Joint NCC & IIS Bull., Comp. Science, 13 (2000), 1-11
© 2000 NCC Publisher

A multi-branch narrowing: satisfiability and termination*

[.S. Anureev

A new notion of a multi-branch narrowing that allows case analysis to be built in is introduced. A narrowing strategy
that preserves formula satisfiability is suggested. A formalism called formula rewriting systems specifying the strategy
is defined. The termination of formula rewriting systems is considered.

Introduction

Automatization of formula proving have an important value for program verification and constraint
satisfaction. Decision procedures for particular theories form the basis for automatization. Design of
new decision procedures is often based on term rewriting systems. The formulas of base theories are
considered as normal forms, and rewriting reduces wider class of formulas to normal forms.

Narrowing is a relation on terms that generalizes rewriting by using unification instead of matching.
Therefore its usage in reducing formulas to their normal forms allows us to design more powerful
decision procedures.

Narrowing was first introduced in [8, 9, 10] to perform unification in equational theories presented
by a confluent and terminating rewriting system R. The narrowing process consists of building all
possible narrowing derivations starting from the equation to be solved and computes in this way a
complete set of unifiers modulo the equational theory defined by R.

Different strategies that restrict the size of the narrowing derivation tree have been proposed
5, 7,9, 12, 14, 17, 18, 19, 20].

The problems of construction of a complete set of unifiers and proof of completeness of term
rewriting systems are removed if narrowing is used as a method of reduction to normal forms. However,
new problems of satisfiability preservation in each narrowing step and termination of the narrowing
process need to be solved.

In this paper these problems are studied and some solutions are proposed.

To extend applicability of narrowing-based simplifications, a notion of a multi-branch narrowing is
introduced in Section 2. It allows case analysis to be built in. In the same section the conditions that
guarantee that narrowing preserves satisfiability are formulated. In Section 3 a formalism specifying
the narrowing strategy that preserves satisfiability is considered. It is called formula rewriting systems.
Sufficient conditions of satisfiability preservation for formula rewriting systems are stated. In Section
4 a special class of formula rewriting systems (constructor formula rewriting systems) is described.
Termination of special classes of constructor formula rewriting systems w.r.t. innermost reduction
strategy is considered in Sections 5, 6 and 7.

1. Preliminaries

The reader may refer to [6] for the concepts of terms, substitutions and rewriting systems. Notations
used in this paper are listed below. Let ¥ be the first-order signature (F, P, X) composed of the set
F of function symbols, the set P of predicate symbols and the set X' of variables, 7(X) denotes the
set of terms over ¥, F(X) denotes the set of first-order formulas over ¥, UF(X) denotes the set of
unquantified formulas over ¥, £(3) denotes the set T(3) UUF(X) of expressions over ¥ and S(X)
denotes the set of substitutions over 7 (%), Ar(f) is the arity of f € F U P, K denotes a first-order
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algebraic »-structure. Whenever ¥ contains the predicate symbol =, it will be interpreted as the
equality relation in K.

Given an expression v € £(X), a set of expressions E, and a substitution o € S(X), Var(u)
denotes the set of variables of u, MVar(u) denotes the multiset of variables of u, MVarg(u) denotes
the multiset of variables of u except the variables occuring in subexpressions of w that belong to
E, root(u) denotes the root of u, |u| denotes the number of occurences of functional and predicate
symbols in u, |u|g denotes the number of occurences of functional and predicate symbols in u except
the symbols occuring in subexpressions of u that belong to E, P(u) denotes the set of positions of
u with A as the topmost position, Dom(o) = {z|z € X and zo # =} denotes the domain of ¢ and
VRange(o) = Upepom(s)Var(ro) denotes the variable range of o.

For distinct variables z1,...,z, and t1,...,t, € T(2), (z1 = t1,...,2, — t,) denotes the substi-
tution o such that Dom(o) C {z1,...,z,} and z;0 = t; for each 1 < i < n. In particular, ( ) is an
identity substitution.

