulin

Abstract. One of the most significant drawbacks of the PCISPH algorithm (predictive corrective

SPH), which is often used for the simulation of incompressible viscous liquid dynamics, is the

complexity of the organization of distributed calculations on a computational cluster. At the same

time, the algorithm supports the data parallelism relative to a single device. In this paper, new

methods and algorithms for overcoming this drawback are suggested, based on an effective model

of distributing the data between independent computing units. The resulting algorithms have been

realized and tested on Novosibirsk State University’s cluster.

Keyword : PCISPH, SPH, parallel computing

Introduction

In the classical N-body problem for calculating forces affecting any object, it is

necessary to consider the influence of all bodies in the system. Thus, it is reasonable to

assume that numerical algorithms for simulating such a system have quadratic asymptotic

complexity O(N2). One of the critical problems of any numerical model of particles is

scaling and involving a greater number of particles to get more detailed results. To

calculate the consequent state of the system for each particle, it is essential to know the

physical parameters of any other particle.

The combined PIC method (particle in cell) [1] [2] and its modifications [2] assume

that the continuum is described both by particles and a fixed grid. In this case, particles

carry information only about the mass, while information on fluctuations of physical

properties in the system is distributed through fixed grid nodes. This means that for

synchronization of parallel calculations on various cluster nodes or single node devices,

only timely updates of values in the grid nodes and of information on the number of

particles in the cell are sufficient. At the same time, in completely Lagrangian algorithms

such as SPH [3] [4] and its modification PCISPH [5] [6], the coordinate system is

associated with the movement of fluid in space (the grid moves together with the fluid)

and corresponds to fixed points in the medium. Consequently, the continuum is

represented by a discrete multitude of particles. Information in the medium is transmitted

exclusively through particles.

Although each method is well parallelized over data, for numerical models based on a

system of particles it is quite difficult to distribute calculations in systems with

independent RAMs, such as cluster nodes, or on various computing devices within one

computer and yet with independent RAM modules, such as GPUs, as this requires a data

synchronization mechanism. This particular problem arises because particles are

dynamic and not tied to specific positions, like nodes of computational grids. However,

in the works [7] [8] [9], attempts are made to overcome this shortcoming by logically

dividing the simulated space into non-intersecting static or dynamic subspaces —

domains. Therefore, particles can be clustered according to a spatial feature, depending

on the current position. This implies that each domain is processed by a separate solver.

In our interpretation of the PCISPH method, we also relied on this approach. Below in

Table 1 is a comparison between our and similar approaches.

60 Sergey Khayrulin

Table 1. Comparison of distributed realizations for SPH/PCISPH algorithms

Source GPGPU technology Algorithm Open-

source

[7] CUDA + MPI SPH -

[8] CUDA SPH -

[9] CUDA PCISPH -

Sibernetic OpenCL PCISPH +

1.1. PCISPH

 Formally the PCISPH algorithm represents a continuous medium as a multitude of

separate particles, each interacting with others in accordance with specified laws. Each

particle contains information about the local environment state: mass, velocity, density,

pressure, viscosity and position in space. It is noteworthy that properties of a particle

depend on the surrounding particles, specifically, on properties of particles located in

close vicinity

Figure 1. Smoothing of physical properties for particles relative to neighbors. The influence of

particles beyond the boundary of the sphere is ignored

Physical properties are smoothed according to equations 1, 2

Z

 A(x) = A(x′)δ(x − x′)dx′ (1),
Ω

Z

 A(x) = A(x′)W(x − x′,h)dx′ (2),
Ω

where A(x) is a physical quantity, δ is Dirac’s delta function replaced by so-called kernel

function W. Kernel function has the following properties:

Z

Distributed calculations on multiple independent devices for PCISPH method 61

W(x − x′,h)dx′ = 1 lim ,

W(r,h) = δ(r) h→0,

where h is a constant value also called the smoothing radius. As noted above, the

influence of particles located beyond the sphere with a radius h and the center in a

particular particle is neglected. The hydrodynamic model is described by Navier–

Stokes equations for incompressible viscous liquid:

The numerical model is represented by a limited multitude of particles enclosed in the

boundary box. To optimize the neighbor search, all medium in the algorithm boundary

box is divided into discrete amounts of non-overlapping spatial cells. These cells are static

and do not change their volume and position throughout the simulation time. Therefore it

is possible to cluster particles by spatial cell identification cellID. Spatial cell edge length

is equal to 2h Figure 2.

