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A multi-bran
h narrowing: satis�ability and termination

�

I. S. Anureev

A new notion of a multi-bran
h narrowing that allows 
ase analysis to be built in is introdu
ed. A narrowing strategy

that preserves formula satis�ability is suggested. A formalism 
alled formula rewriting systems spe
ifying the strategy

is de�ned. The termination of formula rewriting systems is 
onsidered.

Introdu
tion

Automatization of formula proving have an important value for program veri�
ation and 
onstraint

satisfa
tion. De
ision pro
edures for parti
ular theories form the basis for automatization. Design of

new de
ision pro
edures is often based on term rewriting systems. The formulas of base theories are


onsidered as normal forms, and rewriting redu
es wider 
lass of formulas to normal forms.

Narrowing is a relation on terms that generalizes rewriting by using uni�
ation instead of mat
hing.

Therefore its usage in redu
ing formulas to their normal forms allows us to design more powerful

de
ision pro
edures.

Narrowing was �rst introdu
ed in [8, 9, 10℄ to perform uni�
ation in equational theories presented

by a 
on
uent and terminating rewriting system R. The narrowing pro
ess 
onsists of building all

possible narrowing derivations starting from the equation to be solved and 
omputes in this way a


omplete set of uni�ers modulo the equational theory de�ned by R.

Di�erent strategies that restri
t the size of the narrowing derivation tree have been proposed

[5, 7, 9, 12, 14, 17, 18, 19, 20℄.

The problems of 
onstru
tion of a 
omplete set of uni�ers and proof of 
ompleteness of term

rewriting systems are removed if narrowing is used as a method of redu
tion to normal forms. However,

new problems of satis�ability preservation in ea
h narrowing step and termination of the narrowing

pro
ess need to be solved.

In this paper these problems are studied and some solutions are proposed.

To extend appli
ability of narrowing-based simpli�
ations, a notion of a multi-bran
h narrowing is

introdu
ed in Se
tion 2. It allows 
ase analysis to be built in. In the same se
tion the 
onditions that

guarantee that narrowing preserves satis�ability are formulated. In Se
tion 3 a formalism spe
ifying

the narrowing strategy that preserves satis�ability is 
onsidered. It is 
alled formula rewriting systems.

SuÆ
ient 
onditions of satis�ability preservation for formula rewriting systems are stated. In Se
tion

4 a spe
ial 
lass of formula rewriting systems (
onstru
tor formula rewriting systems) is des
ribed.

Termination of spe
ial 
lasses of 
onstru
tor formula rewriting systems w.r.t. innermost redu
tion

strategy is 
onsidered in Se
tions 5, 6 and 7.

1. Preliminaries

The reader may refer to [6℄ for the 
on
epts of terms, substitutions and rewriting systems. Notations

used in this paper are listed below. Let � be the �rst-order signature (F ;P;X ) 
omposed of the set

F of fun
tion symbols, the set P of predi
ate symbols and the set X of variables, T (�) denotes the

set of terms over �, F(�) denotes the set of �rst-order formulas over �, UF(�) denotes the set of

unquanti�ed formulas over �, E(�) denotes the set T (�) [ UF(�) of expressions over � and S(�)

denotes the set of substitutions over T (�), Ar(f) is the arity of f 2 F [ P, K denotes a �rst-order

�
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algebrai
 �-stru
ture. Whenever � 
ontains the predi
ate symbol =, it will be interpreted as the

equality relation in K.

Given an expression u 2 E(�), a set of expressions E, and a substitution � 2 S(�), Var(u)

denotes the set of variables of u, MVar(u) denotes the multiset of variables of u, MVar

E

(u) denotes

the multiset of variables of u ex
ept the variables o

uring in subexpressions of u that belong to

E, root(u) denotes the root of u, juj denotes the number of o

uren
es of fun
tional and predi
ate

symbols in u, juj

E

denotes the number of o

uren
es of fun
tional and predi
ate symbols in u ex
ept

the symbols o

uring in subexpressions of u that belong to E, P(u) denotes the set of positions of

u with � as the topmost position, Dom(�) = fxjx 2 X and x� 6= xg denotes the domain of � and

VRange(�) = [

x2Dom(�)

Var(x�) denotes the variable range of �.

For distin
t variables x

1

; : : : ; x

n

and t

1

; : : : ; t

n

2 T (�), (x

1

! t

1

; : : : ; x

n

! t

n

) denotes the substi-

tution � su
h that Dom(�) � fx

1

; : : : ; x

n

g and x

i

� = t

i

for ea
h 1 � i � n. In parti
ular, ( ) is an

identity substitution.

Given a set S and a multiset M , FM(S) denotes the set of all �nite multisets of the elements of

S and O(m;M) denotes the number of o

uren
es of an element m in M .