Given a set S and a multiset M, FM(S) denotes the set of all finite multisets of the elements of
S and O(m, M) denotes the number of occurences of an element m in M.

Definition 1.1 A multiset W C FM(UF (X)) is satisfiable in K if the formula V 4e A is satisfiable
in K. A binary relation — on the set UF(X) UF M (UF (X)) is said to preserve satisfiability in K if W
is satisfiable in /C iff W' is satisfiable in K for all W, W' € UF(X) U FM(UF (X)) such that W — W'

Given a partial order > on T(X), >, denotes the multiset extension of >. Let N be a set of
nonnegative integers with a usual relation >.

Definition 1.2 Let t1,t3 € T(X), 6,¢,7,01,02 € S(X). The substitution 6 is a unifier of #; and ¢
if 110 = t20. A unifier 6 is a most general unifier (MGU for short) of ¢; and ¢y if for each unifier
¢ of t1 and to there exists a substitution 7 such that ¢ = 7. The terms ¢; and t9 are unifiable if
there exists a unifier of ¢; and 3. The substitution 8 is a unifier of o1 and o9 if 2010 = 2020 for each
x € Dom(o1) UDom(os). A unifier 0 of o1 and o is a most general unifier if for each unifier ¢ of oy
and oy there exists a substitution 7 such that ¢ = 7. The substitutions o; and oy are unifiable if
there exists a unifier of o; and o9

Let us remind the unification algorithm.

Definition 1.3 Let U and V be sets of equalities, z € X, t € T(X), and U} denote the result of
replacement of all occurences of the variable z in U by the term ¢. The unification algorithm consists
in indeterministic application of the following rules:

Uu{z=z},V)— (U,V),

Uu{z=1t},V)— (U, VFU{z =t}) if x & Var(t),

UuU{t==z},V)— (U, VFU{z =1t}) if x & Var(t),

UU{f(tr,....tn) = f(#,.. ., ), V)= (UU{ty =H,....tn, =1}, V).

Let W’ be the result of application of the unification algorithm to the set

—
— (
—
—

W = ({zo1 = zog|z € Dom(o1) U Dom(oa)},0).

If W' has the form (0,{zy = t1,...,x, = t,}) where z; € X and t; € T(X) for all 1 < 4,5 < n, then
the substitution 6 = (21 — t1, ...,z — ty) is a unifier of the substitutions oy and o2. If W’ does not
have the above form, then the substitutions o1 and o9 are not unifiable.

To guarantee preservation of satisfiability, we separately consider the case when an MGU is found
without application of the decomposition rule. In this case the unification algoritm takes the form
- (Uu{t=t},V)— (UV),
- (UU{z=t},V) = (U, VFU{z =1t}) if x & Var(t),
- (UU{t=2z},V) = (UF,VF¥U{z =1t}) if x & Var(t).



A multi-branch narrowing: satisfiability and termination 3

Definition 1.4 The terms ¢; and ¢, is said to be unifiable without decomposition if a unifier of #;
and t9 is found with the help of the above rules.

Example 1.5 The substitution (z — succ(z)) is an MGU of the substitutions (y — z) and (y —
succ(z)). Tt is found by applying the rule ({z = suce(z)},0) — (0,{z = succ(z)}). Therefore the
substitutions (y — z) and (y — succ(z)) are unifiable without decomposition. 0

The following example will illustrate the paper.

Example 1.6 Let Fq; = {suce, pred, 0} with arities 1, 1, and 0, respectively. Then ¥,,4; denotes the
signature {Fqt, {=}, X'} and the X, 4-structure K4 specifies the natural numbers with a successor,
predecessor (pred(0) = 0) and zero. O

2. Narrowing with satisfiability preservation

Our aim is to state the conditions guaranteeing that narrowing preserves satisfiability. But first we
generalize narrowing to case analysis, the same conditions guaranteeing satisfiability preservation for
the extension called multi-branch narrowing.

Let B be the conditional term rewriting system {p;|l; — r; | i« € I} over ¥. Here p; are arbitrary
unquantified formulas.

