
Joint NCC & IIS Bull., Comp. Science, 15 (2001), 1–16
© 2001 NCC Publisher

Program verification based on the

specification language SIMPLE∗

I. S. Anureev

A new specification language, simple to master, is suggested. In spite of simplicity,

this language is expressive enough. A decision method for its quantifier-free formulas is

given. A program verification method based on this language is illustrated by an example

of a program of bubble sorting.

Introduction

The practical use of modern verification systems is difficult due to complexity
of specification languages describing the program properties.

A specification language of a typical program verification system
[1–5] has a large number of heterogeneous syntactical structures, semantics
(which is difficult for understanding and requires a profound knowledge in
logic), a wide spectrum of methods and techniques of automatic proving,
and numerous libraries of decision procedures for specific theories.

Mastering the variety of facilities of the specification language takes much
time. Only then the facilities, which are most appropriate for verification of
a specific class of programs, can be chosen. They usually form a small part
of the arsenal of facilities. Time spent in studying other ones proves to be
a waste time.

A specification language SIMPLE is represented in this work. This lan-
guage can be mastered in one or two days.

A program verification method based on SIMPLE does not offer an alter-
native to the present verification systems. It is a filter of programs which are
verified. We use sophisticated verification systems only when this method
fails.

In spite of simplicity, SIMPLE is not a toy language. A class of programs
which are verified with its help is representative. This language is a tool that
improves efficiency of program verification.

∗Partially supported by the Russian Foundation for Basic Research under Grants 00-

01-00909 and 01-01-06141 and SB RAS Grant for Young Scientists.

2 I. S. Anureev

1. Specification language SIMPLE

SIMPLE is a language of a first-order logic with two sorts “element” and
“set” and a single predicate symbol “belong to”.

1.1. Signature

A signature of SIMPLE is a quadruple (F,∈, S,X), where F is a set of
functional symbols, ∈ is a predicate symbol “belong to”, S = {Elem,Set}
is a set of sorts, X is a set of variables.

For every functional symbol, there is a nonnegative integer denoting its
arity.

The set F is divided into two disjoint sets of determinate (Fd) and non-
determinate (Fn) functional symbols. The set Fd includes an indefinite
value ω.

1.2. Terms

A set of terms T is built in the regular way:

– if x ∈ X, then x is a term;

– if t1, . . . , tn are terms, f ∈ F , then f(t1, . . . , tn) is a term.

The terms are divided into determinate (Td) and nondeterminate (Tn) ones.
A term is nondeterminate if it contains a nondeterminate functional symbol,
otherwise it is determinate.

1.3. Formulas

The atomic formulas of SIMPLE look like t ∈ s, where t ∈ Td and s ∈ T .
The formulas of SIMPLE are built from atomic formulas with the help

of propositional connectives and quantifiers:

– if A is an atomic formula, then A is a formula;

– true, false are formulas;

– if A,B are formulas, then ¬(A), A ∧ B, A ∨ B, A ⇒ B, A ⇔ B are
formulas;

– if x ∈ X, A is a formula, then ∀x(A), ∃x(A) are formulas.

Let UF be a set of all quantifier-free formulas of SIMPLE, FS denote a
set of all finite sets of UF , and FSS denote a set of all finite subsets of FS.

Program verification based on specification language SIMPLE 3

1.4. Semantics of signature

Define an interpretation I of symbols of the signature of SIMPLE:

– I(Elem) is a set of elements;

– I(Set) is a set of all subsets of the set I(Elem);

– I(∈) is a relation of membership;

– if f ∈ Fd, m is the arity of f , then I(f) is a total function from
(I(Elem))m to I(Elem);

– if f ∈ Fn, m is the arity of f , then I(f) is a total function from
(I(Elem))m to I(Set).

A function φI from X to I(Elem) is called a meaning of variables in
interpretation I.

1.5. Semantics of terms

A meaning φI extends to terms in the following way:
– if t1, . . . , tn ∈ T , f ∈ Fd, then

φI(f(t1, . . . , tn)) = {I(f)(a1, . . . , an)|a1 ∈ φI(t1), . . . , an ∈ φI(tn)};

– if t1, . . . , tn ∈ T , f ∈ Fu, then

φI(f(t1, . . . , tn)) =
⋃

a1∈φI(t1),...,an∈φI(tn)

I(f)(a1, . . . , an).