De�nition 1.1 A multiset W � FM(UF(�)) is satis�able in K if the formula _

A2W

A is satis�able

in K. A binary relation! on the set UF(�)[FM(UF(�)) is said to preserve satis�ability in K if W

is satis�able in K i� W

0

is satis�able in K for all W;W

0

2 UF(�)[FM(UF(�)) su
h that W ! W

0

.

Given a partial order � on T (�), �

m

denotes the multiset extension of �. Let N be a set of

nonnegative integers with a usual relation >.

De�nition 1.2 Let t

1

; t

2

2 T (�), �; �; �; �

1

; �

2

2 S(�). The substitution � is a uni�er of t

1

and t

2

if t

1

� = t

2

�. A uni�er � is a most general uni�er (MGU for short) of t

1

and t

2

if for ea
h uni�er

� of t

1

and t

2

there exists a substitution � su
h that � = �� . The terms t

1

and t

2

are uni�able if

there exists a uni�er of t

1

and t

2

. The substitution � is a uni�er of �

1

and �

2

if x�

1

� = x�

2

� for ea
h

x 2 Dom(�

1

) [ Dom(�

2

). A uni�er � of �

1

and �

2

is a most general uni�er if for ea
h uni�er � of �

1

and �

2

there exists a substitution � su
h that � = �� . The substitutions �

1

and �

2

are uni�able if

there exists a uni�er of �

1

and �

2

Let us remind the uni�
ation algorithm.

De�nition 1.3 Let U and V be sets of equalities, x 2 X , t 2 T (�), and U

x

t

denote the result of

repla
ement of all o

uren
es of the variable x in U by the term t. The uni�
ation algorithm 
onsists

in indeterministi
 appli
ation of the following rules:

{ (U [ fx = xg; V )! (U; V ),

{ (U [ fx = tg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t),

{ (U [ ft = xg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t),

{ (U [ ff(t

1

; : : : ; t

n

) = f(t

0

1

; : : : ; t

0

n

)g; V )! (U [ ft

1

= t

0

1

; : : : ; t

n

= t

0

n

g; V ).

Let W

0

be the result of appli
ation of the uni�
ation algorithm to the set

W = (fx�

1

= x�

2

jx 2 Dom(�

1

) [ Dom(�

2

)g; ;):

If W

0

has the form (;; fx

1

= t

1

; :::; x

n

= t

n

g) where x

i

2 X and t

i

2 T (�) for all 1 � i; j � n, then

the substitution � = (x

1

! t

1

; :::; x

n

! t

n

) is a uni�er of the substitutions �

1

and �

2

. If W

0

does not

have the above form, then the substitutions �

1

and �

2

are not uni�able.

To guarantee preservation of satis�ability, we separately 
onsider the 
ase when an MGU is found

without appli
ation of the de
omposition rule. In this 
ase the uni�
ation algoritm takes the form

{ (U [ ft = tg; V )! (U; V ),

{ (U [ fx = tg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t),

{ (U [ ft = xg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t).
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De�nition 1.4 The terms t

1

and t

2

is said to be uni�able without de
omposition if a uni�er of t

1

and t

2

is found with the help of the above rules.

Example 1.5 The substitution (z ! su

(x)) is an MGU of the substitutions (y ! z) and (y !

su

(x)). It is found by applying the rule (fz = su

(x)g; ;) ! (;; fz = su

(x)g). Therefore the

substitutions (y ! z) and (y ! su

(x)) are uni�able without de
omposition. 2

The following example will illustrate the paper.

Example 1.6 Let F

nat

= fsu

; pred; 0g with arities 1, 1, and 0, respe
tively. Then �

nat

denotes the

signature fF

nat

; f=g;Xg and the �

nat

-stru
ture K

nat

spe
i�es the natural numbers with a su

essor,

prede
essor (pred(0) = 0) and zero. 2

2. Narrowing with satis�ability preservation

Our aim is to state the 
onditions guaranteeing that narrowing preserves satis�ability. But �rst we

generalize narrowing to 
ase analysis, the same 
onditions guaranteeing satis�ability preservation for

the extension 
alled multi-bran
h narrowing.

Let B be the 
onditional term rewriting system fp

i

jl

i

! r

i

j i 2 Ig over �. Here p

i

are arbitrary

unquanti�ed formulas.

De�nition 2.1 A multi-bran
h B-narrowing ;

B

is a set of pairs (A; f(p

i

^ A[r

i

℄

q

)�

i

j i 2 Ig) su
h

that A 2 UF(�), q 2 P(A), and �

i

is an MGU of the terms l

i

and A

q

.

Let R be a set of CTRSs.

De�nition 2.2 A multi-bran
h R-narrowing ;

R

is a set of pairs (U [ fAg; U [ W ) su
h that

U;W 2 FM(UF(�)), A 2 UF(�), and A;

B

W for some B 2 R.