Definition 2.1 A multi-branch B-narrowing ~»3 is a set of pairs (A, {(p; A A[r;]q)0; | i € I}) such
that A e UF(X), g € P(A), and 6; is an MGU of the terms /; and A,.

Let R be a set of CTRSs.

Definition 2.2 A multi-branch R-narrowing ~»r is a set of pairs (U U {A},U U W) such that
UWeFMUFX)), AcUF(X), and A~ W for some B € R.

Definition 2.3 A term # is called a B-redex if the terms [; and ¢ are unifiable for each i € I. A term
t is called a redex of R if ¢ is a redex of some B € R. The relation ~»5; is defined by the set of pairs
(A, {(pi N A[rilq)0; | i € I}) such that A e UF(E), ¢ € P(A), t = A, and 6; is an MGU of the terms
l; and A, for each 7 € 1.

The satisfiability preservation of a multi-branch narrowing imposes a limitation on redexes and
conditional term rewriting systems (or CTRS for short). Let us describe the limitations.
Let I be a Y¥-structure.

Definition 2.4 Let £ be a redex of B and 6; be an MGU of the terms [; and ¢ for each 1 € I. The
term ¢ is said to have the completeness property in K if the formula VZ V7 (37;(p; AT = Z0;)) is valid
in K where 7 is the set Var(t) and y; is the set Var(p;) U VRange(0;) for each i € I. A CTRS B is
correct in K if p; = [; = r; is valid in K for each i € I.

Theorem 2.5 If B is correct in K and a redex ¢ of B has the completeness property in K, then ~5;
preserves satisfiability in IC.

Proof Let W = {(p; A A[r;]g)0; | i € I}, A€ UF(E), g € P(A), Ay =t,and A~p; W.

Let A be satisfiable in K. It follows from the completeness property that there exists ¢ € I such
that the formula p;0; A A0; is satisfiable in .

Since t0; = 1;0;, p;0; is satisfiable in I, and the formula p; = I; = r; is valid in I, the formula
pibi A\ Ari]q0; is satisfiable in K. Then W is also satisfiable in K.

Let W be satisfiable in K. Then there exists ¢ € I such that the formula p;0; A A; is satisfiable
in K.
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Since s#; = [;0;, p;0; is satisfiable in /IC, and the formula p; = I; = r; is valid in KC, the formula A#;
is satisfiable in IC. Then A is also satisfiable in K. O

Proposition 2.6 formulates the conditions when an instance of a redex is a redex.

Proposition 2.6 Let s be a redex of B, 6; be an MGU of the terms s and [; for each i € I, o0 € S(X),
and the substitutions o and 6; are unifiable for each 7 € I. Then so is a redex of B.

Proof Let ¢; be an MGU of ; and o for each 7 € I. Since
(50)pi = (s0;) s = (1:0;)pi = (lio) i = Lichs

for each i € I, the substitution ¢; is a unifier of so and [;. Then so is a redex of B. O

Let us define the conditions when satisfiability is preserved for an instance of a redex that has the
completeness property.

Theorem 2.7 Let s be a redex of B, 6; be an MGU of I; and s for each 7 € I, and o0 € S(X). If B
is correct in K, s has the completeness property, and the substitutions ¢ and 6; are unifiable without
decomposition for each i € I, then ~p 4, preserves satisfiability in K.

Proof Let W = {(p; A A[ri]q)0; | i € T} where 6; is an MGU of so and [; for each i € I, A € UF(E),
A, = so, and A ~ps,. The substitution ¢ exists for each ¢ € I, since so is a redex of B by
Proposition 2.6.

Let Z be the set Var(s), z’' be the set Var(so), 6; be an MGU of [; and s for each 7 € I, and g; be
the set Var(p;) UVRange(0;) for each i € I.

Let A be satisfiable in K. It follows from the completeness property Vz Vicr (3yi(pi Az = z6;))
that VZ' Vier (37:(p; A To = T6;)).

