Context machines as formalism
for specification of dynamic systems*

I. S. Anureev

Abstract. An approach to the development of easy-to-use operational specifications of dynamic systems is presented. It is based on the formalism of context machines and the language of description of context machines CML. The main notions of the theory of context machines are defined. Classification of general-purpose contexts is suggested. The approach is illustrated by examples of specifications of light-weight dynamic systems.

1. Introduction

Construction of formal operational specification of dynamic systems is a necessary condition for their understanding and analysis. Transition systems are a universal formalism used for this.

A transition system is a pair \((st, tr)\), where \(st\) is a set of states, \(tr\) is a subset of the Cartesian product \(st \times st\), called a transition relation. The property \((\sigma, \sigma_1) \in tr\) represent the fact that there is a transition from the state \(\sigma\) to the state \(\sigma_1\).

A merit of this formalism is its simplicity. However, it entails the fact that increasing complexity of a dynamic system makes its specification cumbersome and difficult to understand.

In this paper, an extension of transition systems — context machines — is presented. This extension was designed in accordance with the following requirements:

1. Universality. Context machines should be applicable in any range where transition systems are applied.

2. Ontological tuning to application domain. Context machines should provide means for creating and managing ontologies to adapt them (context machines) to a specific application domain.

3. Reusability. Components of context machines should be reusable.

4. Language support. There should be a language for description of context machines. This requirement makes it possible to bring the development of formal specifications of dynamic systems up to the technological level.

The paper has the following structure. A formal definition of context machines is given in Section 2. Kinds and properties of contexts are considered

*This research is partially supported by RFBR grant 09-01-00361-a and integration project RAN 2/12.
in Section 3. Two case studies — specification of an alarm-clock and development of operational semantics of a programming language — are presented in Sections 4 and 5. Comparison of context machines with other extensions of transition systems is made in Section 6.

2. Context machines

Context machines allow us to describe the following general characteristics of elements of specified dynamic systems: representations (by forms), values (by form interpretations), polysemy (by interpretation contexts) and functionalities (by relative form interpretations).

Formally a context machine cm is a tuple

$$(st, frm, fvs, ic, sem, rsem),$$

where st is a set of states, frm is a set of forms, fvs is a set of form values, ic is a set of interpretation contexts, sem is a form interpretation, $rsem$ is a relative form interpretation.

Let us consider each element of the tuple in detail.

Let cm specify a dynamic system ds.

The set st specifies the states of the system ds. A form is a way to get information about the states of the system ds. According to this way, information is extracted as a result of interpretation of the form in some context. Interpretation of a form in different states can differ. Interpretation of a form can change a state of the system ds. Pairs consisting of a form and a context define different aspects in which the system ds can be analysed.

The set ic specifies the names of contexts in which forms can be interpreted.

The interpretation sem is a function that takes a triple (A, σ, τ), where A is a form, σ is a state, τ is a context, and returns a nonempty set S of pairs (v, σ_1), where v is an element of the set fvs, σ_1 is a state. This function defines ways of form interpretations in accordance with interpretation contexts. The set S is called semantics of the form A in the state σ in the context τ. The first elements v of pairs of the set S are called the values of the form A in the state σ in the context τ. The second elements σ_1 are called the resulting states of the form A in the state σ in the context τ. The relative interpretation $rsem$ is a function that takes a tuple (A, σ, τ, B), where A and B are forms, σ is a state, and returns a nonempty set S of pairs (v, σ_1), where v is an element of the set fvs, σ_1 is a state. A relative interpretation defines semantics of a form w.r.t. some other form. The set S is called semantics of the form A w.r.t. the form B in the state σ in the context τ. The first elements v of pairs of the set S are called the values.
of the form \(A \) w.r.t. the form \(B \) in the state \(\sigma \) in the context \(\tau \). The second elements \(\sigma_1 \) are called the resulting states of the form \(A \) w.r.t. the form \(B \) in the state \(\sigma \) in the context \(\tau \).

The form \(A \) can be considered as functionality of the form \(B \). Access to functionality of a form is performed by the operation of functionality access (denoted by \(. \)). It is defined as \(\text{sem}(B.A, \sigma, \tau) = \text{rsem}(A, \sigma, \tau, B) \).

