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Abstract. In recent years, interest in knowledge graphs (KG) has increased exponentially in both 

scientific and industrial communities. The KGs play an important role in the AI applications such as 

natural language processing including question-answering systems, recommender systems, and search 

engines. Integration of different KGs is one of the most pressing problems and is used, for example, 

to develop complex digital twins of industrial systems. One of the components of the KG integration 

problem is the entity alignment (EA) problem, which attempts to identify entities in different KGs 

describing the same real-world object. A special case of this problem is the problem of cross-language 

entity alignment, which is closely related to the problem of import substitution, such as finding 

equivalent drugs, spare parts, or devices for the Internet of Things. Unfortunately, in real KGs, many 

entities may have no equivalents in other KGs. This paper describes entity alignment experiments 

using the example of a Russian-English dataset with unmatchable entities. 
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1.   Introduction 
 

 

Knowledge graphs store facts about real-world objects as relational and literal triples. A 

relational triple represents a relationship between two entities (that is, real-world objects 

with unique Internationalized Resource Identifiers, IRIs) and has the form tr_r = (subject 

entity, relation, object entity). A literal triple stores information about entity attributes and 

has the form tr_l = (subject entity, attribute, literal value). 

Figure 1 shows fragments from the English-language and Russian-language versions of 

DBpedia describing Novosibirsk State University. An example of a relational triple is 

(Novosibirsk_State_University, rector, Fedoruk,_Mikhail_Petrovich), and an example of a 

literal triple is (Novosibirsk_State_University, established, 1959). In Figure 1, red lines 

indicate the owl:sameAs equivalence relations linking entities between the Russian and 

English knowledge graphs. It can be seen that the English entity 

dbr:Fedoruk,_Mikhail_Petrovich in the English knowledge graph corresponds to the 

Russian entity М._П._Федорук, the English predicate dbo:rector corresponds to the 

Russian predicate ректор, and the English entity dbr:Novosibirsk_State_University 

corresponds to the Russian entity Новосибирский государственный университет. Of 

course, in ideal scenario, the English-language and Russian-language lists of staff, rectors, 

and students of Novosibirsk State University should coincide across the two knowledge 

graphs. In practice, however, these lists are often incomplete and may differ substantially, 

with some discrepancies between the descriptions of equivalent entities. 

First of all, note the different spellings of names in the Russian-language and English-

language versions of the knowledge graphs. Also, the two versions specify different 
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founding years for the university. In addition, the versions differ in the lists of people 

associated with the NSU (the people who studied or worked there). For example, both 

versions mention the NSU graduate Efim Zelmanov, a Fields Medal recipient in 

mathematics. However, only the English version includes information about the NSU 

graduate Andrei Voronkov, recipient of the Herbrand Award (dbr:Herbrand_Award) and a 

developer of the EasyChair system (dbr: EasyChair), which is widely used by researchers 

worldwide for conference paper submissions. Since descriptions of real-world objects such 

as Andrei Voronkov and the Herbrand Award were missing from the Russian DBpedia at 

the time of the writing, attempts to align the English and Russian versions produce so-

called dangling or unmatchable entities  dbr:Andrei_Voronkov и dbr:Herbrand_Award. 

It can be seen that the most complete description of an entity can be obtained by merging 

all the triples that describe the same entity across different knowledge graphs. However, to 

accomplish this, one should establish correctly links between the equivalent entities. 

 

 

 
 

Figure 1. Correspondence between the equivalent entities in the English-language  

and Russian-language knowledge graphs 

 

 

Modern entity alignment (EA) methods are based on the assumption that equivalent 

entities have similar neighborhoods, which explains a wide use of representation learning 

methods. These methods generate so-called embeddings of a given dimensionality for 

entities and relations in knowledge graphs. The advantages of the embedding-based 

methods are their high scalability and minimal effort required to prepare training datasets. 

In the following, the embedding of an entity e will be represented as e. 

Clearly, Russian-speaking users are primarily interested in experiments with the 

Russian-language data. A Russian-English dataset for experiments with cross-language 
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entity alignment algorithms is described in [1]. The features of the Russian-English dataset 

are shown in Table 1.  

