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Abstract. One of the most significant drawbacks of the PCISPH algorithm (predictive corrective 

SPH), which is often used for the simulation of incompressible viscous liquid dynamics, is the 

complexity of the organization of distributed calculations on a computational cluster. At the same 

time, the algorithm supports the data parallelism relative to a single device. In this paper, new 

methods and algorithms for overcoming this drawback are suggested, based on an effective model 

of distributing the data between independent computing units. The resulting algorithms have been 

realized and tested on Novosibirsk State University’s cluster. 
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Introduction 

In the classical N-body problem for calculating forces affecting any object, it is 

necessary to consider the influence of all bodies in the system. Thus, it is reasonable to 

assume that numerical algorithms for simulating such a system have quadratic asymptotic 

complexity O(N2). One of the critical problems of any numerical model of particles is 

scaling and involving a greater number of particles to get more detailed results. To 

calculate the consequent state of the system for each particle, it is essential to know the 

physical parameters of any other particle. 

The combined PIC method (particle in cell) [1] [2] and its modifications [2] assume 

that the continuum is described both by particles and a fixed grid. In this case, particles 

carry information only about the mass, while information on fluctuations of physical 

properties in the system is distributed through fixed grid nodes. This means that for 

synchronization of parallel calculations on various cluster nodes or single node devices, 

only timely updates of values in the grid nodes and of information on the number of 

particles in the cell are sufficient. At the same time, in completely Lagrangian algorithms 

such as SPH [3] [4] and its modification PCISPH [5] [6], the coordinate system is 

associated with the movement of fluid in space (the grid moves together with the fluid) 

and corresponds to fixed points in the medium. Consequently, the continuum is 

represented by a discrete multitude of particles. Information in the medium is transmitted 

exclusively through particles. 

Although each method is well parallelized over data, for numerical models based on a 

system of particles it is quite difficult to distribute calculations in systems with 

independent RAMs, such as cluster nodes, or on various computing devices within one 

computer and yet with independent RAM modules, such as GPUs, as this requires a data 

synchronization mechanism. This particular problem arises  because particles are 

dynamic and not tied to specific positions, like nodes of computational grids. However, 

in the works [7] [8] [9], attempts are made to overcome this shortcoming by logically 

dividing the simulated space into non-intersecting static or dynamic subspaces — 

domains. Therefore, particles can be clustered according to a spatial feature, depending 

on the current position. This implies that each domain is processed by a separate solver. 

In our interpretation of the PCISPH method, we also relied on this approach. Below in 

Table 1 is a comparison between our and similar approaches. 
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Table 1. Comparison of distributed realizations for SPH/PCISPH algorithms 

 

Source GPGPU technology Algorithm Open-

source 

[7] CUDA + MPI SPH - 

[8] CUDA SPH - 

[9] CUDA PCISPH - 

Sibernetic OpenCL PCISPH + 

    

    

1.1. PCISPH 

    Formally the PCISPH algorithm represents a continuous medium as a multitude of 

separate particles, each interacting with others in accordance with specified laws. Each 

particle contains information about the local environment state: mass, velocity, density, 

pressure, viscosity and position in space. It is noteworthy that properties of a particle 

depend on the surrounding particles, specifically, on properties of particles located in 

close vicinity  

 

 

Figure 1. Smoothing of physical properties for particles relative to neighbors. The influence of 

particles beyond the boundary of the sphere is ignored 

Physical properties are smoothed according to  equations 1, 2 

Z 

 A(x) = A(x′)δ(x − x′)dx′ (1), 
Ω 

Z 

 A(x) = A(x′)W(x − x′,h)dx′ (2), 
Ω 

where A(x) is a physical quantity, δ is Dirac’s delta function replaced by so-called kernel 

function W. Kernel function has the following properties: 

Z 
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W(x − x′,h)dx′ = 1 lim , 

W(r,h) = δ(r) h→0,  

where h is a constant value also called the smoothing radius. As noted above, the 

influence of particles located beyond the sphere with a radius h and the center in a 

particular particle is neglected. The hydrodynamic model is described by Navier–

Stokes equations for incompressible viscous liquid: 

 

The numerical model is represented by a limited multitude of particles enclosed in the 

boundary box. To optimize the neighbor search, all medium in the algorithm boundary 

box is divided into discrete amounts of non-overlapping spatial cells. These cells are static 

and do not change their volume and position throughout the simulation time. Therefore it 

is possible to cluster particles by spatial cell identification cellID. Spatial cell edge length 

is equal to 2h Figure 2. 