A special kind of a meaning for determinate terms (a determinate mean-
ing φd

I) is defined as follows:
– if x ∈ X, then φd

I(x) = φI(x);
– if t1, . . . , tn ∈ T , f ∈ Fd, then

φd
I(f(t1, . . . , tn)) = I(f)(φd

I(t1), . . . , φ
d
I(tn)).

1.6. Semantics of formulas

Let I be an interpretation and φI be a meaning in I.
The semantics of propositional connectives and quantifiers is defined in

an ordinary way. Therefore, it is sufficient to define semantics of atomic
formulas.

An atomic formula t ∈ s is valid in I and φI , if φ
d
I(t) ∈ φI(s).

A formula A is valid in I, if A is valid in I and φI for each meaning φI .
A formula A is valid, if A is valid in I for each interpretation I. A formula
A is satisfiable in I, if A is valid in I and φI for some meaning φI .

4 I. S. Anureev

An equality relation is expressed with the help of a predicate symbol ∈.
If s ∈ Td, then t ∈ s means that the terms t and s are equal.

Let M,N be sets with satisfiability relations, → be a relation on M×N ,
and I be an interpretation. A relation → is said to preserve satisfiability, if
for all m ∈M , n ∈ N such that m→ n we have that m is satisfiable in I iff
n is satisfiable in I.

Satisfiability extends to FS and FSS. A set u ∈ FS is satisfiable in I,
if

∧
A∈u

A is satisfiable in I. A set U ∈ FSS is satisfiable in I, if
∨

u∈U

∧
A∈u

A is

satisfiable in I.

2. Formula completion rules

Formula completion rules are intended for completion of the sets of formulas.
If the set contains a formula and its negation after completion, then it is
unsatisfiable. These rules form the basis of a decision method for quantifier-
free formulas of SIMPLE. The way of completion is given by a completion
relation generated by a formula completion rule. Formula completion rules
of four kinds are defined below. Each next kind of the rules includes all
the previous ones. A criterion of satisfiability preservation for the sets of
formulas is given for each kind of the rules.

For u ∈ FS, V ar(u) denotes a set of variables occurring in u. For
u1, . . . , un ∈ FS, V ar(u1, . . . , un) =

⋃
1≤i≤n

V ar(ui).

2.1. Simple formula completion rules

A simple formula completion rule has the form L → R, where L,R ∈ FS,
and V ar(R) ⊆ V ar(L).

Let ρ be a formula completion rule.
A completion relation →ρ generated by ρ is defined as a set of pairs

(u, u ∪ {rσ | r ∈ R}),

where u ∈ FS, σ is a substitution such that ∀l ∈ L(lσ ∈ u).

Proposition 1. Let the formula

∧

l∈L

l⇒
∧

r∈R

r

be valid in an interpretation I. Then →ρ preserves satisfiability in I.

Program verification based on specification language SIMPLE 5

Proof. We have:

ρ has the form L→ R; (1)

u→ρ v; (2)
∧

l∈L

l⇒
∧

r∈R

r is valid in I. (3)

Then

u = u′ ∪ {lσ|l ∈ L}; (4)

v = u′ ∪ {lσ|l ∈ L} ∪ {rσ|r ∈ R} (by 1, 2). (5)

The set u is satisfiable in I iff (by 4)
∧

A∈u′

A ∧
∧
l∈L

lσ is satisfiable in I iff

(by 3)
∧

A∈u′

A ∧
∧
l∈L

lσ ∧
∧
r∈R

rσ is satisfiable in I iff (by 5)

v is satisfiable in I. (6)

The relation →ρ preserves satisfiability in I (by 6). ✷

2.2. Formula completion rules with case analysis

Formula completion rules with case analysis has the form

L→ R1, . . . , Rn,

where L,R1, . . . , Rn ∈ FS, and V ar(R1, . . . , Rn) ⊆ V ar(L).
Let ρ be a formula completion rule with case analysis.
A completion relation →ρ generated by ρ is defined as a set of pairs

(u, {u ∪ {rσ | r ∈ R1}, . . . , u ∪ {rσ | r ∈ Rn}}),

where u ∈ FS, σ is a substitution such that ∀l ∈ L(lσ ∈ u).