 
Table 1. Features of the Russian-English dataset 

 

KG 

language 

Number of 

entities 

Number of 

relations 

Number of 

attributes 

Number of 

relational 

triples 

Number of 

attributive 

triples 

Ru 15000 66 15018 30489 54499 

En 15000 163 15106 43796 76852 

 

 

Paper [2] shows that the quality of entity alignment can be improved significantly by 

improving the quality of the embeddings of entity names. Additionally, optimal 

combinations of methods for generating entity name embeddings were found. 

 

 

 

2.   Entity alignment with unmachable entities 
 

 

An embedding-based entity alignment method typically consists of two parts: 

representation learning, which computes embeddings for the entities belonging to different 

knowledge graphs, and the matching of these embeddings. The computation of embeddings 

for different knowledge graph entities is done separately, so these embeddings may fall into 

different vector spaces. This is why it is necessary to map them into a common vector 

space, which is done using the so-called «seed alignments» containing the pairs of 

equivalent entities from the two knowledge graphs. The distance between aligned entity 

pairs is measured using distance metrics, such as cosine similarity, Manhattan distance, 

Euclidean distance, and others. 

Until recently, EA solutions assumed that every entity in the source knowledge graph 

(KG) has an equivalent entity in the target KG. Hence each entity equivalent to the source 

entity was searched as the nearest neighbor of the source entity in the embedding space. In 

practice, the nearest-neighbor-based methods can result in the entity alignment graph 

having hub nodes with too many "equivalent" entities, as well as isolated nodes with no 

"equivalent" entities. Some methods, such as [3, 4], leverage bi-directional alignment 

integrating a source-to-target with a target-to source alignment. In addition, methods such 

as Hungarian algorithm and Stable matching algorithm [5-7] are looking for 1-to-1 

correspondence between the aligned entities. However, unmatchable entities always exist. 

For example, one of the largest knowledge graphs wikidata.org contains equivalent entities 

from many different datasets, such as viaf.org, ror.org, imdb.com, and others, while each of 

these datasets contains some entities absent in other knowledge graphs. This is why an ideal 

entity alignment system should be able to detect and handle unmatchable entities. 
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To address this problem, special datasets are required. The main challenge is to ensure 

that «dangling» entities actually have no equivalent entities in the second dataset. First, two 

subgraphs are created, in which every entity has an equivalent in the other graph. Then, two 

random non-overlapping subsets of entities are removed from both knowledge graphs. The 

corresponding entities of the removed entities then become unmatchable. The structure of a 

dataset with unmatchable entities is shown in Figure 2. The Russian-English dataset from 

[1] was used as the initial set of triples. 

 

 
 

 
Figure 2. Construction of a dataset with unmatchable entities 

 

 

 

3.   Algorithms used in the entity alignment experiments 
 

 

3.1. Algorithm RREA 

 

The RREA algorithm [8] was used for the generation of entity embeddings, as it 

demonstrates the EA quality superior, for instance, to the RDGCN algorithm. This method 

uses a Graph Neural Network-based (GNN-based) approach to entity alignment. Its key 

feature is the use of an orthogonal transformation matrix. To this end, a Relational 

Reflection Transformation is introduced, which satisfies the following two conditions: 

1. Relational Differentiation. For any two relations    and    and entity e, the 

embeddings of entity e should be mapped into different spaces. 

2. Dimensional Isometry. The norms of entity embeddings should remain unchanged 

after the transformation. The distances between entity embeddings should be preserved. 

For any relation embedding r, this operation constructs a reflection matrix and uses it as 

a transformation matrix. 

 

 

3.2. Data set used by the Hungarian algorithm 

 

The entity matching problem can be solved as a problem where entities from one 

knowledge graph are assigned to the entities in another graph. This requires finding the 

minimum total sum of pairwise distances between entities. The Hungarian algorithm 

matches all entities to all entities, enforcing a one-to-one correspondence between them. 
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The Hungarian algorithm operates on a square distance matrix between the entities of 

two knowledge graphs, as it constructs a matching with a minimal cost. This is why 

fictitious entities are added to the graph with fewer entities. The final aligned entities are 

obtained by removing all pairs including fictitious entities. 

 

 

3.3. Algorithm TBNNS and C-TBNNS 

 

To identify unmatchable entities, the Thresholded Bi-directional Nearest Neighbor Search 

(TBNNS) was used [9].  