3. General-purpose contexts

Reuse of context machine components is one of the requirements imposed on context machines. Recognition of general-purpose interpretation contexts, which express general properties of dynamic system specifications, is one of the ways of reuse. In this section, general-purpose contexts and interpretation of forms in them are defined.

Five kinds of forms defined by general-purpose interpretation contexts are considered: transitions (§1), forms (§4), objects (§5), formulas (§11) and concepts (§15). Each of them is characterized by some contexts specifying different aspects of form interpretation.

§1. There are two contexts of transition interpretation.

§2. The context \(\text{transition} \) is the most general:

\[
\text{sem}(A, \sigma, \text{transition}) \subseteq \text{fvs} \times \text{st}.
\]

All other contexts are its subcontexts.

Transitions, defined by this context, are similar to transitions in labelled transition systems (§30). In this case forms act as labels. The interpretation \(\text{sem}(A, \sigma, \text{transition}) \) of the form \(A \) in the state \(\sigma \) has the following property: there is a transition labeled by the form \(A \) from the state \(\sigma \) to the resulting states of the form \(A \) in the state \(\sigma \) in the context \(\text{transition} \). All notions related to labeled transitions carry over the transitions defined by the context \(\text{transition} \).

§3. In the context \(\text{transition/transitions} \), a transition returns a set of transitions that define it:

\[
\text{sem}(A, \sigma, \text{transition/transitions}) = \{(B, \sigma)\},
\]

where \(B \subseteq \text{frm} \). The following property holds for this context:

\[
D \in \text{sem}(A, \sigma, \text{transition}) \iff D \in \text{sem}(C, \sigma, \text{transition}) \text{ for some } C \in B.
\]

§4. There is only one context \(\text{form} \) for the kind form. In this context the value of a form is the form itself:
\(\text{sem}(A, \sigma, \text{form}) = \{(A, \sigma)\} \).

§5. There are five contexts of object interpretation.

§6. In the context \text{object}, an object returns its values:

\(\text{sem}(A, \sigma, \text{object}) \subseteq \text{frm} \times \text{st} \).

Let \((B, \sigma_1) \in \text{sem}(A, \sigma, \text{object})\). The form \(B\) is called the value of the object \(A\) in the state \(\sigma\) for a transition to the state \(\sigma_1\). The form \(C\) is called a value of the object \(A\) in the state \(\sigma\), if \(C\) is the value of the object \(A\) in the state \(\sigma\) for a transition to some state \(\sigma_2\).

§7. In the context \text{object/objects}, an object returns a set of objects that define it:

\(\text{sem}(A, \sigma, \text{object/objects}) = \{(B, \sigma)\} \).

where \(B \subseteq \text{frm} \). The following property holds for this context:

\(D \in \text{sem}(A, \sigma, \text{object}) \iff D \in \text{sem}(C, \sigma, \text{object}) \) for some \(C \in B\).

§8. In the context \text{object/typed/concepts}, an object returns a set of concepts that define the type of its values:

\(\text{sem}(A, \sigma, \text{object/typed/concepts}) = \{(B, \sigma)\} \),

where \(B \subseteq \text{frm} \). The following property holds for this context:

\(V \) is a value of the object \(A\) in the state \(\sigma\) \(\Rightarrow\)
\(V \) is an instance of the concept \(C\) in the state \(\sigma\) for some \(C \in B\).

§9. In the context \text{object/typed/formulas}, an object returns a set of formulas that define the type of its values:

\(\text{sem}(A, \sigma, \text{object/typed/formulas}) = \{(B, \sigma)\} \),

where \(B \subseteq \text{frm} \rightarrow \text{frm} \). The following property holds for this context:

\(V \) is a value of the object \(A\) in the state \(\sigma\) \(\Rightarrow\)
the formula \(C(V)\) is true in the state \(\sigma\) for some \(C \in B\).

§10. Let \(\text{pset}(S) \) denote a set of all subsets of the set \(S\). In the context \text{object/functional}, an object returns functions specifying the actions that are performed when a value of the object is set or unset:
Context machines as formalism for specification of dynamic systems

sem(A, σ, object/functional) = {((add, delete), σ)}

where the functions add and delete belong to the set frm × st → pset(st). The function add defines the actions that are performed when the object A is set to a value. These actions move the context system from the state σ₁ to states from the set add(B, σ₁). Here σ₁ is a state in which the object A is set to the value B. The function delete defines the actions that are performed when a value of the object A is unset. These actions move the context system from the state σ₁ to states from the set delete(B, σ₁). Here σ₁ is a state in which the value B of the object A is unset.