Proposition 2. Let the formula
∧

l∈L

l⇒
∨

1≤i≤n

∧

r∈Ri

r

be valid in an interpretation I. Then →ρ preserves satisfiability in I.

Proof. We have:

ρ has the form L→ R1, . . . , Rn; (1)

u→ρ V ; (2)
∧

l∈L

l⇒
∨

1≤i≤n

∧

r∈Ri

r is valid in I. (3)

6 I. S. Anureev

Then

u = u′ ∪ {lσ|l ∈ L}; (4)

V = {u′ ∪ {lσ|l ∈ L} ∪ {rσ|r ∈ Ri}|1 ≤ i ≤ n} (by 1, 2). (5)

The set u is satisfiable in I iff (by 4)
∧

A∈u′

A∧
∧
l∈L

lσ is satisfiable in I iff (by

3)
∨

1≤i≤n
(
∧

A∈u′

A ∧
∧
l∈L

lσ ∧
∧

r∈Ri

rσ) is satisfiable in I iff (by 5)

V is satisfiable in I. (6)

The relation →ρ preserves satisfiability in I (by 6). ✷

2.3. Conditional formula completion rules

A conditional formula completion rule has the form

P1, . . . , Pn|L→ R1, . . . , Rn,

where P1, . . . , Pn, L,R1, . . . , Rn ∈ FS, and V ar(P1, . . . , Pn, R1, . . . , Rn) ⊆
V ar(L).

Let ρ be a conditional formula completion rule.
A completion relation →ρ generated by ρ is defined as a set of pairs

(u, {u ∪ {pσ | p ∈ Pi} ∪ {rσ | r ∈ Rj}|1 ≤ i ≤ n ∧ j ∈ Ji}),

where u ∈ FS, σ is a substitution such that lσ ∈ u for each l ∈ L, and
Ji = {j|Pj = Pi ∧ 1 ≤ j ≤ n}.

Proposition 3. Let the formulas

∧
l∈L

l⇒
∨

1≤i≤n

∧
pi∈Pi

pi;

∧
1≤i≤n

(
∧
l∈L

l ∧
∧

p∈Pi

p⇒
∨

j∈Ji

∧
r∈Rj

r)

be valid in an interpretation I. Then →ρ preserves satisfiability in I.

Proof. We have:

ρ has the form P1, . . . , Pn|L→ R1, . . . , Rn; (1)

u→ρ V ; (2)
∧

l∈L

l⇒
∨

1≤i≤n

∧

p∈Pi

p; (3)

∧

1≤i≤n

(
∧

l∈L

l ∧
∧

p∈Pi

p⇒
∨

j∈Ji

∧

r∈Rj

r). (4)

Program verification based on specification language SIMPLE 7

Then

u = u′ ∪ {lσ|l ∈ L}; (5)

V = {u′ ∪ {lσ|l ∈ L} ∪ {pσ|p ∈ Pi} ∪ {rσ|r ∈ Ri}|1 ≤ i ≤ n} (by 1, 2). (6)

The set u is satisfiable in I iff (by 5)
∧

A∈u′

A∧
∧
l∈L

lσ is satisfiable in I iff (by

3)
∨

1≤i≤n
(
∧

A∈u′

A∧
∧
l∈L

lσ
∧

p∈Pi

pσ) is satisfiable in I iff (by 4)
∨

1≤i≤n

∨
j∈Ji

(
∧

A∈u′

A∧
∧
l∈L

lσ ∧
∧

p∈Pi

pσ ∧
∧

r∈Rj

rσ) is satisfiable in I iff (by 6)

V is satisfiable in I. (7)

