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Modern electrodynamics for the Earth’s physics

V.V. Aksenov

Electromagnetic methods for studying the Earth, electromagnetic tech-
niques of geophysical prospecting, in particular, are conventionally based on
the fact that any electromagnetic field, either observed on the Earth or arti-
ficially excited by generators, satisfy Maxwell’s equations and is analytically
described by these equations.

This opinion is so popular among geophysicists that any minor deviation
from the corollaries following Maxwell’s equations is considered to be absent
in nature. As an example we can mention a non-potential magnetic field
[1,2] in the practically non-conducting Earth’s atmosphere, which is excited
by temporal magnetic variations of a natural electromagnetic field; an elec-
tric field, vertically directed towards the Earth’s surface with almost fully
absent vertical currents in the atmosphere [3]; the presence of a toroidal
magnetic field in the atmosphere also with almost absent the conductivity
current through the atmosphere [4]; the presence of ineradicable and suffi-
ciently large errors in the data interpretation in MTZ and ZCB.

In this case, it would appear reasonable to assume that in nature to be
exact in its part that generates electromagnetic fields with the sources on
the spherical surfaces in the ionosphere or in the Earth’s spherical layers,
as an example, there could exist an electromagnetic field (not contained in
Maxwell’s equations!) that is certainly present in experimental data but are
not analytically described by Maxwell’s equations.

Poloidal and toroidal magnetic fields have been known since the time
of Lamb, Love, Backus and others [5–7]. In these publications, a magnetic
field consists of the two parts–– toroidal and poloidal magnetic fields:

H = HT + HP . (1)

The above-mentioned fields are analytically introduced in the following way

HT = rot(Qr); HP = rot rot(Qr). (2)

Here Q = Q(r, θ, ϕ) is an arbitrary mathematical scalar function of three
spherical variables of the class C∞.

From definition (2) it follows the equation, conventionally called dynamo
excitation:

rot HT = HP . (3)

Actually,
rot HT = rot rot(Qr) = HP . (4)
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Formula (4) shows at first that, in the spherical fields, vortices of the non-
Maxwell toroidal non-force magnetic field HT [8] generate a force poloidal
magnetic field HP but not the density of the conductivity electric current
as it is according to the first Maxwell’s equation. Secondly, dimensions of
the toroidal magnetic field HT and of its rotor are the same in [Gs] only
because the rotor of the toroidal magnetic field excites a different Maxwell’s
force poloidal field (4).

Equation (3), its dimension to be exact or the correct understanding of
its physical essence, is underestimated by some well-known scientists [6, 9],
who artificially prescribed different dimensions to one and the same function
Q, reasoning from the general form of formulas (2). It should be noted again
that the function Q is a mathematical scalar dimensionless function of the
class C∞. Initially, only physical values, i.e., electromagnetic fields and
electromagnetic constants, have a dimension.

Further, let us transform formula (4) so that instead of the function Q
other and different arbitrary functions be on its right- and left-hand sides.
Since differential operators are a part of (4), we can add to its right- and
left-hand sides different constants:

rot HT = rot rot
(
(Q+ C1)r

)
= HP = rot rot

(
(Q+ C2)r

)
(5)

with the notation Q+ C1 = T (r, θ, ϕ), Q+ C2 = P (r, θ, ϕ), and obtain

rot HT = rot rot(Tr) = HP = rot rot(Pr). (6)

From formulas (5) and (6) follows that in these equalities the functions P
and T are repositioned due to their arbitrary nature. Also, the functionals
(Q+C1)r and (Q+C2)r, as well as Pr and Tr are completely repositioned
only when C1 = C2 [10]. Definitions (2) and equations (3) do not lose
generality with such a repositioning and do not gain new dimensions in the
sense that equations (3)–(5) remain valid and the definition of toroidal and
poloidal fields and their dimension remain coordinated with formulas (2).