The TBNNS method defines three conditions under which a pair of entities   from KG1 

and   from KG2 is considered as matchable: 

-   is the nearest neighbor of   in KG2 amongst all other entities in KG2; 

-   is the nearest neighbor of   in KG1 amongst all other entities in KG1; 

- the distance between   and   is less than a given threshold θ. 

Entities that do not satisfy these conditions are considered unmatchable.  

This constraint is fairly strict and requires careful tuning of the threshold value θ. A high 

threshold can produce more aligned entity pairs while some of them might be incorrect. A 

low threshold will result in fewer aligned entity pairs, and almost all of them will be 

correct. 

The C-TBNNS [10] method measures the confidence of an entity pair to be correctly 

aligned. The confidence score C(u, v) is estimated as Dist(u, v’) – Dist(u, v) + Dist(v, u’) - 

Dist(v, u). 

This calculation is based on the idea that if the distance between the embeddings of the 

entities u and v is less than the distance between the top-2 closest candidates for alignment, 

it is possible to assume that these two entities are correctly aligned. The confidence score is 

used to calculate the loss function. 

   
 

3.4.   EntMatcher and CUEA frameworks 

 

The two frameworks used for experiments with unmatchable entities were EntMatcher [10] 

and CUEA [11]. The advantage of the EntMatcher is a vast set of representation learning 

algorithms and strategies for finding corresponding entities between two knowledge graphs.  

 
 

Figure 3. The architecture of the EntMatcher framework 
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However, this framework is not designed to handle unmatchable entities.  The 

framework developed specifically for this purpose is the CUEA, but its set of embedding 

methods and entity matching strategies is very limited. To remedy the situation, both 

frameworks have been modified. The EntMatcher was extended to handle unmatchable 

entities by adding an implementation of the TBNNS [9]. The architecture of the 

EntMatcher framework is shown in Figure 3. 

 A distinctive feature of the CUEA (Confidence-based Unsupervised Entity Alignment) 

method is its ability to work without a set of pre-aligned entities. It can use external 

information, such as entity labels, to construct an initial alignment. The CUEA algorithm 

takes the initial structural and textual embeddings of entities as an input, sums them up 

together using a weighting coefficient α, and saves the resulting embeddings. In this case, 

the initial structural embeddings were computed using the RREA method, and the initial 

textual embeddings were computed using the LaBSE [11] language model. 

The current embeddings are then used in subsequent iterative training. A list of aligned 

entity pairs is also stored in memory, where newly aligned pairs are added, but none are 

removed (this list will be the final output of the algorithm). 

Next, the TBNNS is applied with a given alignment distance threshold θ. The TBNNS 

takes as an input the current embeddings and the set of the yet-to-be-aligned entities in 

KG1 and KG2 and adds new pairs to the list of the aligned entities. 

Next, the embeddings are retrained using the current list of aligned pairs. The new 

current embeddings are obtained by summing the existing embeddings and the retrained 

embeddings with the weighting coefficient β. 

Then, the threshold θ is increased by a certain value, and C_TBNNS is applied again, 

and the loop starts over and continues until the algorithm no longer adds new aligned 

entities. The final list of aligned entities is used to compute precision, recall, and F1-score. 

The CUEA framework was extended by adding an implementation of the RREA entity 

embedding method [8]. The architecture of the CUEA is shown in Figure 4. 

 
 

Figure 4. The architecture of  the CUEA framework 
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Then both frameworks were used to conduct experiments on the Russian-English dataset 

with unmatchable entities, testing a wide range of parameters. 

Three groups of experiments have been conducted: 

1. Computing of structural embeddings using the EntMatcher Framework and 

matching the entities using the Hungarian algorithm [6]; 

2. Computing of structural embeddings using the EntMatcher Framework method 

and matching the entities using the TBNNBS; 

3. Computing of structural embeddings using the  CUEA framework and textual 

embeddings using the LaBSE language model, computing their fusion  and matching of 

entities using the UEA. 

Since the RREA algorithm was used for embedding generation in all the three groups of 

experiments, this will not be mentioned further and we will focus on the different methods 

of establishing entity correspondences. 

 

 

 

4.   Results of experiments with unmatchable entities 
 

 

We used a modified EntMatcher, capable of aligning knowledge graphs with different 

numbers of unmatchable entities, and the ru_en dataset. The embedding computation 

algorithm was trained on two complete knowledge graphs and 4,500 known equivalent 

entity pairs. Only relational triples were used. 

