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Entity alignment experiments on Russian-English dataset
with unmatchable entities

Z.V. Apanovich, D.G. Kernogo

Abstract. In recent years, interest in knowledge graphs (KG) has increased exponentially in both
scientific and industrial communities. The KGs play an important role in the Al applications such as
natural language processing including question-answering systems, recommender systems, and search
engines. Integration of different KGs is one of the most pressing problems and is used, for example,
to develop complex digital twins of industrial systems. One of the components of the KG integration
problem is the entity alignment (EA) problem, which attempts to identify entities in different KGs
describing the same real-world object. A special case of this problem is the problem of cross-language
entity alignment, which is closely related to the problem of import substitution, such as finding
equivalent drugs, spare parts, or devices for the Internet of Things. Unfortunately, in real KGs, many
entities may have no equivalents in other KGs. This paper describes entity alignment experiments
using the example of a Russian-English dataset with unmatchable entities.
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1. Introduction

Knowledge graphs store facts about real-world objects as relational and literal triples. A
relational triple represents a relationship between two entities (that is, real-world objects
with unique Internationalized Resource Identifiers, IRIs) and has the form tr_r = (subject
entity, relation, object entity). A literal triple stores information about entity attributes and
has the form tr_I = (subject entity, attribute, literal value).

Figure 1 shows fragments from the English-language and Russian-language versions of
DBpedia describing Novosibirsk State University. An example of a relational triple is
(Novosibirsk_State_University, rector, Fedoruk,_Mikhail_Petrovich), and an example of a
literal triple is (Novosibirsk_State_University, established, 1959). In Figure 1, red lines
indicate the owl:sameAs equivalence relations linking entities between the Russian and
English  knowledge graphs. It can be seen that the English entity
dbr:Fedoruk,_Mikhail_Petrovich in the English knowledge graph corresponds to the
Russian entity M. I1._®eoopyx, the English predicate dbo:rector corresponds to the
Russian predicate pexmop, and the English entity dbr:Novosibirsk_State University
corresponds to the Russian entity Hosocubupcruii 2ocyoapcmeennviti ynugepcumem. Of
course, in ideal scenario, the English-language and Russian-language lists of staff, rectors,
and students of Novosibirsk State University should coincide across the two knowledge
graphs. In practice, however, these lists are often incomplete and may differ substantially,
with some discrepancies between the descriptions of equivalent entities.

First of all, note the different spellings of names in the Russian-language and English-
language versions of the knowledge graphs. Also, the two versions specify different
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founding years for the university. In addition, the versions differ in the lists of people
associated with the NSU (the people who studied or worked there). For example, both
versions mention the NSU graduate Efim Zelmanov, a Fields Medal recipient in
mathematics. However, only the English version includes information about the NSU
graduate Andrei Voronkov, recipient of the Herbrand Award (dbr:Herbrand_Award) and a
developer of the EasyChair system (dbr: EasyChair), which is widely used by researchers
worldwide for conference paper submissions. Since descriptions of real-world objects such
as Andrei Voronkov and the Herbrand Award were missing from the Russian DBpedia at
the time of the writing, attempts to align the English and Russian versions produce so-
called dangling or unmatchable entities dbr:Andrei_Voronkov u dbr:Herbrand_Award.

It can be seen that the most complete description of an entity can be obtained by merging
all the triples that describe the same entity across different knowledge graphs. However, to
accomplish this, one should establish correctly links between the equivalent entities.
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Figure 1. Correspondence between the equivalent entities in the English-language
and Russian-language knowledge graphs

Modern entity alignment (EA) methods are based on the assumption that equivalent
entities have similar neighborhoods, which explains a wide use of representation learning
methods. These methods generate so-called embeddings of a given dimensionality for
entities and relations in knowledge graphs. The advantages of the embedding-based
methods are their high scalability and minimal effort required to prepare training datasets.
In the following, the embedding of an entity e will be represented as e.

