Bull. Nov. Comp. Center, Math. Model. in Geoph., 8 (2003), 19-25
(© 2003 NCC Publisher

User interface of the control program for
mobile data gathering systems

Pavel R. Andreyev

Basic principles and engineering solutions of the AXON‘s user interface are
described in this paper. The software AXON is a part of the mobile geophysical data
gathering systems “Rosa-D”, “Rosa-N”, “VIRS-M” developed in the ICM&MG.
AXON provides the automatic and manual (human supervised) modes and contains
a kit of tools for diagnostic and adjustment purposes.

Interface overview

The interface described in this paper has been designed for the MS-DOS
compatible operating system (OS). Though the DOS is now considered to
be outdated, it is still working in certain areas, where more powerful OSes
(Windows, Unix, QNX) could hardly be used due to technical or economi-
cal reasons. Say, the data gathering systems developed [2, 3] do not require
a high-performance computer (even 80486-based computer can be used),
which significantly reduces the system costs. Also, because the DOS ide-
ology is simple and widespread, training the staff maintenance of the data
recording system becomes easier.

Unlike modern operating systems containing both textual and graphic
interfaces ready-to-use, the MS-DOS, virtually, contains neither. Standard
C (and C++) library oriented to perform streamed input/output also in-
cludes no routines convenient enough to organize user interaction. As a
result, DOS programs have to bear their own implementations of interface.
Many of them built on the ground of two widespread libraries supplied to-
gether with Borland’s compilers — Turbo Vision to organize text-oriented
interaction with the user, and the BGI (Borland Graphics Interface) to use
computer graphic capabilities. There is a variety of other libraries available,
both original and enhancements (for example, graphical extension of the
Turbo Vision). This fact was taken into account when the AXON software
was under construction, but products known to the developer happened
to be unsuitable and as a result the original library named IMAGINE has
been written. It may be also called an API (Application Programming
Interface) to be used to make program user interface. Both AXON and
IMAGINE have been written in C++ and compiled with Borland C++
v3.1 compiler.



20 P.R. Andreyev

The main features of IMAGINE are the following:

Unified API for text and graphic video modes;
256-color video modes support (VGA and VESA);
2.5D style support (quasi-3D graphics);

e Mouse support in VESA graphic modes;

Russian alphabet characters can be used in VESA graphic modes
(built-in character generator); and.

e Fast video output and transparent graphics acceleration routines.

Unlike majority of products of the class that have different APIs for text
and graphics, IMAGINE has a unified input-output routine set consisting
of several call groups:

e “Keyboard” — keyboard data input;

e “Mouse” — interaction with the mouse driver and the mouse cursor
control;

e “Text output” - single characters and strings output, pseudographic
frames and borders drawing, text-mode windows drawing;

e “Graphics output” - lines and rectangles drawing, rectangle filling
operations.

All the functions produce the same results independently of the current
video mode save that IMAGINE ignores graphics calls in the text video
modes. This approach enables the programmer to concentrate on the screen
design while the library performs all the low-level work on the video card
interaction. Additionally, the replacement of the video mode used does not
lead to malfunction of the IMAGINE-based programs because of the library
checking procedures revealing attempts to access the areas outside of the
screen.

1. Supported video modes

IMAGINE manages five video modes altogether, which, on the one hand,
ensures the functionality high enough and, again, the rejection to support
obsolete video modes allows optimization of the speed of video output algo-
rithms: |

e 0x003 (VGA), 80x25x16 colors text mode. This is a standard text
video mode for most of the DOS applications;

e 0x108 (VESA), 80x60x16 colors text mode;



User interface of the control program for mobile data gathering systems 21

e 0x013 (VGA), 320x200x256 colors graphics mode. Considered as
40x25x%256 text mode by the IMAGINE text output functions;

e 0x101 (VESA), 640x480x256 colors graphics mode. Considered as
80x30x256 text mode by the IMAGINE text output functiors;

e 0x103 (VESA), 800x600x256 colors graphics mode. Considered as
100x37x256 text mode by the IMAGINE text output functions.