De�nition 2.3 A term t is 
alled a B-redex if the terms l

i

and t are uni�able for ea
h i 2 I. A term

t is 
alled a redex of R if t is a redex of some B 2 R. The relation ;

B;t

is de�ned by the set of pairs

(A; f(p

i

^A[r

i

℄

q

)�

i

j i 2 Ig) su
h that A 2 UF(�), q 2 P(A), t = A

q

, and �

i

is an MGU of the terms

l

i

and A

q

for ea
h i 2 I.

The satis�ability preservation of a multi-bran
h narrowing imposes a limitation on redexes and


onditional term rewriting systems (or CTRS for short). Let us des
ribe the limitations.

Let K be a �-stru
ture.

De�nition 2.4 Let t be a redex of B and �

i

be an MGU of the terms l

i

and t for ea
h i 2 I. The

term t is said to have the 
ompleteness property in K if the formula 8�x_

i2I

(9�y

i

(p

i

^ �x = �x�

i

)) is valid

in K where �x is the set Var(t) and �y

i

is the set Var(p

i

) [ VRange(�

i

) for ea
h i 2 I. A CTRS B is


orre
t in K if p

i

) l

i

= r

i

is valid in K for ea
h i 2 I.

Theorem 2.5 If B is 
orre
t in K and a redex t of B has the 
ompleteness property in K, then ;

B;t

preserves satis�ability in K.

Proof Let W = f(p

i

^A[r

i

℄

q

)�

i

j i 2 Ig, A 2 UF(�), q 2 P(A), A

q

= t, and A;

B;t

W .

Let A be satis�able in K. It follows from the 
ompleteness property that there exists i 2 I su
h

that the formula p

i

�

i

^A�

i

is satis�able in K.

Sin
e t�

i

= l

i

�

i

, p

i

�

i

is satis�able in K, and the formula p

i

) l

i

= r

i

is valid in K, the formula

p

i

�

i

^A[r

i

℄

q

�

i

is satis�able in K. Then W is also satis�able in K.

Let W be satis�able in K. Then there exists i 2 I su
h that the formula p

i

�

i

^ A�

i

is satis�able

in K.
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Sin
e s�

i

= l

i

�

i

, p

i

�

i

is satis�able in K, and the formula p

i

) l

i

= r

i

is valid in K, the formula A�

i

is satis�able in K. Then A is also satis�able in K. 2

Proposition 2.6 formulates the 
onditions when an instan
e of a redex is a redex.

Proposition 2.6 Let s be a redex of B, �

i

be an MGU of the terms s and l

i

for ea
h i 2 I, � 2 S(�),

and the substitutions � and �

i

are uni�able for ea
h i 2 I. Then s� is a redex of B.

Proof Let �

i

be an MGU of �

i

and � for ea
h i 2 I. Sin
e

(s�)�

i

= (s�

i

)�

i

= (l

i

�

i

)�

i

= (l

i

�)�

i

= l

i

�

i

for ea
h i 2 I, the substitution �

i

is a uni�er of s� and l

i

. Then s� is a redex of B. 2

Let us de�ne the 
onditions when satis�ability is preserved for an instan
e of a redex that has the


ompleteness property.

Theorem 2.7 Let s be a redex of B, �

i

be an MGU of l

i

and s for ea
h i 2 I, and � 2 S(�). If B

is 
orre
t in K, s has the 
ompleteness property, and the substitutions � and �

i

are uni�able without

de
omposition for ea
h i 2 I, then ;

B;s�

preserves satis�ability in K.

Proof Let W = f(p

i

^A[r

i

℄

q

)�

0

i

j i 2 Ig where �

0

i

is an MGU of s� and l

i

for ea
h i 2 I, A 2 UF(�),

A

q

= s�, and A ;

B;s�

. The substitution �

0

i

exists for ea
h i 2 I, sin
e s� is a redex of B by

Proposition 2.6.

Let �x be the set Var(s), �x

0

be the set Var(s�), �

i

be an MGU of l

i

and s for ea
h i 2 I, and �y

i

be

the set Var(p

i

) [ VRange(�

i

) for ea
h i 2 I.

Let A be satis�able in K. It follows from the 
ompleteness property 8�x _

i2I

(9�y

i

(p

i

^ �x = �x�

i

))

that 8�x

0

_

i2I

(9�y

i

(p

i

^ �x� = �x�

i

)).

Let �

i

be an MGU of � and �

i

for ea
h i 2 I and �y

0

i

be the set VRange(�

i

) [ VRange(�) for ea
h

i 2 I.

From the form of the rules of uni�
ation without de
omposition it follows that formulas �x� = �x�

i

and �x

0

= �x

0

�

i

are equivalent. Then 8�x

0

_

i2I

(9�y

0

i

(p

i

�

i

^ �x

0

= �x

0

�

i

)).