§11. There are three contexts of formula interpretation.

§12. In the context formula, a formula returns true or false:

sem(A, σ, formula) ⊆ {true} × st

or

sem(A, σ, formula) ⊆ {false} × st.

Let (B, σ₁) ∈ sem(A, σ, object). The form B is called the value of the formula A in the state σ. The formula A is true in the state σ if true is its value in the state σ. The formula A is false in the state σ if false is its value in the state σ.

§13. In the context formula/formulas/or, a formula returns a set of formulas the disjunction of which defines this formula:

sem(A, σ, formula/formulas/or) = {(B, σ)},

where B ⊆ frm. The following property holds for this context:

D ∈ sem(A, σ, formula) ⇔
D ∈ sem(C, σ, formula) for some C ∈ B.

§14. In the context formula/formulas/and, a formula returns a set of formulas the conjunction of which defines this formula:

sem(A, σ, formula/formulas/and) = {(B, σ)},

where B ⊆ frm. The following property holds for this context:

D ∈ sem(A, σ, formula) ⇔
D ∈ sem(C, σ, formula) for all C ∈ B.
§15. There are six contexts of concept interpretation.

§16. In the context concept, a concept returns its content:

$$\text{sem}(A, \sigma, \text{concept}) \subseteq \text{pset}(\text{frm}) \times \text{st}.$$

Let $$(B, \sigma_1) \in \text{sem}(A, \sigma, \text{concept}).$$ The set B is called the content of the concept A in the state σ for a transition to the state σ_1. The elements of the content of the concept A in the state σ for a transition to the state σ_1 are called instances of the concept A in the state σ for a transition to the state σ_1. A form C is an instance of the concept A in the state σ if C is an instance of the concept A in the state σ for a transition to some state σ_2.

Since instances of a concept are arbitrary forms, depending on interpretations of these forms, it is possible to form the concepts that describe objects, transitions, formulas, and so on.

§17. In the context concept/formulas/or, a concept returns a set of formulas the disjunction of which defines this concept:

$$\text{sem}(A, \sigma, \text{concept/formulas/or}) = \{(B, \sigma)\},$$

where $B \subseteq \text{frm} \rightarrow \text{frm}$. The following property holds for this context:

C is an instance of the concept A in the state σ if and only if the formula $D(C)$ is true in the state σ for some $D \in B$.

§18. In the context concept/formulas/and, a concept returns a set of formulas the conjunction of which defines this concept:

$$\text{sem}(A, \sigma, \text{concept/formulas/and}) = \{(B, \sigma)\},$$

where $B \subseteq \text{frm} \rightarrow \text{frm}$. The following property holds for this context:

C is an instance of the concept A in the state σ if and only if the formula $D(C)$ is true in the state σ for all $D \in B$.

§19. In the context concept/concepts/or, a concept returns a set of concepts the union of which defines this concept:

$$\text{sem}(A, \sigma, \text{concept/concepts/or}) = \{(B, \sigma)\},$$

where $B \subseteq \text{frm}$. The following property holds for this context:

$$(C, \sigma_1) \in \text{sem}(A, \sigma, \text{concept})$$

if and only if $$(C, \sigma_1) \in \text{sem}(D, \sigma, \text{concept})$$ for some $D \in B$.

§20. In the context concept/concepts/and, a concept returns a set of concepts the difference of which defines this concept:

$$\text{sem}(A, \sigma, \text{concept/concepts/and}) = \{(B, \sigma)\},$$

where $B \subseteq \text{frm}$. The following property holds for this context:

$$(C, \sigma_1) \in \text{sem}(A, \sigma, \text{concept}) \iff (C, \sigma_1) \in \text{sem}(D, \sigma, \text{concept}) \text{ for all } D \in B.$$

§21. In the context concept/functional, a concept returns the functions specifying the actions that are performed when a form is added to or deleted from the concept:

$$\text{sem}(A, \sigma, \text{functional concept}) = \{((\text{add}, \text{delete}), \sigma)\},$$

where the functions add and delete belong to the set $\text{frm} \times \text{st} \rightarrow \text{pset(st)}$. The function add defines the actions that are performed when a form is added to the content of the concept A. These actions move the context system from the state σ_1 to the states from the set $\text{add}(B, \sigma_1)$. Here σ_1 is a state in which the form B is added to the content of the concept A. The function delete defines actions that are performed when a form is deleted from the content of the concept A. These actions move the context system from the state σ_1 to the states from the set $\text{delete}(B, \sigma_1)$. Here σ_1 is a state in which the form B is deleted from the content of the concept A.