The relation →ρ preserves satisfiability in I (by 7). ✷

2.4. Formula completion rules with extra variables

A formula completion rule with extra variables has the form

P1, . . . , Pn|L→ R1, . . . , Rn,

where P1, . . . , Pn, L,R1, . . . , Rn ∈ FS.
A restriction V ar(P1, . . . , Pn, R1, . . . , Rn) ⊆ V ar(L) is removed. The

formulas appearing in P1, . . . , Pn, R1, . . . , Rn can contain extra variables.
Let ρ be a formula completion rule with extra variables.
A completion relation →ρ generated by ρ is defined as a set of pairs

(u, {u ∪ {pσ | p ∈ Pi} ∪ {rσ | r ∈ Rj}|1 ≤ i ≤ n ∧ j ∈ Ji}),

where u ∈ FS, σ is a substitution such that ∀l ∈ L(lσ ∈ u), V ar(u) ∩
V ar(ρ) = ∅, Ji = {j|Pj = Pi ∧ 1 ≤ j ≤ n}.

Proposition 4. Let the formulas
∧
l∈L

l⇒
∨

1≤i≤n
∃x̄i(

∧
p∈Pi

p) where x̄i = V ar(Pi) \ V ar(L);

∧
1≤i≤n

(
∧
l∈L

l ∧
∧

p∈Pi

p⇒
∨

j∈Ji

∃ȳij(
∧

r∈Rj

r)

where ȳij = V ar(Rj) \ (V ar(L) ∪ V ar(Pi)))

be valid in an interpretation I. Then →ρ preserves satisfiability in I.

Proof. We have:

ρ has the form P1, . . . , Pn|L→ R1, . . . , Rn; (1)

u→ρ V ; (2)
∧

l∈L

l⇒
∨

1≤i≤n

∃x̄i(
∧

p∈Pi

p); (3)

∧

1≤i≤n

(
∧

l∈L

l ∧
∧

p∈Pi

p⇒
∨

j∈Ji

∃ȳij(
∧

r∈Rj

r)). (4)

8 I. S. Anureev

Then

u = u′ ∪ {lσ|l ∈ L}; (5)

V = {u′ ∪ {lσ|l ∈ L} ∪ {pσ|p ∈ Pi} ∪ {rσ|r ∈ Ri}|1 ≤ i ≤ n} (by 1, 2). (6)

The set u is satisfiable in I iff (by 5)
∧

A∈u′

A∧
∧
l∈L

lσ is satisfiable in I iff (by

3)
∨

1≤i≤n
(
∧

A∈u′

A∧
∧
l∈L

lσ
∧

p∈Pi

pσ) is satisfiable in I iff (by 4)
∨

1≤i≤n

∨
j∈Ji

(
∧

A∈u′

A∧
∧
l∈L

lσ ∧
∧

p∈Pi

pσ ∧
∧

r∈Rj

rσ) is satisfiable in I iff (by 6)

V is satisfiable in I. (7)

The relation →ρ preserves satisfiability in I (by 7). ✷

2.5. Formula completion systems

Formula completion rules with extra variables are the most general kind of
formula completion rules. Later on by formula completion rules we mean
formula completion rules with extra variables.

Formula completion rules extend to sets of sets of formulas.
A completion relation →ρ generated by ρ is defined as a set of pairs

U →ρ U \ {u} ∪W , where u ∈ U , u→ρ W .
A formula completion system is a finite set of formula completion rules.
A completion relation →R generated a formula completion system R is

defined as a union of completion relations generated by all formula comple-
tion rules of R.

Let I be an interpretation.
A formula completion rule ρ is correct in I if the formulas

∧
l∈L

l⇒
∨

1≤i≤n
∃x̄i(

∧
p∈Pi

p) where x̄i = V ar(Pi) \ V ar(L);

∧
1≤i≤n

(
∧
l∈L

l ∧
∧

p∈Pi

p⇒
∨

j∈Ji

∃ȳij(
∧

r∈Rj

r)

where ȳij = V ar(Rj) \ (V ar(L) ∪ V ar(Pi)))are valid in I.
A formula completion system R is correct in I if all rules of R are correct

in I.

Proposition 5. Let a formula completion system R be correct in an inter-

pretation I. Then →R preserves satisfiability in I.