Clearly, Russian-speaking users are primarily interested in experiments with the
Russian-language data. A Russian-English dataset for experiments with cross-language
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entity alignment algorithms is described in [1]. The features of the Russian-English dataset
are shown in Table 1.

Table 1. Features of the Russian-English dataset

KG Number of | Number  of | Number of | Number of | Number of
language entities relations attributes relational attributive
triples triples
Ru 15000 66 15018 30489 54499
En 15000 163 15106 43796 76852

Paper [2] shows that the quality of entity alignment can be improved significantly by
improving the quality of the embeddings of entity names. Additionally, optimal
combinations of methods for generating entity name embeddings were found.

2. Entity alignment with unmachable entities

An embedding-based entity alignment method typically consists of two parts:
representation learning, which computes embeddings for the entities belonging to different
knowledge graphs, and the matching of these embeddings. The computation of embeddings
for different knowledge graph entities is done separately, so these embeddings may fall into
different vector spaces. This is why it is necessary to map them into a common vector
space, which is done using the so-called «seed alignments» containing the pairs of
equivalent entities from the two knowledge graphs. The distance between aligned entity
pairs is measured using distance metrics, such as cosine similarity, Manhattan distance,
Euclidean distance, and others.

Until recently, EA solutions assumed that every entity in the source knowledge graph
(KG) has an equivalent entity in the target KG. Hence each entity equivalent to the source
entity was searched as the nearest neighbor of the source entity in the embedding space. In
practice, the nearest-neighbor-based methods can result in the entity alignment graph
having hub nodes with too many "equivalent™ entities, as well as isolated nodes with no
"equivalent" entities. Some methods, such as [3, 4], leverage bi-directional alignment
integrating a source-to-target with a target-to source alignment. In addition, methods such
as Hungarian algorithm and Stable matching algorithm [5-7] are looking for 1-to-1
correspondence between the aligned entities. However, unmatchable entities always exist.
For example, one of the largest knowledge graphs wikidata.org contains equivalent entities
from many different datasets, such as viaf.org, ror.org, imdb.com, and others, while each of
these datasets contains some entities absent in other knowledge graphs. This is why an ideal
entity alignment system should be able to detect and handle unmatchable entities.
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To address this problem, special datasets are required. The main challenge is to ensure
that «dangling» entities actually have no equivalent entities in the second dataset. First, two
subgraphs are created, in which every entity has an equivalent in the other graph. Then, two
random non-overlapping subsets of entities are removed from both knowledge graphs. The
corresponding entities of the removed entities then become unmatchable. The structure of a
dataset with unmatchable entities is shown in Figure 2. The Russian-English dataset from
[1] was used as the initial set of triples.

KG1 KG2 KG1 KG2
15000-n-m 15000-n-m
15000 - 15000
n n
m m

Figure 2. Construction of a dataset with unmatchable entities

3. Algorithms used in the entity alignment experiments

3.1. Algorithm RREA

The RREA algorithm [8] was used for the generation of entity embeddings, as it
demonstrates the EA quality superior, for instance, to the RDGCN algorithm. This method
uses a Graph Neural Network-based (GNN-based) approach to entity alignment. Its key
feature is the use of an orthogonal transformation matrix. To this end, a Relational
Reflection Transformation is introduced, which satisfies the following two conditions:

1. Relational Differentiation. For any two relations r; and r, and entity e, the
embeddings of entity e should be mapped into different spaces.

2. Dimensional Isometry. The norms of entity embeddings should remain unchanged
after the transformation. The distances between entity embeddings should be preserved.

For any relation embedding r, this operation constructs a reflection matrix and uses it as
a transformation matrix.

3.2. Data set used by the Hungarian algorithm

The entity matching problem can be solved as a problem where entities from one
knowledge graph are assigned to the entities in another graph. This requires finding the
minimum total sum of pairwise distances between entities. The Hungarian algorithm
matches all entities to all entities, enforcing a one-to-one correspondence between them.
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The Hungarian algorithm operates on a square distance matrix between the entities of
two knowledge graphs, as it constructs a matching with a minimal cost. This is why
fictitious entities are added to the graph with fewer entities. The final aligned entities are
obtained by removing all pairs including fictitious entities.