Functional concepts are applied to decide the problem of multiple binding (unbinding) a set of functionalities to (from) a set of entities. In this case a set of entities is considered as the content of a functional concept. With respect to the above concept A, functionalities that are bounded to (unbounded from) the form B are defined by (relative) semantics w.r.t. the form B for the states from the set $\text{add}(B, \sigma_1)$ ($\text{delete}(B, \sigma_1)$), i.e. they are defined in fact by the function add (delete). In addition, the function add can initialize the added functionalities (for example, setting the initial value to an object).

Thus a functional concept defines a set of functionalities bounded with forms from its content, a way of binding functionalities with the form that is added to the content of the concept, a way of initializing these functionalities and a way of unbinding functionalities from the form that is deleted from the content of the concept.

If we draw an analogy with programming languages, then functional concepts can be considered as classes, functionalities as elements of these classes (fields, methods, properties and so on), contexts as types of these elements defining their signatures and the ways of interpretations, and initialization as initialization of these elements. In fact, functional concepts define a more
abstract conceptual scheme of integration of data and actions in comparison with classes.

Another application of functional concepts is execution of one-type actions over a set of objects.

In conclusion of this section, let us consider some properties of contexts.

§22. A form A is one-valued in the context τ, if $\text{sem}(A, \sigma, \tau) \subseteq \{V\} \times \text{st}$ for some $V \in \text{fvs}$. Otherwise, the form A is many-valued in the context τ.

Proposition 1. Any form in the context formula is one-valued.

§23. A form A is determined in the context τ, if $\text{sem}(A, \sigma, \tau) \subseteq \text{fvs} \times \{\text{st}_1\}$ for some $\text{st}_1 \in \text{st}$. Otherwise, the form A is nondetermined in the context τ.

Proposition 2. Any form in the context form is one-valued and determined.

Using these properties as characteristics of forms, we can define new subcontexts: one-valued and many-valued objects, determined and nondetermined transitions, and so on.

4. Specification of the alarm clock

At present, a language of description of context machines called CML (Context Machine Language) is being developed. In this section, application of the CML language to specification of a simple dynamic system "alarm clock" is considered. Constructs of this language are explained as they occur in the specification.

The clock has three buttons: hour button, minute button and mode button. The hour button and minute button increase the hour counter and the minute counter by 1, respectively (on increasing the hour counter with the value 23 or the minute counter with the value 59, the counter is zeroed out), the mode button is used to switch clock modes, in particular, to switch the alarm on and off. The first push of this button activates the alarm mode in which the alarm can be set (mode alarm set). The second push activates the hour mode with the alarm switched on (mode hour&alarm). The third push switches off the alarm (mode hour).

Specification of the system is based on four concepts: minute values (§24), hour values (§25), mode values (§26) and clock (§27).

§24. Instances of the concept minute values are integers from 0 to 59 defining permissible values of the minute counter. It is defined by the concept declaration

1 (concept: minute values,
2 formula type:
3 (and:

1 (concept: minute values,
2 formula type:
3 (and:
Concept declarations are transitions.

Many constructs of the CML language, like concept declarations, are of the form: \(X_1: Y_1, \ldots X_n: Y_n, \). The constructs of this form are called structures. A structure is a sequence of fields. The field \(X_i: Y_i \), is characterized by the name \(X_i \) and the value \(Y_i \). The last semicolon in a structure (in the above example in line 6) can be omitted. Structures are used to represent both data and function calls. As opposed to common homogeneous lists of arguments of a function call in computer languages, structures in CML provide mnemonic labels (denoted by the field names) for arguments.

The field concept (1) specifies the name of the concept.