Sin
e s�

i

= l

i

�

i

, p

i

�

i

is satis�able in K, and the formula p

i

) l

i

= r

i

is valid in K, there exists

i 2 I su
h that the formula p

i

�

i

^A[r

i

℄

q

�

i

is satis�able in K.

By the proof of Proposition 2.6, the substitution �

i

is a uni�er of s� and l

i

for ea
h i 2 I. Sin
e

�

i

= �

0

i

� for some � 2 S(�), p

i

�

0

i

^A[r

i

℄

q

�

0

i

is satis�able in K. Then W is also satis�able in K.

Let W be satis�able in K. The proof that A is satis�able in K is analogous to that of Theorem 2.5.

2

3. Formula rewriting systems

Consider a formalism spe
ifying the narrowing strategy that preserves satis�ability.

Let B = fp

i

jl

i

! r

i

j i 2 Ig be a CTRS over �.

De�nition 3.1 Let s 2 T (�) n X. A pair � = (B; s) is 
alled a formula rewrite rule over � if the

terms l

i

and s are uni�able for ea
h i 2 I. The term s is 
alled a sample of �. A �nite set of formula

rewrite rules over � is 
alled a formula rewriting system (or FRS for short) over �.

Note that a term rewrite rule l ! r 
an be treated as the formula rewrite rule (fl ! rg; l).

Therefore, term rewriting systems are a spe
ial 
ase of FRSs.

Example 3.2 The pair �

nat

= (fpred(su

(x)) ! x; pred(0) ! 0g; pred(y)) is a formula rewrite

rule over the signature �

nat

, sin
e the terms pred(su

(x)) and pred(0) are uni�able with pred(y).

The substitution �

nat

1

= (y ! su

(x)) is an MGU of pred(su

(x)) and pred(y), and the substitution

�

nat

2

= (y ! 0) is an MGU of pred(0) and pred(y). 2
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Let � = (B; s) be a formula rewrite rule over �, �

i

be an MGU of the terms l

i

and s for ea
h i 2 I.

De�nition 3.3 A term t is 
alled a redex of the rule � if there exists a substitution � su
h that t = s�

and substitutions � and �

i

are uni�able without de
omposition for ea
h i 2 I. A term t is 
alled a

redex of an FRS R if t is a redex of some rule of R.

Let �

i

be an MGU of the substitutions � and �

i

for ea
h i 2 I.

Example 3.4 The term pred(z) is a redex of �

nat

, sin
e pred(z) = pred(y)�

nat

, where �

nat

= (y !

z), the substitution �

nat

1

= (z ! su

(x)) is an MGU of the substitutions �

nat

and �

nat

1

and the

substitution �

nat

2

= (z ! 0) is an MGU of the substitutions �

nat

and �

nat

2

. These MGUs are found

without appli
ation of the de
omposition rule of the uni�
ation algorithm. 2

De�nition 3.5 An �-redu
tion relation !

�

is a set of pairs (A; f(p

i

^ A[r

i

℄

q

)�

i

j i 2 Ig su
h that

A 2 UF(�), q 2 P(A), and A

q

is a redex of �. Let R be an FRS. An R-redu
tion relation!

R

is a set

of pairs (U [ fAg; U [W ) su
h that � 2 R, U;W 2 FM(UF(�)), A 2 UF(�), and A!

�

W .

Term rewriting systems 
an be used for rewriting both formulas and terms. From the de�nition

of !

�

we see that FRSs 
an be used only for rewriting formulas. That is why they are 
alled formula

rewriting systems.

Example 3.6 pred(z) = z !

�

nat

fx = su

(x); 0 = 0g. 2

For ea
h FRS R over � there is a 
orresponding abstra
t redu
tion system [13℄, namely

(FM(UF(�));!

R

):

Therefore, all 
on
epts de�ned for abstra
t redu
tion systems (termination, normal form and so on)

are inherited by R.

The termination property is unde
idable for FRSs [1℄. The 
onditions of satis�ability preservation

is given by the following theorem.

Theorem 3.7 Let K be a �-stru
ture and � = (B; s) be a formula rewrite rule su
h that B is 
orre
t

in K and the redex s of B has the 
ompleteness property in K. Then !

�

preserves satis�ability in K.

Proof Let t be a redex of �. Then there exists a substitution � su
h that t = s� and substitutions �

and �

i

are uni�able without de
omposition for ea
h i 2 I.

Sin
e B is 
orre
t in K and s has the 
ompleteness property in K, from Theorem 2.7 it follows that

;

B;t

preserves satis�ability in K.

By de�nition of !

�

, if A[t℄

q

!

�

W then A[t℄

q

;

B;t

W for all A 2 UF(�), q 2 P(A), and

W � UF(�).