Further we will confirm this important circumstance using the Helmholtz
decomposition to prove formula (3) on the one hand, and on the other
hand, to, possibly, introduce the toroidal and poloidal fields with the help
of relations (2). Now, let us determine the second, closing (3), dynamo
excitation equation. To this end, let us calculate the poloidal field rotor:

rot HP = rot rot rot(Qr) = − rot(∆Qr). (7)

In equation (7), the Laplace operator ∆ of the scalar function Q is equal
to ∆Q = −γ

η
Q when identifying it with a diffusion potential [11, 12]. Here

γ [m/s] is the diffusion rate, η [m2/s] is magnetic viscosity. Then we obtain
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rot HP =
γ

η
rot(Qr) =

γ

η
HT . (8)

Equations (3) and (8) are a closed pair for dynamo excitation of the
magnetic field:

rot HT = HP ; rot HP =
γ

η
HT . (9)

A pair of equations (9) allows the evaluation (with prescribed γ and η) of
levels of stress of magnetic fields at which a self-supporting dynamo excita-
tion of a magnetic field with a minimum “primer” appears possible [4]. The
three well-known anti-dynamo theorems are not applicable for the spherical
sources and the sources on spherical surfaces [13–15].

All the above-mentioned results can be found in the Helmholtz theorem
about rotor and divergence of the vector-function, presented by the three
scalar arbitrary functions P (r, θ, ϕ), T (r, θ, ϕ), F (r, θ, ϕ) of the class C∞.
The Helmholtz theorem in spherical domains is of the form:

H = gradF + rot(Tr) + rot rot(Pr). (10)

Here, as earlier

HT = rot(Tr), HP = rot rot(Pr), HM = gradF. (11)

Each term in (10) is of dimension [Gs] because the original field H is in
[Gs].

The uniqueness of decomposition (10) is ensured by the theorem of
uniqueness that holds that for the uniqueness of decomposition (10) the pres-
ence of the field component, H in our case, at all the points of the spherical
surface S, covering the vector field H, normal to this surface HPr(r, θ, ϕ),
is required.

Let us reason that the potential part of the original field equal to HM =
grad F be absent. Let us consider only the part without divergence of for-
mula (10). For this remaining part we will set a problem of defining the
functions T , P by the original fields HT , HP . To this end it is necessary to
carry out the following transformations:

(r ·HP ) = r · rot rot(Pr) = r ·
[
∇∇ · (Pr)−∇2(Pr)

]
= r · {∇[r · ∇P + 3P ]− 2∇P − r∇2P}
= −r2∇2P + r · ∇(r · ∇P ) + r · ∇P

= −r2∇2P +
∂

∂r

(
r2
∂P

∂r

)
= −DP, (12)

(r · rot HT ) = r · rot rot(Tr) = −DT.

Since the direct operator D, according to (12), has no radial derivatives, an
inverse operator D−1 can be constructed for it and then the functions T and
P can be expressed through the original field in the following way:
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P = −D−1(r ·HP ); T = −D−1(r · rot HT ). (13)

The inverse operatorD−1 on spherical surfaces can be constructed as follows.

∆ =
1
r2

∂

∂r
r2
∂

∂r
+

1
r2
D. (14)

Formula (14) allows to introduce the operator

D =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2
. (15)

The inverse operator to the operator D is constructed in the following way.
Let Dψ = f . Here ψ and f are arbitrary functions of the class C∞ satisfying
zero mean over the spheres:

2π∫
0

π∫
0

ψ sin θ dθ dϕ =

2π∫
0

π∫
0

f sin θ dθ dϕ = 0. (16)

Denote

Sn(θ, ϕ) =
n∑

m=0

Amn P
m
n (cos θ)eimϕ (17)

with some complex numbers Amn .
Then

DSn(θ, ϕ) = −n(n+ 1)Sn(θ, ϕ). (18)

Let the functions ψ and f be presented as their decompositions in the spher-
ical functions:

ψ =
∞∑
n=1

ψn(r)Sn(θ, ϕ); f =
∞∑
n=1

fn(r)Sn(θ, ϕ). (19)