The field formula type (2) specifies the set of forms that can be instances of the concept. This set is defined by formula (3). The form this (4) in the formula refers to an instance of the concept minute values. Formula (3) is a conjunction of three formulas (4), (5) and (6). Formula (4) states that this is an integer (an instance of the concept integer). The field is instance (4) specifies the form, for which it is checked whether it belongs to a concept or not. The field concept (4) specifies this concept. Formulas (5) and (6) state that this is an integer that is greater than or is equal to 0 and is less than or equal to 59, respectively.

§25. Instances of the concept hour values are integers from 0 to 23 defining permissible values of the hour counter. It is defined in a similar way:

\[
\text{(concept: hour values,}
\text{ formula type:}
\text{ (and:}
\text{ (is instance: this, concept: integer),}
\text{ (<=: 0, this),}
\text{ (<=: this, 23))}
\]

§26. The concept mode values specifies clock modes. It is defined by the concept declaration

\[
\text{(concept: mode values,}
\text{ formula type:}
\text{ 1 (element: this,}
\text{ 2 sequence: (alarm set) hour&alarm hour))}
\]
Formula (1) means that instances of the concept _mode values_ are elements of sequence (2), i.e. this concept includes the forms _alarm set_, _hour&alarm_ and _hour_. The field _element_ (1) specifies a form, for which it is checked whether it belongs to the sequence or not. The field _sequence_ (2) specifies the sequence.

§27. Instances of the functional concept _clock_ are clocks. It is defined by the concept declaration

```
(concept: clock,
 body:
  1 (object: clock hour counter, type: hour values;
  2 object: clock minute counter, type: minute values;
  3 object: alarm hour counter, type: hour values;
  4 object: alarm minute counter, type: minute values;
  5 object: mode, type: mode values;
  6 transition: hour button,
    body:
      7 (if: (= this.mode, alarmSet);
      8 then: (object: this.X, value: this.alarm hour counter),
      9 else: (object: this.X, value: this.clock hour counter);
     10 if: (= this.X, 23),
     11 then: (object: this.X, value: 0),
     12 else: (object: this.X, value: (+ this.X, 1));
     13 if: (= this.mode, alarmSet),
       then: (object: this.alarm hour counter, value: this.X),
       else: (object: this.clock hour counter, value: this.X));
  14 transition: minute button,
    body:
      (if: (= this.mode, alarmSet);
      then: (object: this.X, value: this.alarm minute counter),
      else: (object: this.X, value: this.clock minute counter);
     15 if: (= this.X, 59),
     then: (object: this.X, value: 0)
     else: (object: this.X, value: (+ this.X, 1));
     16 if: (= this.mode, alarmSet),
       then: (object: this.alarm minute counter, value: this.X),
       else: (object: this.clock minute counter, value: this.X));
  17 transition: mode button,
    body:
      (if: (= this.mode, clock),
      then: (object: this.mode, value: alarm set),
      elseif: (= this.mode, alarm set),
      then: (object: this.mode, value: clock&alarm),
```

else: (object: this.mode, value: clock)))

Five objects (clock hour counter, clock minute counter, alarm hour counter, alarm minute counter, mode) and three transitions (hour button, minute button, mode button) are bounded to instances of this concept. They are defined by object declarations (1-5) and transition declarations (6, 14, 15), respectively. Object declarations and transition declarations are transitions. The operation comma ($) denotes a sequential composition of transitions.

The objects clock hour counter (1), clock minute counter (2), alarm hour counter (3), alarm minute counter (4) define counters of hours and minutes for the clock and alarm, respectively.

The field object in the object declaration specifies the name of the object.

The field type in the object declaration specifies the concept, instances of which are permissible values of the object.

The concepts hour values and minute values define permissible values for objects clock hour counter and alarm hour counter and for objects clock minute counter and alarm minute counter, respectively.

The object mode (5) specifies the current clock mode and takes the values alarm set, hour&alarm and hour defined by the concept mode values.

The transitions hour button (6), minute button (14) and mode button (15) specify actions caused by pushing the corresponding clock buttons.

The field transition in the transition declaration specifies the name of the transition. The field body in the transition declaration specifies the actions executed by the declared transition. The value of this field is a transition. This transition is called the body of the declared transition.

The body of the transition hour button consists of three sequentially executed conditional transitions (7), (10) and (13).

Execution of a conditional transition is similar to execution of a conditional statement in programming languages.

The field if of the conditional transition specifies the test condition. This condition is a formula. The field then specifies the transition that is executed if the test condition is true. The field else specifies the transition that is executed if the test condition is false.