Availability of the Russian language characters in the first three modes
relies upon the Russian language driver installed in the computer system.
For 0x101 and 0x103 modes IMAGINE has its own built-in character gen-
erator. In addition, the library includes several mouse support functions for
the graphic video modes.

Because IMAGINE has been designed as part of the real-time software,
due attention was paid to the speed of its routines. For example, all video
output related functions access the video memory directly. Additionally,
special optimization transparent to the programmer steps in when working
in the graphic video modes, which significantly (occasionally, several times)
increases the output speed by reducing overhead (video frame switching,
checking for access outside of the screen, hiding mouse pointer etc.). As
a result, repainting of AXON screen (containing a text and graphics in
640%480 pixels resolution) takes 0.15 s on the Pentium-166 based computer,
equipped with the PCI video card. In this case, the peak output rate is
better than 8 million pixels per second (figure).

AXON graphics interface



22 P.R. Andreyev

2. Solutions used in IMAGINE

This section contains prototypes and short descriptions of several IMAGINE
API calls. It should be noted that IMAGINE uses the data type notation
elaborated by the Russian company ‘ToxSoft’. The integer data types are
written as XintNN, where X (‘s’ or ‘u’ letter) marks a ‘signed’ or an ‘unsigned’
type, respectively, and NN is the type bit width. So, the unsigned 32-bit
integer (DWORD) is defined as ‘typedef unsigned long int uint32’.

Keyboard group
uint16 _fastcall KbStat(uint8 fEE=0);

Checks whether the code is available in the keyboard buffer; in the graphic
video modes also refreshes mouse pointer position (redrawing the cursor
if necessary) and, if the argument is not zero, buttons state. This allows
keeping track of the mouse state transparently in the program.

Another feature of the function is Enter/Esc codes generation, when
fEE!=0 and the left or the right (respectively) mouse button is clicked.
These codes will be returned by KbCode() function in its next call as if
they were typed on the keyboard:

uint16 KbCode();

Fetches a keyboard code (waiting for it if no code available). Unlike
standard C functions, there is no need to check the value returned and to
make the second call for obtaining the extended code. The ASCII codes are
returned in the low byte (the high one is zero) and extended codes — in the
high byte (the low is zero in this case). Return values are available to the
caller hereafter through the global KbdKey variable.

Text output group
void _fastcall TxChar(uint8 Sym=7); -

Displays a character. This function is basic and used by all other functions
in the text output group. The function considers the screen surface as a
two-dimensional array and the argument character will not be displayed if
it does not fit the array boundaries. The code 0x0A (LF, Line Feed) in the
lowest screen row is processed in a special way - the scrolling operation is
performed, that is, all contents of the screen is moved up one row losing
the topmost row and the lowest one is cleared. In addition, 0xF4:0xF7
character codes select the corresponding color mask (one of the four) instead
of displaying. The mask consists of two numbers specifying the background
and foreground colors.

When in the graphic video mode, TxChar() can display characters in
2.5D-style by setting up the corresponding global variables.



User interface of the control program for mobile data gathering systems - 23

void TxSymS(const int8 *String);

void TxBinS(const int8 *String, uint32 Value);

void TxDecS(const int8 #*String, uint32 Value, uint8 Opt=0);
void TxHexS(const int8 *String, uint32 Value, uint8 Opt=0);

These functions perform the text string output to the screen or into the
memory. The MemPrt global variable points to the memory position, where
the output should be performed or, if MemPrt==NULL, the string will be dis-
played on the screen. The functions TxBinS(), TxDecS(), and TxHexS() are
used to print binary, decimal or hexadecimal values, respectively, replacing
‘@’ symbols found in the String argument by binary, decimal, or hexadeci-
mal digits. As a rule, one digit replaces one ‘@’ (TxDecS() has also an option
to print the whole number when every single ‘@’ found). If the amount of
formatting symbols is not sufficient to receive all significant digits of the ar-
gument, only the lower digits are displayed. The Opt argument controls the
way the resulting string will look (whether spaces should be printed instead
of leading zeroes, or the plus sign be printed before a positive number, etc.).
An example:

#include "Imagine.h"

int8 Str[16]; Str[15] = 0;

MemPrt = Str; // Output to memory not to screen
real32 V = 7.5; // The same as float (32-bit wide)
TxDecS("Voltage=00Q.Q0\n", uint32(V*100), 6);
MemPrt = NULL;

This example prints “Voltage= +7.50”. Note that IMAGINE itself does
not use the floatingpoint arithmetic and, therefore, is suitable to write pro-
grams for 80386-type processor without the FPU.

void TxFram(const int8 *Array);

Draws a pseudographic frame. The argument is a pointer to an array con-
taining commands drawing the frame, and the function itself is in fact a sim-
ple language processor. IMAGINE includes two command arrays to draw
simple rectangular frames (single and double-lined). Frame dimensions are
specified in two first bytes of the corresponding array and are considered
as the number of macro repetitions that draw the horizontal or the vertical
frame border.

uint8 TxWind(uint16 h=0, uinti6 v=0);

Displays a window casting shadow. The window border includes double-
lined pseudographic frame, and the shadow color depends on the color of
the shadow underlying image.



24 P.R. Andreyev

void TxMBox(const int8 *Title, const int8 *S1=NULL,
const int8 *S2=NULL, const int8 *S3=NULL);

Displays a message window in the center of the screen. The message contains
up to three text strings. The window size depends on the length of a title
or the longest string. All strings (including the title) are centered.

Graphics output group
void GrDot();

Displays a dot on the screen. This function is basic and used by all other
functions in the graphics output group. This function considers the screen
surface as two-dimensional array and the dot will not be displayed if it does
not fit the array boundaries. Additionally, up to 16 viewports can be defined.
Depending on the global setting, GrDot () will display a dot only when it is
either inside of any viewport or outside of all viewports. This mechanism
enables the programmer to simulate the overlapping windows structure by
simple means.

uint8 GrGet();

This function returns the color of a dot on the screen and is used, mostly,
by IMAGINE itself to show the mouse pointer (because many videocards
perform reading from the video memory several times slower than writing).
Showing the pointer, IMAGINE saves an appropriate underlying screen area
in its internal buffer and then restores it back when the pointer should be
hidden again. Unlike a conventional method (the usage of the AND/XOR
masks), this one reduces the number of screen dot manipulations and enables
the pointer to be of any color and shape. For example, IMAGINE uses 2.5D-
styled pointer picture.

void GrPoly(sintiG x=0, sint16 y=0, uint16 h=GrXm,
uint16 v=Gr¥Ym);

Draws a one dot wide rectangular frame. The frame can be displayed op-
tional in 2.5D style by setting up the corresponding global variables.

3. AXON user interface

The AXON software has a combined interface to reach the maximum flexi-
bility and usability [1]. The command-line keys adjust the basic settings of
the recording system, which allows the data gathering and recording process
to be automatically performed. The text mode window-based interface is
used for diagnosing and adjustment of the system hardware. The AXON



User interface of the control program for mobile data gathering systems 25

layered help system describing the command-line keys usage has been built
on the same basis. Finally, the mode used most often — the Recorder —
has the GUI (Graphics User Interface) made in 2.5D style. The GUI also
includes a simple help system that shortly describes objects on the screen
and advises the keyboard shortcuts controlling these objects.

References

(1] Andreyev P.R. Real-time software for mobile data gathering system // Proc.
of the Intern. Conf. “Information Systems and Technologies”, November 8-11,
2000. — Novosibirsk, 2000. — Vol. 4. — P. 19-22 (in Russian).

[2] Grigoruyk A.P. Distributed real-time data acquisition system // Ibid. — Novosi-
birsk, 2000. — Vol. 3. — P. 456-460 (in Russian).

[3] Shorokhov M.N. A vibroseismic measuring-recording station // Ibid. — Novosi-
birsk, 2000. — Vol. 1. — P. 144-148 (in Russian).