With allowance for (19), the direct operator is of the form

Dψ = −
∞∑
n=1

ψn(r)n(n+ 1)Sn(θ, ϕ) =
∞∑
n=1

fn(r)Sn(θ, ϕ). (20)

Making use of the absolute convergence of expansions series, let us equate
the common expansion terms and divide them into n(n+ 1). As a result we
obtain

ψn(r)Sn(θ, ϕ) = −fn(r)
Sn(θ, ϕ)
n(n+ 1)

. (21)

Then, having summed all the harmonics, we arrive at

ψ = −D−1f = −
∞∑
n=1

fn(r)
Sn(θ, ϕ)
n(n+ 1)

. (22)
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Formula (22) is the definition of the inverse operator D−1 on spherical sur-
faces. Let us apply the inverse operator D−1 to formulas (13). As a result
we obtain

P = −
∞∑
n=1

HPr(r)
Sn(θ, ϕ)
n(n+ 1)

; T = −
∞∑
n=1

(rot HT )(r)
Sn(θ, ϕ)
n(n+ 1)

. (23)

If we apply to (23) condition (3) following from (2), i.e., rot HT = HP ,
then from formulas (23) we obtain

P = −
∞∑
n=1

HPr(r)
Sn(θ, ϕ)
n(n+ 1)

; T = −
∞∑
n=1

HPr(r)
Sn(θ, ϕ)
n(n+ 1)

. (24)

Thus, the functions P and T are expressed through a radial component
of the initial poloidal field HPr (HTr ≡ 0 by definition). These functions
are equal to one another, and this strictly corresponds to the theorem of
uniqueness of expansion (10), which for the uniqueness demands the ex-
istence of a radial component of the poloidal magnetic field on spherical
surfaces, covering the original magnetic field.

Thus, this is the conclusion obtained that closes the empirical input of
toroidal and poloidal fields with the one function Q(r, θ, ϕ) into (1) and (2)
and proves the correctness of relation (3) that also uniquely follows from the
uniqueness theorem for expansions (10).

If formulas (5) are supplemented with gradients of some other functions
for obtaining different functions T and P from one function Q, then one has
to introduce the Coulomb graduation of the vector potential A = (T · r) +
rot(Pr). This version is considered in detail in [10], where one can find the
same final result as that in this paper. This circumstance allows us without
loss of generality to write down the Helmholtz expansion for the vector field
H as follows

H = gradF + rot(Qr) + rot rot(Qr). (25)

Formula (25) essentially closes up with definitions from (1) and (2).
Now, there is a good reason to connect the inductive excitation, re-

flected in Maxwell’s equations and the dynamo excitation for obtaining the
generalized Maxwell’s equations for spherical domains, spherical sources and
sources located on spheres:

rot HP = σET +
γ

η
HT ; rot HT = HP ;

div(HT ,HP ) ≡ 0.
(26)

Here ET is a toroidal electric field.
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Boundary conditions for the magnetic fields HT and HP are standard,
not differing from the well-known. For the function Q they are derived from
the boundary conditions for magnetic fields and are of the form

Q
∣∣
r=R0

6= 0;
1

sin θ
∂Q

∂ϕ

∣∣∣
r=R0

6= 0;
∂Q

∂θ

∣∣∣
r=R0

6= 0. (27)

However, the potentiality principle of the magnetic field, in the Earth’s
atmosphere, for example, is formulated quite in a different manner. In fact,∮

(HP · dl) =
∫

(rot HP · ds) =
∫
Jnds

∣∣
Jn=0

= 0. (28)

From (28) follows that a poloidal field in the atmosphere, where Jn = 0, is a
potential field rot HP = 0. While a toroidal field being trivially not potential
anywhere because of rot HT = HP can exist in the Earth’s atmosphere due
to the presence in it a poloidal magnetic field. In fact,∮

(HT · dl) =
∫

(rot HT · ds) =
∫
HPrds

∣∣∣
HPr 6=0

6= 0. (29)

With the use of relation (29), a problem that has long been known [1,2]
is solved. In the above-cited publications, magnetic fields without potential
of the Earth’s field variations in the Earth’s atmosphere were found. From
(29) it follows that the part without potential of the magnetic field in the
atmosphere is nothing but a toroidal magnetic field, whose vortices do not
generate an electric current through the atmosphere. A toroidal magnetic
field appears in the Earth’s atmosphere through boundary conditions (27).