3.3. Algorithm TBNNS and C-TBNNS

To identify unmatchable entities, the Thresholded Bi-directional Nearest Neighbor Search
(TBNNS) was used [9].

The TBNNS method defines three conditions under which a pair of entities u from KG1
and v from KG2 is considered as matchable:

- v is the nearest neighbor of u in KG2 amongst all other entities in KG2;

- u is the nearest neighbor of v in KG1 amongst all other entities in KG1,;

- the distance between u and v is less than a given threshold 6.

Entities that do not satisfy these conditions are considered unmatchable.

This constraint is fairly strict and requires careful tuning of the threshold value 6. A high
threshold can produce more aligned entity pairs while some of them might be incorrect. A
low threshold will result in fewer aligned entity pairs, and almost all of them will be
correct.

The C-TBNNS [10] method measures the confidence of an entity pair to be correctly
aligned. The confidence score C(u, v) is estimated as Dist(u, v’) — Dist(u, v) + Dist(v, u’) -
Dist(v, u).

This calculation is based on the idea that if the distance between the embeddings of the
entities u and v is less than the distance between the top-2 closest candidates for alignment,
it is possible to assume that these two entities are correctly aligned. The confidence score is
used to calculate the loss function.

3.4. EntMatcher and CUEA frameworks
The two frameworks used for experiments with unmatchable entities were EntMatcher [10]

and CUEA [11]. The advantage of the EntMatcher is a vast set of representation learning
algorithms and strategies for finding corresponding entities between two knowledge graphs.

Representation leaming Auxilliary information
RREA, Labels, descriptions..

e

Similarity metric:
Cosine, Euclidian..

A J
Entity matching:
Hungurian, TBNNS...

Figure 3. The architecture of the EntMatcher framework
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However, this framework is not designed to handle unmatchable entities. The
framework developed specifically for this purpose is the CUEA, but its set of embedding
methods and entity matching strategies is very limited. To remedy the situation, both
frameworks have been modified. The EntMatcher was extended to handle unmatchable
entities by adding an implementation of the TBNNS [9]. The architecture of the
EntMatcher framework is shown in Figure 3.

A distinctive feature of the CUEA (Confidence-based Unsupervised Entity Alignment)
method is its ability to work without a set of pre-aligned entities. It can use external
information, such as entity labels, to construct an initial alignment. The CUEA algorithm
takes the initial structural and textual embeddings of entities as an input, sums them up
together using a weighting coefficient o, and saves the resulting embeddings. In this case,
the initial structural embeddings were computed using the RREA method, and the initial
textual embeddings were computed using the LaBSE [11] language model.

The current embeddings are then used in subsequent iterative training. A list of aligned
entity pairs is also stored in memory, where newly aligned pairs are added, but none are
removed (this list will be the final output of the algorithm).

Next, the TBNNS is applied with a given alignment distance threshold 6. The TBNNS
takes as an input the current embeddings and the set of the yet-to-be-aligned entities in
KG1 and KG2 and adds new pairs to the list of the aligned entities.

Next, the embeddings are retrained using the current list of aligned pairs. The new
current embeddings are obtained by summing the existing embeddings and the retrained
embeddings with the weighting coefficient 4.

Then, the threshold @ is increased by a certain value, and C_TBNNS is applied again,
and the loop starts over and continues until the algorithm no longer adds new aligned
entities. The final list of aligned entities is used to compute precision, recall, and F1-score.

The CUEA framework was extended by adding an implementation of the RREA entity
embedding method [8]. The architecture of the CUEA is shown in Figure 4.

Textual embedding Structural embedding

alpha
1-alpha
Initial embedding
l C-TBNNS l

-~

New alignment results
1-beta

beta
\ 4

Subsequent structural
embeddings

Figure 4. The architecture of the CUEA framework
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Then both frameworks were used to conduct experiments on the Russian-English dataset
with unmatchable entities, testing a wide range of parameters.