Testing was done on the remaining pairs (up to 10500 pairs of entities, or 70% of the full 

dataset). Entities from the left knowledge graph (KG1) were the input of the model. The 

output of the model was the set of predicted aligned pairs. The following notations are used 

in the table: 

KG1 and KG2 are the numbers of entities in each of the KGs; 

UKG1 and UKG2 are the numbers of unmatchable entities in each of the KGs; 

Corr. is the number of pairs aligned correctly; and 

P, R, F1 are precision, recall, and F1-score. 

 

 

4.1.   Distance matching using the Hungarian algorithm 

 

The results of applying the Hungarian algorithm for entity alignment are presented in Table 

2. It can be seen that as the number of unmatchable entities increases, all the three metrics 

decrease, which is an expected result since the Hungarian algorithm aligns all available 

entities with each other. 

If unmatchable entities are present in only one knowledge graph, then recall is equal to 

precision. 

When the unmatchable entities are present only in the left or only in the right knowledge 

graph, the results are approximately the same.  

When the unmatchable entities are present in both knowledge graphs, the F1-score is 

slightly lower when there are many unmatchable entities. 
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Table 2. Entity alignment using the Hungarian algorithm with different number 

s of matchable entities in KG1 and KG2 

 

KG1 KG2 UKG1 UKG2 Corr. P R F1 

10500 10500 0 0 5424 0.517 0.517 0.517 

10250 10250 250 250 4783 0.467 0.478 0.472 

10000 10000 500 500 4395 0.440 0.463 0.451 

10250 10500 0 250 5134 0.501 0.501 0.501 

10000 10500 0 500 4832 0.483 0.483 00.483 

9500 10500 0 1000 4344 0.375 0.457 0.457 

10500 10250 250 0 5120 0.500 0.500 0.500 

10500 10000 500 0 4879 0.488 0.488 00.488 

10500 9500 1000 0 4329 0.456 0.456 0.456 

 

 

4.2.   Entity alignment using the TBNNS 

 

The results of runs with the different values of the entity distance threshold θ, including an 

infinite threshold denoted in the table as INF, are shown in the table below. 

 
Table 3. Entity alignment with the TBNNS using the distance threshold and  

different numbers of matchable entities in KG1 and KG2 

 

KG1 KG2 UKG1 UKG2 Corr. θ P R F1 

8000 8000 2500 2500 208 0.025 0.756 0.038 0.072 

8000 8000 2500 2500 643 0.05 0.703 0.117 0.200 

8000 8000 2500 2500 869 0.075 0.675 0.158 0.256 

8000 8000 2500 2500 1068 0.1 0.657 0.158 0.256 

8000 8000 2500 2500 1260 0.15 0.657 0.194 0.300 

8000 8000 2500 2500 1360 0.2 0.622 0.229 0.335 

8000 8000 2500 2500 1387 0.25 0.607 0.247 0.351 

8000 8000 2500 2500 1408 0.3 0.591 0.252 0.353 

8000 8000 2500 2500 1406 0.35 0.576 0.256 0.354 

8000 8000 2500 2500 1384 0.4 0.557 0.256 0.350 

8000 8000 2500 2500 1414 0.45 0.542 0.257 0.349 

8000 8000 2500 2500 1397 0.5 0.535 0.254 0.345 

8000 8000 2500 2500 1386 INF 0.539 0.252 0.434 

 

Not too large and not too small value of the threshold θ gives a slight improvement of 

the result across all the three metrics compared to an infinite threshold. A very small 

threshold reduces the recall (R) and F1-score but increases the precision (P). 
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4.3.   Experiments with the unmatchable entities using the CUEA 

 

Only the initial structural embeddings trained on the training pairs (using only relational 

triples) were used as an input into the CUEA algorithm.  The results are shown in the table 

below. The “Pred.” column shows the number of predicted aligned entity pairs. The “Mat.” 

shows the number of matchable entities amongst the predicted (“Pred.”). The “Corr.” 

column shows the total number of correctly aligned entities. The P, R and F1 columns show 

the precision, recall and F1-score, respectively. As expected, all metrics decrease as the 

number of unmatchable entities increases. 