Then A[t℄

q

is satis�able in K i� W is satis�able in K for all A 2 UF(�), q 2 P(A), W � UF(�),

and t 2 T (�) su
h that A[t℄

q

!

�

W . Hen
e !

�

preserves satis�ability in K. 2

Example 3.8 The suÆ
ient 
onditions of satis�ability preservation for the rule �

nat

are pred(su

(x)) =

x, pred(0) = 0 and 8y(9x(y = su

(x)) _ y = 0). It is obvious that the 
onditions are valid in K

nat

.2

4. Constru
tor formula rewriting systems

Many FRSs arising in pra
ti
e are 
onstru
tor FRSs. A 
onstru
tor FRS R is an FRS in whi
h the

set of fun
tional symbols 
an be partitioned into a set A of de�ned fun
tional symbols (or analyzers)

and a set C of 
onstru
tors, su
h that for every � 2 R its sample has the form f(t

1

; :::; t

n

) with f 2 A

and t

1

; :::; t

n

2 T ((C;P;X )). The related 
on
ept for term rewriting systems has been 
onsidered, for

instan
e, in [13℄.



6 I. S. Anureev

Let R be a 
onstru
tor FRS over � with a set of analyzers A and a set of 
onstru
tors C. Let us

introdu
e some 
on
epts that allow us to analyze a stru
ture of expressions w.r.t. R.

De�nition 4.1 An expression u is 
alled 
onstru
tive if u 2 E((C;P;X )). A substitution � is 
on-

stru
tive if x� 2 T ((C;P;X )) for ea
h variable x 2 X . A term in whi
h no variable o

urs twi
e or

more is 
alled linear. A substitution � is linear on X � X if for all variables x; y 2 X the term x� is

linear and Var(x�) \ Var(y�) = ; if x 6= y. An expression u is nested if u has nested o

uren
es of

analyzers. An expression u is 
alled simple if u is not nested. A term t is a 
all if root(t) 2 A.

C

m

(u) denotes the multiset of all simple 
alls that o

ur in u 2 E .

De�nition 4.2 A map �




: E(�)! FM(N) is a 
onstru
tor measure if �




(u) = fjtj j t 2 C

m

(u)g. A

map De


v

: E(�)! FM(X ) is a variable de
omposition if De


v

(u) = [

t2C

m

(u)

MVar(t).

Let C

e

(u) denote the multiset of all nested 
alls of u 2 E(�), �

a

and �

v

denote the maps su
h that

�

a

(u) = jC

e

(u)j and �

v

(u) = fO(x;De


v

(u)) j O(x;De


v

(u)) 6= 0g, respe
tively.

Finding of 
lasses of terminating FRSs is a very diÆ
ult problem. In the following se
tions three

spe
ial 
lasses of 
onstru
tor FRSs are 
onsidered. They all are terminating w.r.t. a spe
ial strategy

of appli
ation of rules.

De�nition 4.3 Let R be the set of all FRSs over �. A fun
tion

s : R ! FM(UF(�))�FM(UF(�))

is 
alled a redu
tion strategy for FRSs if s(R) �!

R

for all R 2 R. An FRS R is terminating w.r.t. s

if s(R) is terminating.

The following redu
tion strategy guarantees the termination of 
lasses of FRSs mentioned above.

De�nition 4.4 A redu
tion strategy for AESs is an innermost redu
tion strategy if the rules of AESs

are applied to the redexes that do not 
ontain redexes as their proper subterms.

5. Analyzer elimination systems

The following 
lass of 
onstru
tor FRSs (analyzer elimination systems or AESs for short) allows us to

design simpli�ers that eliminate analyzers. The idea of these systems 
onsists in per
olating analyzers

through 
onstru
tors to variables followed by their elimination by variable repla
ement. Unfortunately,

even very strong restri
tions imposed on AESs guarantee termination only w.r.t. a 
ertain redu
tion

strategy.

De�nition 5.1 A 
onstru
tor FRS R is an analyzer elimination system if any simple 
all is a redex

of R and for ea
h rule (fp

i

jl

i

! r

i

j i 2 Ig; s) 2 R and for ea
h i 2 I the following properties hold:

{ �

i

is linear on Var(s) and 
onstru
tive,

{ p

i

and r

i

are simple,

{ p

i

and r

i

are 
onstru
tive if l

i

6= s,

{ De


v

(s) � De


v

(p

i

) [De


v

(r

i

),

{ �




(s) >

m

�




(p

i

) and �




(s) >

m

�




(r

i

).

Example 5.2 Let R be an FRS that 
onsists of the following rules:

{ �

1

: pred(su

(x))! x,

{ �

2

: pred(0)! 0,

{ �

3

: (fpred(su

(x)) ! x; pred(0)! 0g; pred(y) ).

Show that R is an AES with the analyzer pred.