Proof. By proposition 4, →ρ preserves satisfiability for each ρ ∈ R. Then
→R=

⋃
ρ∈R

→ρ preserves satisfiability. ✷

Program verification based on specification language SIMPLE 9

3. Decision method for quantifier-free formulas of

SIMPLE

The decision method for quantifier-free formulas of SIMPLE is based on a
special (normal) presentation of literals in a disjunctive normal form and
on application of formula completion rules of a special (normal) kind to the
disjunctive normal form with normal literals.

3.1. Main definitions

An atomic formula or its negation is called a literal.
A literal of the form

x ∈ f(x1, . . . , xn) or ¬(x ∈ f(x1, . . . , xn)),

where x, x1, ..., xn ∈ X, and f ∈ F is called a normal literal.
A set U ∈ FSS is called a disjunctive normal form (DNF for short), if

∀u ∈ U∀A ∈ u (A is a literal).
A set U ∈ FSS is called a disjunctive normal form with normal literals

(NLDNF for short), if ∀u ∈ U∀A ∈ u (A is a normal literal).
A formula completion rule is normal, if all formulas which occur in it are

normal literals. A formula completion system is normal if all rules of this
system are normal.

3.2. Algorithm of reduction to NLDNF

Let v ∈ FS and V ∈ FSS.
An algorithm of reduction of a formula A ∈ UF to NLDNF consists of

three steps:

Step 1. A is reduced to the form A′ =
∨
i∈I

(
∧
j∈J

Aij), where Aij are literals,

by usual logical transformations;

Step 2. A′ is rewritten to UA = {{Aij |j ∈ J}|i ∈ I};

Step 3. UA is rewritten to DA, where DA is a result of application of the
following rules to UA:

– {v∪{s ∈ f(t1, . . . , ti−1, ti, ti+1, . . . , tn)}}∪V , where ti 6∈ X is replaced
by {v ∪ {y ∈ ti, s ∈ f(t1, . . . , ti−1, y, ti+1, . . . , tn)}} ∪ V, where y ∈
X \ V ar(u);

– {v ∪{s ∈ t}}∪V , where s 6∈ X is replaced by {v ∪{y ∈ s, y ∈ t}}∪V ,
where y ∈ X \ V ar(u).

10 I. S. Anureev

Proposition 6. The algorithm of reduction to NLDNF terminates. Its

result DA is an NLDNF of A. The result DA is satisfiable in I iff A is

satisfiable in I for all interpretations I.

Proof. Let us prove that DA is an NLDNF of A.
A set DA is DNF, since UA is DNF and the rules of step 3 only transform

literals into literals.
Suppose that DA = {{B}∪u}∪U , where B is not a normal literal. Then

B has the form s ∈ f(t1, . . . , ti−1, ti, ti+1, . . . , tn), where ti 6∈ X, or s ∈ t,
where s 6∈ X.

In the former case, the first rule of step 3 is applicable. In the latter case,
the second rule of step 3 is applicable. This contradicts nonapplicability of
the rules of step 3 to DA.

Let us prove termination of the algorithm. Termination of steps 1 and 2
is evident.

Let size(A) denote the number of functional symbols in A, ≺′ be a partial
order on literals, such that A ≺ B′ iff size(A) < size(B), ≺ be a multiset
extension of a multiset extension of ≺′.

For all U, V ∈ FSS, if U is rewritten by the rules of step 3 into V , then
V ≺ U .

Step 3 terminates, since ≺ is a well-founded relation.
Let I be an interpretation. Let us prove that DA is satisfiable in I iff A

is satisfiable in I. Step 1 preserves satisfiability, since the equivalent logical
transformation is only used. Step 2 preserves satisfiability by definition of
the satisfiability relation on FSS. It is sufficient to prove that both rules of
step 3 preserve satisfiability.

Let U denote {v∪{s ∈ f(t1, . . . , ti−1, ti, ti+1, . . . , tn)}}∪V and U ′ denote
{v ∪ {y ∈ ti, s ∈ f(t1, . . . , ti−1, y, ti+1, . . . , tn)}} ∪ V .

Let U be satisfiable in I. Then U is valid in I and some φI . Let φ
′
I be a

meaning such that ∀x ∈ V ar(U)(φ′
I(x) = φI(x)) and φ′

I(y) = φI(ti). Then
U ′ is valid in I and φ′

I . So, U
′ is satisfiable in I.