Figure 2. Spatial cell. The blue dot represents a particle

For any particle, the spatial cell index can be defined as

,

cellID = j + k · gridCellY + i · gridCellZ · gridCellY

where x,y,z are the coordinates, h is the smoothing radius.

62 Sergey Khayrulin

1.2. Calculation distribution

The key concept of the algorithm consists in distribution of data through devices. Each

particle processed by a particular device must have all necessary and sufficient data for

calculating the neighbor list and physical properties on each new simulation step. The

number of particles processed by one device should be correlated with its performance.

Additionally, since the system is not static and particles are moving, the algorithm must

dynamically distribute data among the devices to support particle distribution and

relevance of the data on each device.

As stated above, particles could be clustered by cellID known at any particular moment

t. At the same time, because our primary goal is to parallelize fluid modeling by the

PCISPH method, we can assume that it is necessary and sufficient to divide the space

along a plane collinear with the gravity vector. Obviously, for updating the properties of

particles located in adjacent areas of domains, it is necessary to have information about

particles located in neighboring cells from other domains and, at the same time, located in

the memory of another device. Such particles can be called imaginary or motionless

because the calculation of their physical properties and the determination of their new

positions are not performed.

The synchronization of calculations is provided in two aspects: first, the worktime —

devices must work simultaneously; second, the data should be consistent. The algorithm

should satisfy the following requirements:

1. Scalability over quantity of devices.

2. Devices must work independently.

3. Devices must work synchronously:

(a) devices start working together;

(b) average worktime of a device should differ by no more than a small error.

4. For each device, the algorithm should automatically determine the number of

particles.

Initial data contain information about particles: location, velocity, etc; particles are

ordered by cellID value. It also contains information about calculation devices. Their

number and weight coefficients for data distribution are calculated automatically. Figure 3

presents an example of data distribution.

Let us define the partition as a subset of particles processed by a single device. The

partition also contains information about ”ghost” particles. The size of each partition

depends on the performance coefficient. For the calculation of this characteristic, a

heuristic function is suggested. The function calculates the coefficient based on the

possible numbers of flows that can be run simultaneously on a particular Device 3.

Distributed calculations on multiple independent devices for PCISPH method 63

Figure 3. Data distribution among solver devices for PCISPH algorithm. Different colors on the

boundary area indicate ghost particles that also must be loaded into a particular solver

 ϵ(di) = D · WG , (3)

where di is a device, D is a number of available streaming multiprocessors (CUDA cores

for NVIDA devices), for CPU is a number of cores, WG is the dimension of the work

group for the device. For example, a Radeon R 290X GPU has 44 streaming

multiprocessors and WG = 256. In order to achieve runtime synchronization, it is

necessary that before each iteration, the data are distributed among the devices

proportionately to the performance of the devices. The optimal number of particles for

processing by the ith device is determined by the following equation 4:

 . (4)

When defining a partition, it must also be taken into account that all particles in one

cell must be processed by the same device.

1.3. Computation model flow

The computation model defines an abstract representation of how instruction threads are

executed in a heterogeneous system. The host part of the program controls the calculation

flow and synchronization of data between nodes. A node is an independent device

GPU/CPU with isolated memory. Depending on the number of nodes, an appropriate

number of parallel threads is created. Each thread runs code separately but in the same

address space.

The control flow structure can be divided into several layers depending on the

performed task. The main process is an abstraction over the calculation flow, controlling

initialization/synchronization data and models, and controlling initialization of devices

(solvers). The layer of solvers consists of a list of solver structures, describing the order of

command flow for a particular device. Running instructions process a subset of particles,

for which the solver is responsible. The last layer is the layer of devices that defines the

structures responsible for implementing parallel computing on a particular device. The

calculation model is illustrated in Figure 4.