Let t be a simple 
all. By the de�niton of a simple 
all, t takes one of the following forms:

pred(su

(t

0

)), pred(0) or pred(z), where t

0

is a 
onstru
tive term and z 2 X .
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Considering these 
ases, we see that t is a redex of the rules �

1

, �

2

, and �

3

, respe
tively.

Conditions from the de�nition of AES for the rule �

1

with the sample s = pred(su

(x)) take the

form:

{ the identi
al substitution �

1

= () is linear on fxg,

{ the right-hand side x is simple,

{ the right-hand side x is 
onstru
tive if s = pred(su

(x)),

{ De


v

(s) = fxg � ; = De


v

(x),

{ �




(s) = f1g >

m

; = �




(x).

Conditions from the de�nition of AES for the rule �

3

with the sample s = pred(y) take the form:

{ the substitutions �

1

= (y ! su

(x)) and �

2

= (y ! 0) are linear on fyg,

{ the right-hand sides x and 0 are simple,

{ the right-hand sides x and 0 are 
onstru
tive if s 6= pred(su

(x)) and s 6= pred(0), respe
tively,

{ De


v

(s) = fyg � ; = De


v

(x) and De


v

(s) = fyg � ; = De


v

(0),

{ �




(s) = f0g >

m

; = �




(x) and �




(s) = f0g >

m

; = �




(0).

Veri�
ation of 
onditions for the rules �

1

and �

3

is straightforward. The rule �

2

is 
onsidered in

similar way. 2

The termination property of AESs is given by the following theorem.

Theorem 5.3 AESs are terminating w.r.t. the innermost redu
tion strategy.

Proof Let s

i

be the innermost redu
tion strategy. To prove the termination of AESs w.r.t. s

i

, it is

suÆ
ient to build a well-founded partial order � su
h that s

i

(R) � � for any AES R.

The required partial order � is a multiset extension of �

0

su
h that u �

0

v i� (�

a

(u); �

v

(u); �




(u))

is lexi
ographi
ally bigger than (�

a

(v); �

v

(v); �




(v)) with orders >, >

m

, and >

m

on the �rst, the

se
ond, and the third elements of the tuple, respe
tively.

A multiset extension of a well-founded order and a lexi
ographi
al order on tuples of the same

number of elements with well-founded orders on the elements are well-founded. Therefore � is well-

founded. The 
he
k of s

i

� � is redu
ed to the routine 
ase analysis and, therefore, is dropped.

2

Let us show that the use of the redu
tion strategy for AESs is a ne
essary 
ondition of termination

of AESs.

Example 5.4 Let R be the FRS that 
onsists of the following rules:

�

1

: (ff(
(z)) ! zg; f(x))

�

2

: (ff(
(z)) ! zg; f(
(z)))

�

3

: (ff(d(x; y)) ! d(f(y); f(x))g; f(d(x; y)))

�

4

: (fh(
(z)) ! d(h(z); z)g; h(
(z)))

�

5

: (fh(d(x; y)) ! xg; h(d(x; y)))

�

6

: (fh(d(x; y)) ! xg; h(z))

The FRS R is an AES with analyzers f and h. However the following 
hain of redu
tions

d(f(x); f(h(x))) !

�

1

d(z; f(h(
(z)))) !

�

4

d(z; f(d(h(z); z))) !

�

3

d(z; d(f(z); f(h(z)))) !

�

1

: : :

is in�nite. In the 
hain the rule �

3

is applied to the redex f(d(h(z); z)) of R that 
ontains the redex

h(z) as its proper subterm. 2

6. Analyzer elimination systems with argument status

Consider the generalization of AESs (AESs with argument status, or SAES, for short) that also has

the termination property w.r.t. the innermost redu
tion strategy.
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Example 6.1 Let R be the 
onstru
tor system (ff(g(g(x)); y) ! f(x; f(a; y))g; f(g(g(x)); y)) with

the analyzer f and 
onstru
tors g and a. It is obvious that R is terminating w.r.t. the innermost

redu
tion strategy. However, R is not an AES, sin
e the term f(x; f(a; y)) is nested. 2

This problem 
an be de
ided if we take into a

ount only 
ertain arguments of fun
tion symbols.

In the example the term f(x; f(a; y)) is simple if we take into a

ount only the �rst argument of f .

Let us introdu
e the 
orresponding de�nition.

De�nition 6.2 A map arg : A ! P(N) is 
alled an argument status if arg(f) � f1; :::;Ar(f)g.

The de�nitions of a nested expression, a 
all, a 
onstru
tor measure and a variable measure are

modi�ed so as to take into a

ount an argument status.

De�nition 6.3 An expression u is nested w.r.t. arg if there is a position q 2 P(u) su
h that

u

q

= f(t

1

; :::; t

n

), f 2 D and the term t

i

is not 
onstru
tive for some i 2 arg(f). An expression u is


alled simple if u is not nested w.r.t. arg.