 

 

 

Figure 2. Spatial cell. The blue dot represents a particle 

For any particle, the spatial cell index can be defined as 

, 

cellID = j + k · gridCellY + i · gridCellZ · gridCellY 

where x,y,z are the coordinates, h is the smoothing radius. 
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1.2. Calculation distribution 

The key concept of the algorithm consists in distribution of data through devices. Each 

particle processed by a particular device must have all necessary and sufficient data for 

calculating the neighbor list and physical properties on each new simulation step. The 

number of particles processed by one device should be correlated with its performance. 

Additionally, since the system is not static and particles are moving, the algorithm must 

dynamically distribute data among the devices to support particle distribution and 

relevance of the data on each device. 

As stated above, particles could be clustered by cellID known at any particular moment 

t. At the same time, because our primary goal is to parallelize fluid modeling by the 

PCISPH method, we can assume that it is necessary and sufficient to divide the space 

along a plane collinear with the gravity vector. Obviously, for updating the properties of 

particles located in adjacent areas of domains, it is necessary to have information about 

particles located in neighboring cells from other domains and, at the same time, located in 

the memory of another device. Such particles can be called imaginary or motionless 

because the calculation of their physical properties and the determination of their new 

positions are not performed. 

The synchronization of calculations is provided in two aspects: first, the worktime — 

devices must work simultaneously; second, the data should be consistent. The algorithm 

should satisfy the following requirements: 

1. Scalability over quantity of devices. 

2. Devices must work independently. 

3. Devices must work synchronously: 

(a) devices start working together; 

(b) average worktime of a device should differ by no more than a small error. 

4. For each device, the algorithm should automatically determine the number of 

particles. 

Initial data contain information about particles: location, velocity, etc; particles are 

ordered by cellID value. It also contains information about calculation devices. Their 

number and weight coefficients for data distribution are calculated automatically. Figure 3 

presents an example of data distribution. 

Let us define the partition as a subset of particles processed by a single device. The 

partition also contains information about ”ghost” particles. The size of each partition 

depends on the performance coefficient. For the calculation of this characteristic, a 

heuristic function is suggested. The function calculates the coefficient based on the 

possible numbers of flows that can be run simultaneously on a particular Device 3. 
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Figure 3. Data distribution among solver devices for PCISPH algorithm. Different colors on the 

boundary area indicate ghost particles that also must be loaded into a particular solver 

 ϵ(di) = D · WG , (3) 

where di  is a device, D is a number of available streaming multiprocessors (CUDA cores 

for NVIDA devices), for CPU is a number of cores, WG is the dimension of the work 

group for the device. For example, a Radeon R 290X GPU has 44 streaming 

multiprocessors and WG = 256. In order to achieve runtime synchronization, it is 

necessary that before each iteration, the data are distributed among the devices 

proportionately to the performance of the devices. The optimal number of particles for 

processing by the ith device is determined by the following equation 4: 

  . (4) 

When defining a partition, it must also be taken into account that all particles in one 

cell must be processed by the same device. 

1.3. Computation model flow 

The computation model defines an abstract representation of how instruction threads are 

executed in a heterogeneous system. The host part of the program controls the calculation 

flow and synchronization of data between nodes. A node is an independent device 

GPU/CPU with isolated memory. Depending on the number of nodes, an appropriate 

number of parallel threads is created. Each thread runs code separately but in the same 

address space. 