The conditional transition (7) sets the value of the object X bounded to this to the current value of the hour counter for the clock or the alarm depending on the current clock mode.

The test condition (7) states that alarm set is the current clock mode.

The object meaning (8) sets the value of the object X to the value of the alarm hour counter. Object meanings are transitions. The field object of this transition specifies the name of the object to which the value is set. The field value specifies the bounded value.
In a similar way the object meaning (9) sets the value of the object \(X \) to the value of the clock hour counter.

Let us note that binding of the instance of the concept \texttt{clock} with the object \(X \) is not defined by the declaration of this concept. This local binding with the concrete instance is set by the object meaning.

The conditional transition (10) increases the value of the object \(X \) by 1. Depending on the value of the test condition (10), transition (11) that zeroes out the value of the object \(X \) or transition (12) that increases the value of the object \(X \) by 1 is executed.

The conditional transition (13) sets the value of the hour counter for the clock or the alarm (depending on the current clock mode) to the value of the object \(X \).

The transition \texttt{hour button} (14) is defined by analogy with the transition \texttt{minute button} (6).

The transition \texttt{mode button} (15) switches the clock modes. It models pushing the button \texttt{mode button}. Its body is a conditional transition. A peculiarity of this conditional transition is that it has more than one test condition. The first test condition is specified by the field \texttt{if} as usual. The remaining test conditions are specified by fields \texttt{elseif}. The test conditions are checked in the textual order. The next condition is checked if the earlier conditions are false.

5. Operational semantics of a programming language

Context machines are handy for description of operational semantics of programming languages. The idea of semantics development is to specify abstract machines, which execute programming language constructs, by context machines.

This idea is illustrated by the example of one operational entity and one declarative entity of the C# language. The \texttt{if} statement (§28) is chosen as the operational entity and a local variable (§29) is chosen as the declarative entity. Other C# entities are specified in a similar way.

A concept and a transition are associated with each kind of statements of a programming language. Instances of the concept are all statements of this kind. The transition specifies the action executed by the statements of this kind. The concept is functional as usual and includes the description of objects that define structural components of statements of the kind.

§28. The concept \texttt{if statement} is defined by the concept declaration

```plaintext
(concept: if statement,
  body:
  1 (object: condition, type: boolean expression;
  2 object: then statement, type: statement;
```
The content of the concept includes if statements. Three objects: condition (1), then statement (2) and else statement (3) are bounded to instances of this concept.

The object condition (1) specifies the governing condition of the if statement, which is a boolean expression. Boolean expressions are in their turn defined by the concept boolean expression.

The objects then statement (2) and else statement (3) specify the then branch and the else branch of the if statement, that are statements of the C# language. Statements of the C# language are defined by the concept statement.

The transition specifying the action of the if statement is defined by the transition declaration

```plaintext
1 (transition: A, 
2 parameter: A, type: if statement, 
3 body: 
4 object: A.X, value: A.condition; 
5 if: (is instance: A.X, jump), 
6 elseif: (=: A.X, true), 
7 then: A.then statement, 
8 else: A.else statement))
```

The field parameter (2) declares that the form A is a parameter of the transition A, and declaration (1) is parameterized. A parameterized transition declaration describes a set of transitions that is obtained by substitutions of concrete values of parameters.

The field type (2) that follows the field parameter specifies a concept that defines the values of a parameter. In this case, these values are instances of the concept if statement. Thus, the transition declaration describes an action executed by if statements (instances of the concept if statement).

Transition (3) from the body of transition (1) sets the value of the object X to the value of the value-effect transition A.condition (the result of the computation of the governing expression of the if statement.

Let us note that the object X is bounded to the if statement A. The trick of binding objects to transitions is used to store intermediate values appeared during transition execution. In this case, the object X stores the result of computation of the governing expression of the if statement.

Then the conditional transition (4) is executed. The first test condition (4) states that the value of the object X is an instance of the concept jump.
The concept jump specifies the forms that are generated by jump statements of the C# language (statements return, break, continue, goto, throw).

If this condition is true, transition (5) is executed. This transition terminates the execution of the if statement, returning the value of the object X (i.e. an instance of the concept jump) as a result. The field return (5) specifies the returning value.