C

m

(u) denotes the multiset of all 
alls whi
h are simple w.r.t. arg and o

ur in expression u.

De�nition 6.4 A map �

arg




: E(�)! FM(N) is a 
onstru
tor measure w.r.t. arg if

�

arg




(u) = f

X

i2arg(f)

jt

i

j j f(t

1

; :::; t

n

) 2 C

m

(u)g:

De�nition 6.5 A map De


arg

v

: E(�)! FM(X) is a variable de
omposition w.r.t. arg if

De


arg

v

(u) = [

f(t

1

;:::;t

n

)2C

m

(u)

[

i2arg(f)

MVar(t

i

):

De�nition 6.6 A 
onstru
tor FRS R is an analyzer elimination system with an argument status arg,

if any simple 
all is a redex of R and for ea
h rule (fp

i

jl

i

! r

i

j i 2 Ig; s) 2 R and for ea
h i 2 I the

following properties hold:

{ �

i

is linear on Var(s) and 
onstru
tive,

{ p

i

and r

i

are simple w.r.t. arg,

{ p

i

and r

i

are 
onstru
tive if l

i

6= s,

{ De


arg

v

(s) � De


arg

v

(p

i

) [De


arg

v

(r

i

),

{ �

arg




(s) >

m

�

arg




(p

i

) and �

arg




(s) >

m

�

arg




(r

i

),

{ t

ij

= t

j

for ea
h j 2 arg(f) where l

i

= f(t

i1

; : : : ; t

in

) and s = f(t

1

; : : : ; t

n

).

AESs are a spe
ial 
ase of SAESs. It is obtained by taking arg(f) = f1; : : : ;Ar(f)g for ea
h f 2 A.

The termination property of SAESs is given by the following theorem.

Theorem 6.7 SAESs are terminating w.r.t. the innermost redu
tion strategy.

Proof Let s

i

be the innermost redu
tion strategy. To prove the termination of AESs w.r.t. s

i

it is

suÆ
ient to build a well-founded partial order � su
h that s

i

(R) � � for any AES R.

Let C

arg

e

(u) denote the multiset of all nested 
alls of u 2 E(�) w.r.t. arg, �

arg

a

and �

arg

v

denote

the maps su
h that �

arg

a

(u) = jC

e

(u)

arg

j and �

arg

v

(u) = fO(x;De


arg

v

(u)) j O(x;De


arg

v

(u)) 6= 0g,

respe
tively.

The required partial order � is a multiset extension of �

0

su
h that u �

0

v i�

(�

arg

a

(u); �

arg

v

(u); �

arg




(u))

is lexi
ographi
ally bigger than
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(�

arg

a

(v); �

arg

v

(v); �

arg




(v))

with orders >, >

m

, and >

m

on the �rst, the se
ond, and the third elements of the tuple, respe
tively.

A multiset extension of a well-founded order and a lexi
ographi
al order on tuples of the same

number of elements with well-founded orders on the elements are well-founded. Therefore � is well-

founded. The 
he
k of s

i

� � is redu
ed to the routine 
ase analysis and, therefore, is dropped.

2

7. Analyzer elimination systems with a substitution base

The third 
lass of 
onstru
tive systems that are terminating w.r.t. the innermost redu
tion strategy

are analyzer elimination systems with a substitution base. These systems are built in the following

way:

1. A 
lass of expressions 
alled a substitution base is 
hosen. The expression analysis does not

take into a

ount expressions of the substitution base. An example of su
h analysis of the expression

stru
ture is appli
ation of fun
tions Var

E

jj

E

. These fun
tions do not take into a

ount subexpressions

that o

ur in E.

2. Narrowing is restri
ted by MGUs that repla
e the variables by expressions of the substitution

base.

De�nition 7.1 Let E � E , S � S. E is 
alled 
losed w.r.t. S, if u� 2 E for every u 2 E

and � 2 S. E is 
omplete w.r.t. S, if the sets E, E n (E [ V) are 
losed w.r.t. S. E is 
losed

(
omplete) w.r.t. substitutions, if E is 
losed (
omplete) w.r.t. S. A map �

E




is a 
onstru
tor

measure w.r.t. E if �

E




(u) = fjtj

E

jt 2 C

m

(u)g. A map De


E

v

is a variable de
omposition w.r.t. E, if

De


E

v

(u) = fMVar

E

(t)jt 2 C

m

(u)g.