64 Sergey Khayrulin

Figure 4. Computation flow model

As shown in Figure 4, at the synchronization stage, all threads are suspended, and the

control thread synchronizes data between solvers. After that, all solvers reactivate their

work. The mathematical model of the environment is approximated by a numerical model

represented by a set of particles or an array of particles. The array is represented as a

continuous section of the computer’s memory. Data synchronization includes

ordering/sorting the array of particles according to the corresponding value of the spatial

cell index and updating them in the RAM of the devices. For synchronizing data between

control threads and devices, it is proposed to use standard blocking tools, such as

condition variables and [10] mutexes, which allow the elimination of the possibility of the

race conditions. At the synchronization stage, all solvers are trying to lock the mutex. The

thread that succeeds runs the process of updating the partition size with respect to ϵ(di).

Next, the sorting process is launched. In the meantime, all other threads are idling and

waiting for the lock to be released; after this becomes possible, all data is ordered and can

be loaded into the device memory. Thus, the devices can continue their work.

Distributed calculations on multiple independent devices for PCISPH method 65

1.4. Results

A number of tests were completed. Classical dam break model configuration was

generated for various numbers of particles – 96368, 844203, 1183724, 3547755, 6904779,

9772237, 14204179, 20078971. The tests were run for different configurations of the

computing cluster. The number of coprocessors in the system varied from 1 to 8 GPUs –

NVIDIA Tesla V100 SMX2 with 80 computing units with 1024 threads on each. Tests

were performed on the Novosibirsk State University computing cluster. Each simulation

iteration involves several stages:

1. Generating a list of neighbors for each particle.

2. Calculation of changes of physical quantities and smoothing of densityfluctuations

(PCISPH).

3. Numerical Integration (Leapfrog, Semi-implicit Euler)

4. Data synchronization

(a) Sorting, 1 thread qsort, parallel – modification of radix sort

(b) Data distribution among the solvers according to sorted array – copying new sub

buffers to device memory

5. Updating data.

At each run, the iteration execution time was logged as the sum of 5:

 , (5)

where is the total iteration time – search for neighbors time, Ti
phys – time for

updating physical parameters, Ti
sync – synchronization time. The most time-consuming

operations are sorting processes – Tsort and the process of calculating new values of

physical quantities. The search for neighbors occurs in parallel and takes from 10 to 20 %

of the total computation time on the GPU. The stage of data distribution takes an

insignificant amount of time relative to the sorting time, and therefore can be neglected.

At the synchronization stage, the array of particles is sorted, and new domain

configurations are distributed among devices. Sorting can work in two modes: serial and

parallel. For each test, a fixed number of iterations was performed, and the average time

to complete one iteration was calculated as

,

where N is the number of iterations. The results are presented in Figure 5. The obtained

results allow us to conclude that we have achieved significant acceleration of calculations

for discrete models described using the method of the PCISPH class.

As seen in Figure 5, sort step significantly impacts the common calculation time for

configuration with big numbers of particles. For example, for the configuration with 9

million particles, the average time required for single thread sorting was approximately1.6

seconds, while for parallel sorting it was 0.6 seconds

66 Sergey Khayrulin

Figure 5. Test results for several GPU computing nodes from 1, 4, 7 and 8 devices. The symbol ||

indicates tests run with parallel sorting mode

1.5. Conclusion

Test results have shown that the algorithm for distribution of calculations and data can

significantly speed up the PCISPH method. In addition, the proposed implementation of

the parallel sorting algorithm will also significantly speed up the process of data ordering

in comparison with a single-threaded implementation. The obtained results are supposed

to be used in the Sibernetic [11], [12] project, which is based on the PCISPH method and

is used to model the hydrostatic skeleton of the nematode C. elegans within the

framework of the OpenWorm project [13].