Let ¢; be an MGU of o and 6; for each 7 € I and ¢; be the set VRange(6;) UVRange(o) for each
i€l

From the form of the rules of unification without decomposition it follows that formulas zo = z6;
and 7' = 7'¢; are equivalent. Then VZ' V,cr (3yi(pidi AT’ = &' ¢;)).

Since s6; = 1;0;, p;0; is satisfiable in I, and the formula p; = I; = r; is valid in K, there exists
i € I such that the formula p;¢; A Afr;],¢; is satisfiable in K.

By the proof of Proposition 2.6, the substitution ¢; is a unifier of so and [; for each ¢ € I. Since
¢i = 0;1 for some T € S(X), p;0; \ A[r;],0; is satisfiable in K. Then W is also satisfiable in K.

Let W be satisfiable in K. The proof that A is satisfiable in K is analogous to that of Theorem 2.5.

O

3. Formula rewriting systems

Consider a formalism specifying the narrowing strategy that preserves satisfiability.
Let B = {pi|li = ri | i € I} be a CTRS over X.

Definition 3.1 Let s € T(X) \ X. A pair p = (B,s) is called a formula rewrite rule over ¥ if the
terms /; and s are unifiable for each 7 € I. The term s is called a sample of p. A finite set of formula
rewrite rules over ¥ is called a formula rewriting system (or FRS for short) over 3.

Note that a term rewrite rule [ — r can be treated as the formula rewrite rule ({I — r},I).
Therefore, term rewriting systems are a special case of FRSs.

Example 3.2 The pair pnq = ({pred(succ(z)) — =, pred(0) — 0}, pred(y)) is a formula rewrite
rule over the signature X,,, since the terms pred(succ(z)) and pred(0) are unifiable with pred(y).
The substitution 7% = (y — succ(z)) is an MGU of pred(succ(z)) and pred(y), and the substitution
67t = (y — 0) is an MGU of pred(0) and pred(y). O
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Let p = (B, s) be a formula rewrite rule over ¥, §; be an MGU of the terms /; and s for each i € I.

Definition 3.3 A term ¢ is called a redex of the rule p if there exists a substitution ¢ such that ¢t = so
and substitutions o and 6; are unifiable without decomposition for each ¢+ € I. A term ¢ is called a
redex of an FRS R if ¢ is a redex of some rule of R.

Let ¢; be an MGU of the substitutions ¢ and 6; for each ¢ € I.

Example 3.4 The term pred(z) is a redex of ppq, since pred(z) = pred(y)onar, where oy = (y —
z), the substitution ¢! = (2 — succ(x)) is an MGU of the substitutions o,q; and 674 and the
substitution ¢3% = (2 — 0) is an MGU of the substitutions o, and 02%. These MGUs are found
without application of the decomposition rule of the unification algorithm. O

Definition 3.5 An p-reduction relation —, is a set of pairs (A, {(p; A A[ri]q)¢i | © € I} such that
A€cUF(E), g€ P(A), and A, is a redex of p. Let R be an FRS. An R-reduction relation —p is a set
of pairs (U U {A},U UW) such that p € R, UW € FMUF (X)), AcUF(X),and A =, W.

Term rewriting systems can be used for rewriting both formulas and terms. From the definition
of —, we see that FRSs can be used only for rewriting formulas. That is why they are called formula
rewriting systems.

Example 3.6 pred(z) = z —,,, {z = succ(z), 0 =0}. O

For each FRS R over X there is a corresponding abstract reduction system [13], namely
(FMUF (X)), —r)-

Therefore, all concepts defined for abstract reduction systems (termination, normal form and so on)
are inherited by R.

The termination property is undecidable for FRSs [1]. The conditions of satisfiability preservation
is given by the following theorem.

Theorem 3.7 Let K be a Y-structure and p = (B, s) be a formula rewrite rule such that B is correct
in K and the redex s of B has the completeness property in K. Then —, preserves satisfiability in K.

Proof Let ¢ be a redex of p. Then there exists a substitution ¢ such that ¢ = so and substitutions o
and 6; are unifiable without decomposition for each i € I.