 

 
Table 4. Results of CUEA running on unmatchable entities 

 

KG1 KG2 UKG1 UKG2 Pred. Mat. Corr. P R F1 

10500 8500 2000 0 8188 7029 3931 0.462 0.480 0.471 

10500 7500 3000 0 7074 5576 3230 0.431 0.457 0.443 

10500 6500 4000 0 5978 4305 2501 0.385 0.418 0.401 

10500 5500 5000 0 4928 3265 1956 0.356 0.397 0.375 

10500 4500 6000 0 3857 2297 1453 0.323 0.377 0.348 

 

 

 

4.4.   Comparison of results across all methods 

 

Below is a summary table comparing the results of the three methods using the RREA 

embeddings on the en_ru dataset with unmatchable entities. An infinite TBNNS parameter 

θ was used.  

 
Table 5. Summary of results of different entity alignment algorithms 

 

KG1 KG2 UKG1 UKG2 Method P R F1 

10500 8500 2000 0 CUEA 0.462 0.480 0.471 

    EntMat+TBNNS 0.708 0.319 0.439 

    EntMat+Hungarian 0.416 0.416 0.416 

10500 7500 3000 0 CUEA 0.431 0.457 0.443 

    EntMat+TBNNS 0.683 0.294 0.411 

    EntMat+Hungarian 0.376 0.376 0.376 

10500 6500 4000 0 CUEA 0.385 0.418 0.401 

    EntMat+TBNNS 0.630 0.271 0.379 

    EntMat+Hungarian 0.343 0.343 0.343 

10500 5500 5000 0 CUEA 0.356 0.397 0.375 

    EntMat+TBNNS 0.598 0.264 0.366 

    EntMat+Hungarian 0.320 0.320 0.320 

10500 4500 6000 0 CUEA 0.323 0.377 0.348 

    EntMat+TBNNS 0.534 0.236 0.328 

    EntMat+Hungarian 0.285 0.285 0.285 
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The results show that the iterative CUEA algorithm achieved the highest F1-score and 

recall, while EntMatcher combined with the TBNNS achieved the highest precision with 

low recall. 

Finally, Table 6 compares the CUEA alignment results obtained using only structural 

embeddings with those obtained by combining information on structural embeddings and 

entity name embeddings. Entity name embeddings were calculated using the LaBSE model. 

Significant improvements in all parameters are evident. 

 
Table 6. Comparison the CUEA alignment results 

 

KG1 KG2 UKG1 UKG2 Method P R F1 

    CUEA Structural 0.462 0.480 0.471 

10500 8500 2000 0 CUEA Structural 

+Name Embed. 
0.972 0.610 0.750 

    CUEA Structural 0.431 0.457 0.443 

10500 7500 3000 0 CUEA Structural 

+Name Embed. 
0.954 0.475 0.634 

    CUEA Structural 0.385 0.418 0.401 

10500 6500 4000 0 CUEA Structural 

+Name Embed. 
0.946 0.421 0.582 

    CUEA Structural 0.356 0.397 0.375 

10500 5500 5000 0 CUEA Structural 

+Name Embed. 
0.930 0.340 0.497 

    CUEA Structural 0.323 0.377 0.348 

10500 4500 6000 0 CUEA Structural 

+Name Embed. 
0.911 0.281 0.430 

 

 

 

5.   Conclusion 
 

 

The problem of knowledge graph alignment with unmatchable entities reflects the real-

world scenarios and is therefore highly relevant. This work presents the results of entity 

alignment experiments on a Russian-English dataset with unmatchable entities. The 

confidence-based unsupervised entity alignment (CUEA) performed fairly well, by adding 

progressively the pairs of aligned entities. Future work will examine the variations of this 

approach using various language models for creating embeddings for the various attributes 

of entities and, in particular, the multi-modal knowledge graphs. 

It should be noted that the results of entity alignment methods vary depending on the 

pairs of the languages of the knowledge graphs. In general, the best results are achieved in 

the English-French and English-German alignments. The lower alignment quality on the 

English-Russian dataset is, on the one hand, due to the linguistic specifics. On the other 

hand, alignment quality is influenced not only by the algorithm itself, but also by the 

structure of the dataset, particularly the density and the distribution of the degrees of 

vertices in the knowledge graphs [7]. 
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