Three groups of experiments have been conducted:
1. Computing of structural embeddings using the EntMatcher Framework and
matching the entities using the Hungarian algorithm [6];
2. Computing of structural embeddings using the EntMatcher Framework method
and matching the entities using the TBNNBS;
3. Computing of structural embeddings using the CUEA framework and textual
embeddings using the LaBSE language model, computing their fusion and matching of
entities using the UEA.

Since the RREA algorithm was used for embedding generation in all the three groups of
experiments, this will not be mentioned further and we will focus on the different methods
of establishing entity correspondences.

4. Results of experiments with unmatchable entities

We used a modified EntMatcher, capable of aligning knowledge graphs with different
numbers of unmatchable entities, and the ru_en dataset. The embedding computation
algorithm was trained on two complete knowledge graphs and 4,500 known equivalent
entity pairs. Only relational triples were used.

Testing was done on the remaining pairs (up to 10500 pairs of entities, or 70% of the full
dataset). Entities from the left knowledge graph (KG1) were the input of the model. The
output of the model was the set of predicted aligned pairs. The following notations are used
in the table:

KG1 and KG2 are the numbers of entities in each of the KGs;

UKG1 and UKG2 are the numbers of unmatchable entities in each of the KGs;

Corr. is the number of pairs aligned correctly; and

P, R, F1 are precision, recall, and F1-score.

4.1. Distance matching using the Hungarian algorithm

The results of applying the Hungarian algorithm for entity alignment are presented in Table
2. It can be seen that as the number of unmatchable entities increases, all the three metrics
decrease, which is an expected result since the Hungarian algorithm aligns all available
entities with each other.

If unmatchable entities are present in only one knowledge graph, then recall is equal to
precision.

When the unmatchable entities are present only in the left or only in the right knowledge
graph, the results are approximately the same.

When the unmatchable entities are present in both knowledge graphs, the F1-score is
slightly lower when there are many unmatchable entities.
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Table 2. Entity alignment using the Hungarian algorithm with different number
s of matchable entities in KG1 and KG2

KG1 KG2 UKG1 UKG2 Corr. P R F1
10500 10500 0 0 5424 0.517 0.517 0.517
10250 10250 250 250 4783 0.467 0.478 0.472
10000 10000 500 500 4395 0.440 0.463 0.451
10250 10500 0 250 5134 0.501 0.501 0.501
10000 10500 0 500 4832 0.483 0.483 00.483
9500 10500 0 1000 4344 0.375 0.457 0.457
10500 10250 250 0 5120 0.500 0.500 0.500
10500 10000 500 0 4879 0.488 0.488 00.488
10500 9500 1000 0 4329 0.456 0.456 0.456

4.2. Entity alignment using the TBNNS

The results of runs with the different values of the entity distance threshold 6, including an
infinite threshold denoted in the table as INF, are shown in the table below.

Table 3. Entity alignment with the TBNNS using the distance threshold and
different numbers of matchable entities in KG1 and KG2

KG1 KG2 UKG1 | UKG2 Corr. 0 P R F1

8000 8000 2500 2500 208 0.025 0.756 0.038 0.072

8000 8000 2500 2500 643 0.05 0.703 0.117 0.200

8000 8000 2500 2500 869 0.075 0.675 0.158 0.256

8000 8000 2500 2500 1068 0.1 0.657 0.158 0.256
8000 8000 2500 2500 1260 0.15 0.657 0.194 0.300
8000 8000 2500 2500 1360 0.2 0.622 0.229 0.335
8000 8000 2500 2500 1387 0.25 0.607 0.247 0.351
8000 8000 2500 2500 1408 0.3 0.591 0.252 0.353
8000 8000 2500 2500 1406 0.35 0.576 0.256 0.354
8000 8000 2500 2500 1384 0.4 0.557 0.256 0.350
8000 8000 2500 2500 1414 0.45 0.542 0.257 0.349
8000 8000 2500 2500 1397 0.5 0.535 0.254 0.345