Since B is correct in K and s has the completeness property in I, from Theorem 2.7 it follows that
~»p,¢ preserves satisfiability in K.

By definition of —,, if A[t], —, W then Aft], ~p; W for all A € UF(E), ¢ € P(A), and
W CUF(T).

Then At], is satisfiable in C iff W is satisfiable in K for all A € UF(X), ¢ € P(A), W CUF(T),
and ¢t € T(X) such that A[t], —, W. Hence —, preserves satisfiability in /. O

Example 3.8 The sufficient conditions of satisfiability preservation for the rule p,q; are pred(succ(z)) =
x, pred(0) = 0 and Vy(Iz(y = succ(x)) Vy = 0). Tt is obvious that the conditions are valid in Kj,4.0

4. Constructor formula rewriting systems

Many FRSs arising in practice are constructor FRSs. A constructor FRS R is an FRS in which the
set of functional symbols can be partitioned into a set A of defined functional symbols (or analyzers)
and a set C of constructors, such that for every p € R its sample has the form f(¢y,...,t,) with f € A
and tq,...,t, € T((C,P,X)). The related concept for term rewriting systems has been considered, for
instance, in [13].



6 I.S. Anureev

Let R be a constructor FRS over Y with a set of analyzers A4 and a set of constructors C. Let us
introduce some concepts that allow us to analyze a structure of expressions w.r.t. R.

Definition 4.1 An expression u is called constructive if u € £((C,P,X)). A substitution o is con-
structive if zo € T((C,P,X)) for each variable z € X. A term in which no variable occurs twice or
more is called linear. A substitution o is linear on X C X if for all variables z,y € X the term zo is
linear and Var(zo) N Var(yo) = 0 if x # y. An expression u is nested if u has nested occurences of
analyzers. An expression u is called simple if u is not nested. A term ¢ is a call if root(t) € A.

Cn(u) denotes the multiset of all simple calls that occur in u € €.

Definition 4.2 A map p. : £(X) — FM(N) is a constructor measure if p.(u) = {|t| | t € Crp(uw)}. A
map Dec, : £(¥) — FM(X) is a variable decomposition if Dec, (u) = Usee,, (u)MVar(t).

Let C¢(u) denote the multiset of all nested calls of u € £(X), ue and p, denote the maps such that
pa(u) = |Ce(u)| and py,(u) = {O(z, Decy(u)) | O(x, Decy(u)) # 0}, respectively.

Finding of classes of terminating FRSs is a very difficult problem. In the following sections three
special classes of constructor FRSs are considered. They all are terminating w.r.t. a special strategy
of application of rules.

Definition 4.3 Let R be the set of all FRSs over ¥. A function
$:R—=>FMUF(X)) x FMUF (X))

is called a reduction strategy for FRSs if s(R) C—p for all R € R. An FRS R is terminating w.r.t. s
if s(R) is terminating.

The following reduction strategy guarantees the termination of classes of FRSs mentioned above.

Definition 4.4 A reduction strategy for AESs is an innermost reduction strategy if the rules of AESs
are applied to the redexes that do not contain redexes as their proper subterms.

5. Analyzer elimination systems

The following class of constructor FRSs (analyzer elimination systems or AESs for short) allows us to
design simplifiers that eliminate analyzers. The idea of these systems consists in percolating analyzers
through constructors to variables followed by their elimination by variable replacement. Unfortunately,
even very strong restrictions imposed on AESs guarantee termination only w.r.t. a certain reduction
strategy.

Definition 5.1 A constructor FRS R is an analyzer elimination system if any simple call is a redex
of R and for each rule ({p;|l; = ri | i € I},s) € R and for each i € I the following properties hold:

— 6; is linear on Var(s) and constructive,

— p; and r; are simple,

— p; and r; are constructive if [; # s,

— Decy(s) 2 Decy(p;) U Decy(r;),

= 1e(8) >m pie(pi) and pe(s) >m pie(ri).