The second test condition (6) states that the value of the object X is true. If this condition is true, transition (7) (i.e. the branch then of the if statement) is executed.

Otherwise, transition (8) (i.e. the branch else of the if statement) is executed.

§29. The concept local variable is defined by the concept declaration

(concept: local variable,
 body:
 1 object: declaration, type: local variable declaration;
 2 object: name, value: identifier;
 3 object: value, type: C# values;
 4 object: type, body: this.declaration.type;
 5 object: scope, value: statement))

Instances of this concept are bounded to 5 objects: declaration (1), name (2), value (3), type (4) and scope (5).

The object declaration (1) specifies a local variable declaration in which this local variable is defined. The values of this object are local variable declarations that are defined by the concept local variable declaration.

The object name (2) specifies the name of the local variable. The values of this object are identifiers that are defined by the concept identifier.

The object value (3) specifies the value of the local variable. The values of this object are possible C# values that are defined by the concept C# values.

The object type is defined by the object definition (4). The field body of this definition specifies an object. Computation of this object returns the value of the object type. The object this.declaration.type defines that the type of the local variable this is a type which is described in its declaration this.declaration.

The object scope (5) specifies the scope of the local variable. The value of this object is a statement in which the local variable is defined.

6. Other extensions of transition systems

In this section context machines are compared with three extensions of transition systems: labelled transition systems (§30), abstract state machines
Context machines as formalism for specification of dynamic systems

(§31) and ontological transition systems (§32). These extensions are selected as they meet the universality requirement.

§30. A labelled transition system is a triple (st, lab, tr), where st is a set of states, lab is a set of labels, tr is a subset of the Cartesian product $st \times lab \times st$ called a labelled transition relation. The fact that $(\sigma, l, \sigma_1) \in tr$ means that there is a transition from the state σ to the state σ_1 with the label l. Labelled transition systems enrich transition systems due to different interpretations of labels. Typical uses of labels include representation of input expected, conditions that should be true to trigger the transition, or actions performed during the transition. The label effect is reached by context machines due to the context transition (§2).

§31. Abstract state machines (earlier called evolving algebras) [1, 2] are extensions of transition systems in which states are algebras. Examples of various applications of abstract state machines can be found in [3]. The abstract state machine approach to specification of dynamic systems is supported by the languages AsmL [4] and XasM [5].

The expressive power of abstract state machines and context machines as applied to formal specifications of dynamic systems are the same. Selection of a proper algebra signature of an abstract state machine makes possible to bring closer formal specification of the dynamic system that is based on the abstract state machine with its natural conceptual structure. The same effect is achieved by context machines due to the context concept.

Distinction between these formalisms is most likely in a mode of thought. Specifications based on abstract state machines are thought in terms of functions (of algebras) whereas specifications based on context machines are thought in terms of objects (forms).

§32. Context machines are further development of ontological transition systems [6] that are a hybrid of transition systems and ontological models. Ontological transition systems are straight modelled by context machines with two context transition and concept. CML is in its turn a further development of the OTSL language (Ontological Transition System Language) [7, 8].

7. Conclusion

We have proposed an extension of transition systems — context machines — and compared them with other extensions of transition systems. In introduction, the requirements to the design of context machines were formulated. Now we can justify that context machines meet these requirements:

1. Universality. Context machines are a universal formalism for specification of dynamic systems to the same extent as transition systems, since transition systems are straight modelled by context machines with the context transition.
2. Ontological tuning to application domain. A formalism of ontological transition systems was specially developed to manage evolving ontologies (add and eliminate concepts and relations, change their content and so on). As ontological transition systems are straight modelled by context systems with two contexts \textit{transition} and \textit{concept} (§32), we can describe ontologies of application domains by context machines too.

3. Reusability. There are two kinds of context machine reuse. Reuse of forms makes possible to represent related notions by structurally identical forms. Reuse of contexts (and their associated form interpretations) makes possible to accumulate and share knowledge of general semantic aspects of dynamic systems.

4. Language support. Context machine design is supported by the special language CML that is being developed.

At present the context machine approach is applied to sequential (deterministic and nondeterministic) dynamic systems. It is planned to extend this approach over distributed and concurrent systems.

We see two main areas of application of context machines: the development of formal semantics of industrial programming languages (C, C++, C# and so on) and specification of light-weight information systems.

References