8000 8000 2500 2500 1386 INF 0.539 0.252 0.434

Not too large and not too small value of the threshold & gives a slight improvement of
the result across all the three metrics compared to an infinite threshold. A very small
threshold reduces the recall (R) and F1-score but increases the precision (P).
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4.3. Experiments with the unmatchable entities using the CUEA

Only the initial structural embeddings trained on the training pairs (using only relational
triples) were used as an input into the CUEA algorithm. The results are shown in the table
below. The “Pred.” column shows the number of predicted aligned entity pairs. The “Mat.”
shows the number of matchable entities amongst the predicted (“Pred.”). The “Corr.”
column shows the total number of correctly aligned entities. The P, R and F1 columns show
the precision, recall and F1-score, respectively. As expected, all metrics decrease as the
number of unmatchable entities increases.

Table 4. Results of CUEA running on unmatchable entities

KG1 KG2 | UKG1 | UKG2 | Pred. | Mat. | Corr. P R F1

10500 | 8500 | 2000 8188 | 7029 | 3931 0.462 | 0480 | 0.471

10500 | 7500 | 3000 7074 | 5576 | 3230 | 0.431 | 0.457 | 0.443

10500 | 6500 | 4000 5978 | 4305 | 2501 0.385 | 0.418 | 0.401

10500 | 5500 | 5000 4928 | 3265 | 1956 0.356 | 0.397 | 0.375

o|Oo|Oo|o|o

10500 | 4500 | 6000 3857 | 2297 | 1453 0.323 | 0.377 | 0.348

4.4. Comparison of results across all methods

Below is a summary table comparing the results of the three methods using the RREA
embeddings on the en_ru dataset with unmatchable entities. An infinite TBNNS parameter
6 was used.

Table 5. Summary of results of different entity alignment algorithms

KG1 KG2 | UKG1 | UKG2 Method P R Fl1
10500 | 8500 | 2000 0 CUEA 0.462 | 0.480 0.471
EntMat+TBNNS 0.708 | 0.319 0.439
EntMat+Hungarian 0.416 | 0.416 0.416
10500 | 7500 | 3000 0 CUEA 0.431 | 0.457 0.443
EntMat+TBNNS 0.683 | 0.294 0.411
EntMat+Hungarian 0.376 | 0.376 0.376
10500 | 6500 | 4000 0 CUEA 0.385 | 0.418 0.401
EntMat+TBNNS 0.630 | 0.271 0.379
EntMat+Hungarian 0.343 | 0.343 0.343
10500 | 5500 | 5000 0 CUEA 0.356 | 0.397 0.375
EntMat+TBNNS 0.598 | 0.264 0.366
EntMat+Hungarian 0.320 | 0.320 0.320
10500 | 4500 | 6000 0 CUEA 0.323 | 0.377 0.348
EntMat+TBNNS 0.534 | 0.236 0.328
EntMat+Hungarian 0.285 | 0.285 0.285
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The results show that the iterative CUEA algorithm achieved the highest F1-score and
recall, while EntMatcher combined with the TBNNS achieved the highest precision with
low recall.

Finally, Table 6 compares the CUEA alignment results obtained using only structural
embeddings with those obtained by combining information on structural embeddings and
entity name embeddings. Entity name embeddings were calculated using the LaBSE model.
Significant improvements in all parameters are evident.

Table 6. Comparison the CUEA alignment results

KG1l | KG2 | UKG1 | UKG2 Method P R F1
CUEA Structural 0.462 0.480 0471
10500 | 8500 | 2000 | O CUEA  Structural | 0.972 0.610 0.750

+Name Embed.

CUEA Structural 0.431 0.457 0.443

10500 | 7500 | 3000 0 CUEA  Structural | 0.954 0.475 0.634
+Name Embed.

CUEA Structural 0.385 0.418 0.401

10500 | 6500 | 4000 0 CUEA  Structural | 0.946 0.421 0.582
+Name Embed.