Example 5.2 Let R be an FRS that consists of the following rules:
— p1 : pred(succ(x)) — x,
— p2 : pred(0) — 0,
— ps : ({pred(succ(z)) — =z, pred(0) — 0}, pred(y) ).
Show that R is an AES with the analyzer pred.
Let ¢ be a simple call. By the definiton of a simple call, ¢ takes one of the following forms:
pred(succ(t')), pred(0) or pred(z), where t' is a constructive term and z € X.
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Considering these cases, we see that ¢ is a redex of the rules p;, p2, and ps, respectively.
Conditions from the definition of AES for the rule p; with the sample s = pred(succ(z)) take the
form:
— the identical substitution 8; = () is linear on {z},
— the right-hand side «x is simple,
— the right-hand side z is constructive if s = pred(succ(x)),
— Decy(s) = {z} D 0 = Decy(z),
- Nc(s) = {1} >m 0= Nc(x)'
Conditions from the definition of AES for the rule p3 with the sample s = pred(y) take the form:
— the substitutions 6, = (y — succ(z)) and 6, = (y — 0) are linear on {y},
— the right-hand sides = and 0 are simple,
— the right-hand sides z and 0 are constructive if s # pred(succ(z)) and s # pred(0), respectively,
~ Decy(s) = {y} D 0 = Decy(x) and Decy(s) = {y} 2D ) = Dec,(0),
= e(s) = {0} >m 0 = pe(z) and pe(s) = {0} >m 0 = pe(0).
Verification of conditions for the rules p; and ps is straightforward. The rule ps is considered in
similar way. O

The termination property of AESs is given by the following theorem.

Theorem 5.3 AESs are terminating w.r.t. the innermost reduction strategy.

Proof Let s; be the innermost reduction strategy. To prove the termination of AESs w.r.t. s;, it is
sufficient to build a well-founded partial order > such that s;(R) C > for any AES R.

The required partial order = is a multiset extension of =’ such that u =" v iff (g (), py(w), pe(u))
is lexicographically bigger than (ug(v), iy (v), e(v)) with orders >, >,,, and >,, on the first, the
second, and the third elements of the tuple, respectively.

A multiset extension of a well-founded order and a lexicographical order on tuples of the same
number of elements with well-founded orders on the elements are well-founded. Therefore > is well-
founded. The check of s; C > is reduced to the routine case analysis and, therefore, is dropped.

O

Let us show that the use of the reduction strategy for AESs is a necessary condition of termination
of AESs.

Example 5.4 Let R be the FRS that consists of the following rules:
p1: ({f(c(2)) = 2}, f(2))

p2 : ({f(c(2)) = 2}, f(c(2)))

pz - ({f(d(z,y)) = d(f(y), ()}, f(d(z,y)))
pa = ({h(c(2)) = d(h(2), 2)}, h(c(2)))

ps - ({h(d(z,y)) = =}, h(d(z,y)))

pe : ({hd(z,y)) = =}, h(2))

The FRS R is an AES with analyzers f and h. However the following chain of reductions

d(f(x), f(h(2))  —p  d(z f(h(c(2))))  —=p
d(z, f(d(h(2),2)))  —ps d(z,d(f(2), [(M(2)))) —p

is infinite. In the chain the rule p3 is applied to the redex f(d(h(z),z)) of R that contains the redex
h(z) as its proper subterm. O

6. Analyzer elimination systems with argument status

Consider the generalization of AESs (AESs with argument status, or SAES, for short) that also has
the termination property w.r.t. the innermost reduction strategy.



8 I.S. Anureev

Example 6.1 Let R be the constructor system ({f(g(g(x)),y) = f(z, f(a,y))}, f(g(g(z)),y)) with
the analyzer f and constructors g and a. It is obvious that R is terminating w.r.t. the innermost
reduction strategy. However, R is not an AES, since the term f(z, f(a,y)) is nested. O

This problem can be decided if we take into account only certain arguments of function symbols.
In the example the term f(z, f(a,y)) is simple if we take into account only the first argument of f.
Let us introduce the corresponding definition.

Definition 6.2 A map arg : A — P(N) is called an argument status if arg(f) C {1,..., Ar(f)}.