The control flow structure can be divided into several layers depending on the 

performed task. The main process is an abstraction over the calculation flow, controlling 

initialization/synchronization data and models, and controlling initialization of devices 

(solvers). The layer of solvers consists of a list of solver structures, describing the order of 

command flow for a particular device. Running instructions process a subset of particles, 

for which the solver is responsible. The last layer is the layer of devices that defines the 

structures responsible for implementing parallel computing on a particular device. The 

calculation model is illustrated in Figure 4. 
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Figure 4. Computation flow model 

As shown in Figure 4, at the synchronization stage, all threads are suspended, and the 

control thread synchronizes data between solvers. After that, all solvers reactivate their 

work. The mathematical model of the environment is approximated by a numerical model 

represented by a set of particles or an array of particles. The array is represented as a 

continuous section of the computer’s memory. Data synchronization includes 

ordering/sorting the array of particles according to the corresponding value of the spatial 

cell index and updating them in the RAM of the devices. For synchronizing data between 

control threads and devices, it is proposed to use standard blocking tools, such as 

condition variables and [10] mutexes, which allow the elimination of the possibility of the 

race conditions. At the synchronization stage, all solvers are trying to lock the mutex. The 

thread that succeeds runs the process of updating the partition size with respect to ϵ(di). 

Next, the sorting process is launched. In the meantime, all other threads are idling and 

waiting for the lock to be released; after this becomes possible, all data is ordered and can 

be loaded into the device memory. Thus, the devices can continue their work. 
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1.4. Results 

A number of tests were completed. Classical dam break model configuration was 

generated for various numbers of particles – 96368, 844203, 1183724, 3547755, 6904779, 

9772237, 14204179, 20078971. The tests were run for different configurations of the 

computing cluster. The number of coprocessors in the system varied from 1 to 8 GPUs – 

NVIDIA Tesla V100 SMX2 with 80 computing units with 1024 threads on each. Tests 

were performed on the Novosibirsk State University computing cluster. Each simulation 

iteration involves several stages: 

1. Generating a list of neighbors for each particle. 

2. Calculation of changes of physical quantities and smoothing of densityfluctuations 

(PCISPH). 

3. Numerical Integration (Leapfrog, Semi-implicit Euler) 

4. Data synchronization 

(a) Sorting, 1 thread qsort, parallel – modification of radix sort 

(b) Data distribution among the solvers according to sorted array – copying new sub 

buffers to device memory 

5. Updating data. 

At each run, the iteration execution time was logged as the sum of 5: 

   , (5) 

where  is the total iteration time  – search for neighbors time, Ti
phys – time for 

updating physical parameters, Ti
sync – synchronization time. The most time-consuming 

operations are sorting processes – Tsort and the process of calculating new values of 

physical quantities. The search for neighbors occurs in parallel and takes from 10 to 20 % 

of the total computation time on the GPU. The stage of data distribution takes an 

insignificant amount of time relative to the sorting time, and therefore can be neglected. 

At the synchronization stage, the array of particles is sorted, and new domain 

configurations are distributed among devices. Sorting can work in two modes: serial and 

parallel. For each test, a fixed number of iterations was performed, and the average time 

to complete one iteration was calculated as 

, 

where N is the number of iterations. The results are presented in Figure 5. The obtained 

results allow us to conclude that we have achieved significant acceleration of calculations 

for discrete models described using the method of the PCISPH class. 

As seen in Figure 5, sort step significantly impacts the common calculation time for 

configuration with big numbers of particles. For example, for the configuration with 9 

million particles, the average time required for single thread sorting was approximately1.6 

seconds, while for parallel sorting it was 0.6 seconds  
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Figure 5. Test results for several GPU computing nodes from 1, 4, 7 and 8 devices. The symbol || 

indicates tests run with parallel sorting mode 

1.5. Conclusion 

Test results have shown that the algorithm for distribution of calculations and data can 

significantly speed up the PCISPH method. In addition, the proposed implementation of 

the parallel sorting algorithm will also significantly speed up the process of data ordering 

in comparison with a single-threaded implementation. The obtained results are supposed 

to be used in the Sibernetic [11], [12] project, which is based on the PCISPH method and 

is used to model the hydrostatic skeleton of the nematode C. elegans within the 

framework of the OpenWorm project [13]. 
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Figure 6. Average time for one iteration for configuration with 9 million particles on various 

cluster configurations with one thread and parallel sorting 
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