Distributed calculations on multiple independent devices for PCISPH method 67

Figure 6. Average time for one iteration for configuration with 9 million particles on various

cluster configurations with one thread and parallel sorting

References

[1] Harlow F. H. The particle-in-cell method for numerical solution of problems in

fluid dynamics // Proc. Symp. Applied Mathematics. 1963. Vol. 15. P. 269.

[2] Belotserkovskii O. M., Davydov Yu. M. Non-stationary large-particle method for

gas-dynamic calculations // Zh. Vychisl. math. and mat. Fiz. 1971. Vol. 11.

No.1. P. 182 – 207 (In Russian).

[3] Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: theory and

application to non-spherical stars // Monthly Notices of the Royal Astronomical Society.

1977. Vol. 181. Iss. 3. P. 375–389. https://doi.org/10.1093/mnras/181.3.375.

[4] Monaghan J. J. An introduction to SPH // Comp. Phys. Comm. 1988. Vol.

48. Iss. 1. P. 89-96. https://doi.org/10. 1016/0010-4655(88)90026-4.

[5] Solenthaler B. Predictive-corrective incompressible SPH // ACM Transactions on

Graphics. 2009. Vol. 28. Iss. 3. P. 1 – 6 .

https://doi.org/10.1145/1576246.1531346.

https://doi.org/10.1093/mnras/181.3.375

68 Sergey Khayrulin

[6] Dominguez J.M., Crespo A.J.C. Valdez-Balderas D., Rogers B.D., Gomez-

Gesteira M. New multi-GPU implementation for smoothed particle hydrodynamics on

heterogeneous clusters // Comp. Phys. Comm. 2013. Vol. 184, Iss. 8. P. 1848

1860. https://doi.org/10. 1016/j.cpc.2013.03.008.

[7] Verma K., Szewc K., Wille R. Advanced load balancing for SPH simulations on

multi-GPU architectures // Proc. IEEE High Performance Extreme Computing

Conference (HPEC). 2017. P. 1 7. https://doi.org/:

10.1109/HPEC.2017.8091093.

[8] Verma K., Peng C., Szewc K. and Wille R. A Multi-GPU PCISPH

implementation with Efficient Memory Transfers //Proc. IEEE High Performance extreme

Computing onference . 2018. P. 1 7. https://doi.org/:

10.1109/HPEC.2018.8547542.

[9] Dijkstra E. W. Solution of a problem in concurrent programming control // Proc.

Comm. . 1965. P. 569. https://doi.org/:1145365559.365617.

[10] Palyanov A., Khayrulin S., Larson S.D. Application of smoothed particle

hydrodynamics to modeling mechanisms of biological tissue // Advances in Engineering

Software. 2016. Vol. 98. P. 1 11.

https://doi.org/10.1016/j.advengsoft.2016.03.002.

[11] Palyanov A., Khayrulin S., Larson S. D. Three-dimensional simulation of the

Caenorhabditis elegans body and muscle cells in liquid and gel environments for

behavioural analysis // Philosophical Transactions of the Royal Society B: Biological

Sciences. 2018. Vol. 373. Iss. 1758. https://doi.org/10.1098/rstb.2017.0376.

[12] Sarma G. P., Lee C. W., Portegys T., Ghayoomie V., Jacobs T., Alicea B.,

Cantarelli M., Currie M., Gerkin R. C., Gingell S., Gleeson P., Gordon R., Hasani R. M.,

Idili G., Khayrulin S., Lung D., Palyanov A., Watts M., Larson S. D. OpenWorm:

Overview and recent advances in integrative biological simulation of Caenorhabditis

elegans // Philosophical Transactions of the Royal Society B: Biological Sciences.

 . Vol. 373. ss. .

https://doi.org/10.1098/rstb.2017.0382

https://doi.org/10.%201016/j.cpc.2013.03.008
https://doi.org/:1145365559.365617
https://doi.org/10.1016/j.advengsoft.2016.03.002
https://doi.org/10.1098/rstb.2017.0376