Let U ′ be satisfiable in I. Then U ′ is valid in I and some φI . Thus, U
is valid in I and φI . Hence U is satisfiable in I.

The first rule of step 3 preserves satisfiability.
Let U denote {v ∪ {s ∈ t}} ∪ V , and U ′ denote {v ∪ {y ∈ s, y ∈ t}} ∪ V .
Let U be satisfiable in I. Then U is valid in I and some φI . Let φ

′
I be a

meaning such that ∀x ∈ V ar(U)(φ′
I(x) = φI(x)) and φ′

I(y) = φI(s). Then
U ′ is valid in I and φ′

I . Then U ′ is satisfiable in I.
Let U ′ be satisfiable in I. Then U ′ is valid in I and some φI . Then U is

valid in I and φI . Hence U is satisfiable in I.
The second rule of step 3 preserves satisfiability. ✷

Program verification based on specification language SIMPLE 11

3.3. Decision algorithm for quantifier-free formulas of

SIMPLE

Let A be an quantifier-free formula to be checked on satisfiability, I be an
interpretation, R be an empty formula completion system (an empty set of
formula completion rules).

The decision algorithm for quantifier-free formulas of SIMPLE (UFA for
short) consists of the following steps:

Step 1. A is rewritten to V , where DA is an NLDNF of A.

Step 2. R is extended with new normal formula completion rules which are
correct in I.

Step 3. DA is rewritten to D′
A, where D′

A is a result of application of the
rules given below to DA in the following order:

1. {{false} ∪ v} ∪ V , where V 6= ∅ is replaced by V ;

2. {{false} ∪ v} is replaced by {{false}};

3. {{true} ∪ v} ∪ V , where v 6= ∅, is replaced by {v} ∪ V ;

4. {{true}} ∪ V is replaced by {{true}};

5. {{B,¬(B)} ∪ v} ∪ V is replaced by {{false} ∪ v} ∪ V ;

6. {{x ∈ x} ∪ v} ∪ V is replaced by {v} ∪ V ;

7. If {x ∈ t, y ∈ t} ⊆ u, where t ∈ Fd, then {v} ∪ V is replaced by
{v[x← y]} ∪ V ;

8. {{x ∈ y} ∪ v} ∪ V , where x, y ∈ X, is replaced by {v[x← y]} ∪ V ;

9. if V →R W , then V is replaced by W .

Step 4. If D′
A has the form {{true}} or {{false}}, then the algorithm

terminates with the result D′
A. Otherwise go to step 2.

In rules 7 and 8, v[x ← y] denotes a result of replacement of all occur-
rences of x in the formulas of v by y.

The algorithm UFA allows us to check unsatisfiability of formulas. It
can be also used as a simplification algorithm if the number of iterations
of steps 2 and 3 is restricted. A set V is called the k-th simplification of a
formula A, if V is a result of k iterations of steps 2 and 3.

Proposition 7. Let V be the k-th simplification of a formula A ∈ UF , and

I be an interpretation. Then V is satisfiable in I iff A is satisfiable in I.

Proof. Let us prove that each step of UFA preserves satisfiability. Step 1
preserves satisfiability by proposition 6. Steps 2 and 4 preserve satisfiability,
since they do not rewrite a formula. Rules 1-5 of step 3 preserve satisfiability

12 I. S. Anureev

by the properties of logical constants and propositional connectives. Rule 6
obviously preserves satisfiability. By t ∈ Td, φI(x ∈ t ∧ y ∈ t) ⇒ φI(x) =
φI(y) for each meaning φI . Then rule 7 of step 3 preserves satisfiability.
Since φI(x ∈ y)⇒ φI(x) = φI(y), rule 8 of step 3 preserves satisfiability.

Rule 9 of step 3 preserves satisfiability by proposition 5. ✷

4. Expressiveness of formula completion rules

Formula completion rules allow us to express extensively used techniques of
automatic proving (axiom application, term rewriting, case analysis, variable
replacement) in a uniform manner.