The definitions of a nested expression, a call, a constructor measure and a variable measure are
modified so as to take into account an argument status.

Definition 6.3 An expression u is nested w.r.t. arg if there is a position ¢ € P(u) such that
ug = f(t1,...,tn), f € D and the term ¢; is not constructive for some i € arg(f). An expression u is
called simple if » is not nested w.r.t. arg.

Cyn(u) denotes the multiset of all calls which are simple w.r.t. arg and occur in expression w.

Definition 6.4 A map p2"9 : £(X) — FM(N) is a constructor measure w.r.t. arg if

arg _{ Z |tz| | f tl,...,tn) S Cm(u)}

i€arg(f)

Definition 6.5 A map Dec? 9 : £(X) — FM(X) is a variable decomposition w.r.t. arg if

Decy™(u) = U, tn)eCrm (u) Yicarg(r) MVar(t;).

Definition 6.6 A constructor FRS R is an analyzer elimination system with an argument status arg,
if any simple call is a redex of R and for each rule ({p;|l; = r; | i € I},s) € R and for each i € I the
following properties hold:
— 6; is linear on Var(s) and constructive,
— p; and r; are simple w.r.t. arg,
— p; and r; are constructive if [; # s,
— Deci™(s) D Dect™(p;) U Dect" (r;),
¢9(s) >m pe (i) and pg"(s) >m pe (ri),
—t;; = t; for each j € arg(f) where I; = f(ti1,...,tin) and s = f(t1,...,1n).

AESs are a special case of SAESs. It is obtained by taking arg(f) = {1,..., Ar(f)} for each f € A.
The termination property of SAESs is given by the following theorem.

Theorem 6.7 SAESs are terminating w.r.t. the innermost reduction strategy.

Proof Let s; be the innermost reduction strategy. To prove the termination of AESs w.r.t. s; it is
sufficient to build a well-founded partial order > such that s;(R) C > for any AES R.

Let C%"9(u) denote the multiset of all nested calls of u € £(X) w.r.t. arg, p?9 and p%"9 denote
the maps such that p?"9(u) = |Ce(u)®9| and pd9(u) = {O(z, Dect™(u)) | O(z, Dect™(u)) # 0},
respectively.

The required partial order > is a multiset extension of =’ such that u =" v iff

(g™ (), ™ (u), ™ ()

is lexicographically bigger than
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(g™ (0), 13" (v), 1™ (v))

with orders >, >,,, and >,, on the first, the second, and the third elements of the tuple, respectively.
A multiset extension of a well-founded order and a lexicographical order on tuples of the same
number of elements with well-founded orders on the elements are well-founded. Therefore = is well-

founded. The check of s; C > is reduced to the routine case analysis and, therefore, is dropped.
O

7. Analyzer elimination systems with a substitution base

The third class of constructive systems that are terminating w.r.t. the innermost reduction strategy
are analyzer elimination systems with a substitution base. These systems are built in the following
way:

1. A class of expressions called a substitution base is chosen. The expression analysis does not
take into account expressions of the substitution base. An example of such analysis of the expression
structure is application of functions Varg ||g. These functions do not take into account subexpressions
that occur in F.

2. Narrowing is restricted by MGUs that replace the variables by expressions of the substitution
base.

Definition 7.1 Let £ C £, S C §. FE is called closed w.r.t. S, if uec € E for every v € E
and 0 € S. E is complete w.r.t. S, if the sets E, £\ (E UYV) are closed w.r.t. S. FE is closed
(complete) w.r.t. substitutions, if E is closed (complete) w.r.t. S. A map pZ is a constructor
measure w.r.t. E if uZ(u) = {|t|g|t € Cn(u)}. A map Deck is a variable decomposition w.r.t. E, if
Decl(u) = {MVarg(t)|t € Cp(u)}.