CUEA Structural 0.356 0.397 0.375

10500 | 5500 | 5000 | O CUEA  Structural | 0.930 0.340 0.497
+Name Embed.

CUEA Structural 0.323 0.377 0.348

10500 | 4500 | 6000 0 CUEA  Structural | 0.911 0.281 0.430
+Name Embed.

5. Conclusion

The problem of knowledge graph alignment with unmatchable entities reflects the real-
world scenarios and is therefore highly relevant. This work presents the results of entity
alignment experiments on a Russian-English dataset with unmatchable entities. The
confidence-based unsupervised entity alignment (CUEA) performed fairly well, by adding
progressively the pairs of aligned entities. Future work will examine the variations of this
approach using various language models for creating embeddings for the various attributes
of entities and, in particular, the multi-modal knowledge graphs.

It should be noted that the results of entity alignment methods vary depending on the
pairs of the languages of the knowledge graphs. In general, the best results are achieved in
the English-French and English-German alignments. The lower alignment quality on the
English-Russian dataset is, on the one hand, due to the linguistic specifics. On the other
hand, alignment quality is influenced not only by the algorithm itself, but also by the
structure of the dataset, particularly the density and the distribution of the degrees of
vertices in the knowledge graphs [7].



Entity alignment experiments on Russian-English dataset with unmatchable entities 11

References

[1] Gnezdilova V.A., Apanovich Z.V. Russian-English dataset and comparative analysis of
algorithms for cross-language embedding-based entity alignment // Journal of Physics:
Conference Series. — 2021. — Vol. 2099.

[2] Gusev D., Apanovich Z. Methods of processing textual information in entity alignment
algorithms // Bull. Novosibirsk Comp. Center. Ser. Computer Science. — Novosibirsk, 2021. —
Iss. 45. — P. 49-58.

[3] Lample, G., Conneau, A., Ranzato, M., Denoyer, L., Jégou, H. Word translation without
parallel data // Proc. ICLR. —2018. DOI: 10.48550/arXiv.1710.04087.

[4] Zeng W., Zhao X., Li X., Tang J., Wang W. On entity alignment at scale // VLDB Journal. —
2022. —Vol.31. — P.1009-1033.

[5] Kuhn  HW. The Hungarian method for the assignment problem. -
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf .

[6] Zeng W., Zhao X., Tang J., Lin X. Collective entity alignment via adaptive features // Proc.
ICDE. — 2020. — P. 1870-1873. DOI: 10.1109/ICDE48307.2020.00191.

[71 Zhu R., Ma M., Wang P. RAGA: relation-aware graph attention networks for global entity
alignment // Proc. PAKDD. — 2021. — Vol. 12712. — P. 501-513.

[8] Xin M., Wenting W., Huimin X. et al. Relational reflection entity alignment. DOI:
10.1145/3340531.3412001.

[9] Zhao X., Zeng W., Tang J. Recent advance of alignment inference stage // Entity Alignment. —
Singapore: Springer Nature, 2023. — P. 77-112.

[10] Zhao X., Zeng W., Tang J.et al. Toward Entity Alignment in the Open World: An
Unsupervised Approach with Confidence Modeling // Data Science and Engineering. — 2022. —
Vol. 7. —P. 16-29. DOI: 10.1007/s41019-022-00178-4.

[11] Feng F., Yang Y., Cer D., Arivazhagan N., Wang W. Language-agnostic BERT Sentence Em-

bedding. 2020. DOI:10.48550/arXiv.2007.01852.


https://nccbulletin.ru/author/gusev-1
https://nccbulletin.ru/author/apanovich
https://nccbulletin.ru/article/1797
https://nccbulletin.ru/article/1797
https://www.elibrary.ru/contents.asp?id=49406874
https://www.elibrary.ru/contents.asp?id=49406874&selid=49406878
https://doi.org/10.48550/arXiv.1710.04087
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf
https://doi.org/10.1109/ICDE48307.2020.00191
https://doi.org/10.1145/3340531.3412001
https://doi.org/10.1007/s41019-022-00178-4

12