4.1. Axiom application

The axiom application is expressed by simple formula completion rules. Ap-
plication of an axiom A1 ∧ . . . ∧ An ⇒ A corresponds to application of the
rule

{A1, . . . , An} → {A}.

4.2. Term rewriting

A term rewriting rule l → r [6] is expressed by a formula completion rule
L → R, where x ∈ X \ V ar(l, r), {L}, {R} are NLDNF of x ∈ l, x ∈ r,
respectively.

The problem of cycling of associative commutative term rewriting rules
[7] disappears after transition to formula completion rules. For example,
application of the term rewriting rule x+y → y+x results in cycling, whereas
the corresponding formula completion rule {z ∈ x+ y} → {z ∈ y + x} does
not.

An analogue of a conditional term rewriting rule A|l → r, where A is a
conjunction of literals, has the form P |L→ R, where x ∈ X \V ar(l, r), and
{L}, {R}, {P} are NLDNFs of x ∈ l, x ∈ r, A, respectively.

4.3. Case analysis

The case analysis is represented by formula completion rules with case anal-
ysis. The case analysis A1 ∨ . . . ∨An fulfilled on the assumption of A corre-
sponds to application of a formula completion rule

{A} → {A1}, . . . , {An}.

Program verification based on specification language SIMPLE 13

4.4. Variable replacement

A variable replacement is represented by formula completion rules with extra
variables. A variable replacement x1 → t1, . . . , xn → tn fulfilled on the
assumption of A corresponds to application of a formula completion rule

{x1 ∈ t1, . . . , xn ∈ tn}|{A} → {true}.

5. Program verification method based on

SIMPLE

A program verification method based on SIMPLE is illustrated with a pro-
gram for bubble sorting of an array.

5.1. Tools of program annotation

To annotate the program for bubble sorting, the following notions are intro-
duced in SIMPLE.

1. Notions for arrays.

Let a be an array and n,m be integers.

– a[n,m] is a tuple of elements of a from n-th to m-th. A result is
an empty tuple if n > m;

– a[n] is a n-th element of a. If n < 0 then a[n] = ω.

2. Notions <=, <, >=, >, +, −, 0, 1, 2, . . . are defined for integers.

Let n,m be integers.

– <= (n) is a set of integers which are less than or equal to n;

– < (n) is a set of integers which are less than n;

– >= and > are defined in a similar manner;

– n+m and n−m are the sum and remainder of n and m, corre-
spondingly.

3. Notions perm, ord, + and <= are defined for tuples.

Let x be a tuple.

– perm(x) = {y|y is a permutation of x};

– ord = {y|y is an ordered tuple};

– + is a concatenation of two tuples;

– <= (x) = {y|∀a ∈ y∀b ∈ x(a ∈<= (b))}.

14 I. S. Anureev

5.2. Annotated program

An annotated program has the form

pred

for(int i = 2; i <= n; i++)
inv1 for(int j = n; j >= i; i−−)
inv2 if(a[j− 1] > a[j]){x = a[j− 1];a[j− 1] = a[j];a[j] = x}
post

The code of the C language is in thick print. The formulas pred, post,
inv1, inv2 of SIMPLE give a precondition, a postcondition, an invariant of
an outer loop and an invariant of an inner loop, correspondingly.

The precondition pred has the form a[1, n] ∈ b ∧ n ∈>= (1).
The postcondition post has the form a[1, n] ∈ perm(b) ∧ a[1, n] ∈ ord.
The invariant inv1 has the form

n ∈>= (1) ∧ a[1, n] ∈ perm(b) ∧ a[1, i − 1] ∈ ord∧
a[1, i− 2] ∈<= (a[i, n]) ∧ i ∈>= (2) ∧ i ∈<= (n+ 1)).

The invariant inv2 has the form

inv1 ∧ a[j, j] ∈<= (a[j + 1, n]) ∧ j ∈<= (n) ∧ j ∈>= (i− 1).