Example 7.2 Let E = {h(z)o|loc € S}, E' = {h(x)o|o is a constructive substitution}. Then E is
complete w.r.t. substitutions, E’ is complete w.r.t. constructive substitutions. O

Definition 7.3 Let E be a set of expressions complete w.r.t. constructive substitutions. A constructor
FRS R is an analyzer elimination system with the substitution base F, if any simple call is a redex of
R and for each rule ({p;|l; = r; | i € I},s) € R and for each i € I the following properties hold:
—{z0; | x € Var(s)} C E,

— p; and r; are simple,

— p; and r; are constructive if [; # s,

— DecP(s) D DecP(p;) U DecE (r;),

— 1 (8) >m g (pi) and () >m pf (ri)-

Example 7.4 Let R be a constructive FRS with the analyzer f that consists of the following rules:
—pr: (L (@) = o}, F (),
= p2: f(h(z)) = =,
- p3: flg(z)) = g(f(2)).
Let S, be a set of all constructive substitutions. Show that R is an AES with the substitution base
E = {h(z)o|o € S.}.
Conditions from the definition of AES with the substitution base for the rule p; with the sample
s = f(y) take the form:
— true and z are simple,
~{y(z = 2,y — W)} = {h(2)} C E,
— true and = are constructive if f(h(z)) # s,
— DecP(s) D DecF (p;) U Deck (r;),
= p(8) >m pf (pi) and pl (s) >m pl (ri).
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Conditions from the definition of AES with the substitution base for the rule p, with the sample
s = f(h(z)) take the form:
— true and z are simple,
~{a(w = 2)} = {2} C B,
— true and z are constructive if f(h(z)) # s,
~ DecP(s) =0 D 0U,
— {1} >, 0 and {1} >, 0.
Conditions from the definition of AES with the substitution base for the rule p3 with the sample
s = f(g(z)) take the form:
~ true and g(f(z)) are simple,
~{a(z - 2)} = {2} C B,
— true and g(f(z)) are constructive if f(g(x)) # s,
—{z} =2m DU {z},
— {3} >, 0 and {3} >,, {2}.
Verification of conditions for the rules py, p2, and p;3 is straightforward. The form of the samples
of the rules of R guarantees that any simple call is a redex of R. So R is an AES with a substitution
base. O

AESs is a special case of AESs with a substitution base. It is obtained by taking E = {).
The termination property of AESs with a substitution base is given by the following theorem.

Theorem 7.5 Analyzer elimination systems with a substitution base is terminating w.r.t. the inner-
most reduction strategy.

Proof Let s; be the innermost reduction strategy. To prove the termination of AESs with a substitu-
tion base w.r.t. s;, it is sufficient to build a well-founded partial order > such that s;(R) C > for any
AES R.

Let R be an AES with the substitution base E. The required partial order = is a multiset extension
of =" such that u =’ v iff (ua(u), uZ (u)) is lexicographically bigger than (i, (v), uZ (v)) with orders >
and >,, on the first and the second elements of the tuple, respectively.

A multiset extension of a well-founded order and a lexicographical order on tuples of the same
number of elements with well-founded orders on the elements are well-founded. Therefore = is well-
founded. The check of s; C > is reduced to the routine case analysis and, therefore, is dropped.

O

Conclusion

The paper presents a method of application of narrowing to formula simplification. The method
includes the following new features:

— the concept of a multi-branch narrowing that allows case analysis to be built;

— formula rewriting systems formalizing narrowing strategy that preserves satisfiability;

— the method for proving termination of formula rewriting systems.

Proving correctness conditions that appear in program verification is an important area of appli-
cation of the method. Proving correctness conditions is performed in the interactive mode in most
verification systems. Our method allows the proof of correctness conditions to be done automati-
cally. The program verification system SPECTRUM [15, 16] has been developed for which a new
prover based on the method is being designed. In particular, experiments on automatic verification
of programs of array sorting and file sorting have been performed in the framework of the project
SPECTRUM by this method.

Some details of the theory of formula rewriting systems and their application to problem-oriented
verification has been considered in [1, 2, 3, 4]. The methods of proving termination of formula rewriting
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systems have been studied in [2]. In particular, other classes of terminating formula rewriting systems
have been proposed [1, 2].
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