Example 7.2 Let E = fh(x)�j� 2 Sg, E

0

= fh(x)�j� is a 
onstru
tive substitutiong. Then E is


omplete w.r.t. substitutions, E

0

is 
omplete w.r.t. 
onstru
tive substitutions. 2

De�nition 7.3 Let E be a set of expressions 
omplete w.r.t. 
onstru
tive substitutions. A 
onstru
tor

FRS R is an analyzer elimination system with the substitution base E, if any simple 
all is a redex of

R and for ea
h rule (fp

i

jl

i

! r

i

j i 2 Ig; s) 2 R and for ea
h i 2 I the following properties hold:

{ fx�

i

j x 2 Var(s)g � E,

{ p

i

and r

i

are simple,

{ p

i

and r

i

are 
onstru
tive if l

i

6= s,

{ De


E

v

(s) � De


E

v

(p

i

) [De


E

v

(r

i

),

{ �

E




(s) >

m

�

E




(p

i

) and �

E




(s) >

m

�

E




(r

i

).

Example 7.4 Let R be a 
onstru
tive FRS with the analyzer f that 
onsists of the following rules:

{ �

1

: (ff(h(x))! xg; f(y)),

{ �

2

: f(h(x))! x,

{ �

3

: f(g(x))! g(f(x)).

Let S




be a set of all 
onstru
tive substitutions. Show that R is an AES with the substitution base

E = fh(x)�j� 2 S




g.

Conditions from the de�nition of AES with the substitution base for the rule �

1

with the sample

s = f(y) take the form:

{ true and x are simple,

{ fy(x! z; y ! h(z))g = fh(z)g � E,

{ true and x are 
onstru
tive if f(h(x)) 6= s,

{ De


E

v

(s) � De


E

v

(p

i

) [De


E

v

(r

i

),

{ �

E




(s) >

m

�

E




(p

i

) and �

E




(s) >

m

�

E




(r

i

).
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Conditions from the de�nition of AES with the substitution base for the rule �

2

with the sample

s = f(h(x)) take the form:

{ true and x are simple,

{ fx(x! z)g = fzg � E,

{ true and x are 
onstru
tive if f(h(x)) 6= s,

{ De


E

v

(s) = ; � ; [ ;,

{ f1g >

m

; and f1g >

m

;.

Conditions from the de�nition of AES with the substitution base for the rule �

3

with the sample

s = f(g(x)) take the form:

{ true and g(f(x)) are simple,

{ fx(x! z)g = fzg � E,

{ true and g(f(x)) are 
onstru
tive if f(g(x)) 6= s,

{ fxg =�

m

; [ fxg,

{ f3g >

m

; and f3g >

m

f2g.

Veri�
ation of 
onditions for the rules �

1

, �

2

, and �

3

is straightforward. The form of the samples

of the rules of R guarantees that any simple 
all is a redex of R. So R is an AES with a substitution

base. 2

AESs is a spe
ial 
ase of AESs with a substitution base. It is obtained by taking E = ;.

The termination property of AESs with a substitution base is given by the following theorem.

Theorem 7.5 Analyzer elimination systems with a substitution base is terminating w.r.t. the inner-

most redu
tion strategy.

Proof Let s

i

be the innermost redu
tion strategy. To prove the termination of AESs with a substitu-

tion base w.r.t. s

i

, it is suÆ
ient to build a well-founded partial order � su
h that s

i

(R) � � for any

AES R.

Let R be an AES with the substitution base E. The required partial order � is a multiset extension

of �

0

su
h that u �

0

v i� (�

a

(u); �

E




(u)) is lexi
ographi
ally bigger than (�

a

(v); �

E




(v)) with orders >

and >

m

on the �rst and the se
ond elements of the tuple, respe
tively.

A multiset extension of a well-founded order and a lexi
ographi
al order on tuples of the same

number of elements with well-founded orders on the elements are well-founded. Therefore � is well-

founded. The 
he
k of s

i

� � is redu
ed to the routine 
ase analysis and, therefore, is dropped.

2

Con
lusion

The paper presents a method of appli
ation of narrowing to formula simpli�
ation. The method

in
ludes the following new features:

{ the 
on
ept of a multi-bran
h narrowing that allows 
ase analysis to be built;

{ formula rewriting systems formalizing narrowing strategy that preserves satis�ability;

{ the method for proving termination of formula rewriting systems.

Proving 
orre
tness 
onditions that appear in program veri�
ation is an important area of appli-


ation of the method. Proving 
orre
tness 
onditions is performed in the intera
tive mode in most

veri�
ation systems. Our method allows the proof of 
orre
tness 
onditions to be done automati-


ally. The program veri�
ation system SPECTRUM [15, 16℄ has been developed for whi
h a new

prover based on the method is being designed. In parti
ular, experiments on automati
 veri�
ation

of programs of array sorting and �le sorting have been performed in the framework of the proje
t

SPECTRUM by this method.

Some details of the theory of formula rewriting systems and their appli
ation to problem-oriented

veri�
ation has been 
onsidered in [1, 2, 3, 4℄. The methods of proving termination of formula rewriting
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systems have been studied in [2℄. In parti
ular, other 
lasses of terminating formula rewriting systems

have been proposed [1, 2℄.
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