5.3. Verification conditions

Six verification conditions are generated by Floyd-Hoare method:

– pred⇒ (inv1[i← 2]);

– inv1 ∧ i ∈<= (n)⇒ (inv2[j ← n]);

– inv1 ∧ ¬(i ∈<= (n))⇒ post;

– inv2 ∧ j ∈>= (i) ∧ a[j − 1] ∈> (a[j])⇒
(inv2[a← upd(upd(a, j − 1, a[j]), j, a[j − 1]), j ← j − 1]);

– inv2 ∧ j ∈>= (i) ∧ ¬(a[j − 1] ∈> (a[j]))⇒ (inv2[j ← j − 1]);

– inv2 ∧ ¬(j ∈>= (i))⇒ (inv1[i← i+ 1]).

Let us notice that, if annotations are quantifier-free formulas, then veri-
fication conditions to be generated are also quantifier-free formulas.

5.4. Proof of verification conditions

A proof of verification conditions consists in application of the algorithm
UFA to negations of verification conditions. Validity of a verification condi-
tion corresponds to unsatisfiability of its negation.

Program verification based on specification language SIMPLE 15

To apply the algorithm, it is necessary to give formula completion rules
for notions occurring in verification conditions. Here is a number of formula
completion rules for notions ord and <=:

– {x ∈ ord, y ∈ ord, x ∈≤ (y), z ∈ +(x, y)} → {z ∈ ord};

– {x ∈ a[i, i], x ∈ ord} → {true};

– {x ∈<= (y[m,n]), n ∈< (m)} → {true}.

Moreover, there is a number of formula completion rules for arithmetics,
for instance, {i ∈>= (i)} → {true}. A combination of the algorithm UFA
with a decision procedure for Presburger arithmetics allows us to eliminate
these rules.

If unsatisfiability of all negations of the verification conditions are proved,
the initial annotated program is correct.

5.5. Error localization

If, after the k-th application of steps 2 and 3 of the algorithm UFA, new
formula completion rules are not added, then the k-th simplification of the
initial formula (negation of a verification condition) restricts input data with
a possible wrong execution of the program. Execution of the program on
input data which do not satisfy the k-th simplification is correct. Represen-
tation of this restriction in the form of NLDNF facilitates test generation.

6. Conclusion

The following results are obtained in this paper:

• A new specification language SIMPLE, which is simple and expressive
enough, is suggested.

• A new method of automatic proving called formula completion systems
is developed. Formula completion systems combine and unify well-
known techniques, such as axiom application, term rewriting, case
analysis and variable replacement.

• A decision method for quantifier-free formulas of SIMPLE is given.

• A program verification method based on SIMPLE is described.

At present, in the framework of the program verification system SPEC-
TRUM [8, 9], a new prover partially based on SIMPLE is being implemented.

16 I. S. Anureev

References

[1] Gerhart S. L., Musser D. R., et al. An overview of AFFIRM: A specification
and verification system // Proc. IFIP Congress 80. — IFIP Congress Ser. —
1980. — Vol. 8. — P. 343–347.

[2] Gordon M. J. C., Melham T.F. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. — Cambridge University Press, 1993.

[3] Boyer R. S., Moore J. S. A Computational Logic Handbook. — Academic Press,
1988.

[4] Chen J., Han J. A Review of EVES. — St. Lucia, 1993. — (Tech. Rep. / Dept.
Comput. Sci., Univ. of Queensland; N 93-5).

[5] Owre S., Shankar N., Rushby J.M. User Guide for the PVS Specification
and Verification System. — Computer Science Laboratory, SRI International,
Menlo Park, CA, 1993.

[6] Klop J.W. Term rewriting systems // Handbook of Logic in Computer Science.
— 1993. — Vol. 2. — P. 1–116.

[7] Dershowitz N., Jouannaud J.-P. Rewrite systems // Handbook of Theoretical
Computer Science. — 1990. — Vol. B(6). — P. 243–320.

[8] Nepomniaschy V.A., Sulimov A.A. Problem-oriented means of program spe-
cification and verification in project SPECTRUM // Lect. Notes Comput.
Sci. — 1993. — Vol. 722. — P. 374–378.

[9] Nepomniaschy V.A., Sulimov A.A. Problem-oriented verification system and
its application to linear algebra programs // Theor. Comput. Sci. — 1993. —
Vol. 119. — P. 173–185.