The presence of the toroidal magnetic field in the atmosphere according
to (29) breaks down the known from literature myth about its screening
with the Earth’s mantle [4].

An equally important disproof follows from formula (29). It concerns an
existing opinion about the unimodular feature of the electromagnetic field
in MTZ and ZCB. The effect of the spherical property of the Earth’s surface
and the ionosphere brings about –– due to “spreading” of the source of the
field –– the appearance of the second modification in observed electromag-
netic fields, to be exact, of the mode HTθ, HTϕ, EPθ, EPϕ, EPr along with
the major mode HPθ, HPϕ, HPr, ETθ, ETϕ [4].

Neglect of this factor results in appearance of irremovable errors when
interpreting the data in MTZ and ZSB. The presence of EPr (Ez) in the
air, measured and described in [3], is also due to the appearance in the
atmosphere of the second modification of the field because of the spherical
effect.

Over prolonged periods neither in laboratory conditions nor in nature
the sources of the toroidal magnetic field could not be detected. The obsta-
cle was the above-mentioned so-called anti-dynamo theorems [6,13,14]. The
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monograph [16] describes a laboratory source of the toroidal magnetic field,
called a two-disk dynamo. In literature, until now one can find references
to this approach to creating a toroidal field. However, a natural source was
found in [4, 8], where it was shown that electric conductivity currents lo-
cated in spherical domains of the Earth or on the spherical surfaces in the
ionosphere necessarily generate a non-force toroidal electromagnetic field in
addition to a force poloidal magnetic field [8], where this fact is analytically
verified based on the equation of the full current, following from the gen-
eralized Maxwell’s equations (26): ∆A = Jp, Jp = σET + γ

ηHT . In this
case γ

ηHT = σ(γµHT ) = σ(ET [v/m]) is that supplementary current, which
generates a toroidal magnetic field. In fact, the projection of the equation
∆A = Jp onto the axis of the spherical coordinate system is of the form

∆θA =
∂2Aθ
∂r2

+
2∂Aθ
r∂r

+
1

r2 sin θ
∂2Aθ
∂ϕ2

+
1
r2
∂2Aθ
∂θ2

− 1
r2

cos θ
sin θ

∂Aθ
∂θ
−

Aθ

r2 sin2 θ
− 2

cos θ
r2 sin2 θ

∂Aϕ
∂ϕ

+
2
r

∂Q

∂θ
= Jpθ , (30)

∆ϕA =
1

r sin θ
∂

∂θ
sin θ

∂Aϕ
∂ϕ

+
1

r2 sin2 θ

∂2Aϕ
∂ϕ2

+
1
r

∂2rAϕ
∂r2

+
cos θ

r2 sin2 θ

∂Aθ
∂ϕ
−

cos θ
r2 sin θ

∂Aϕ
∂ϕ

+
1
r2

∂

∂θ

1
sin θ

∂

∂θ
sin θAϕ −

1
r

∂2Aϕ
∂θ∂ϕ

+
2

r sin θ
∂Q

∂ϕ
= Jpϕ.

It is easy to note that, in (30), formulas

2
r

∂Q

∂θ
= −2

r
HTϕ,

2
r sin θ

∂Q

∂ϕ
=

2
r
HTθ (31)

are 2

r
-multiplied components of the toroidal magnetic field excited by JPθ and

Jpϕ components of the full spherical current located either in spherical layers
or on the spherical surfaces. Therefore, for the existence in the atmosphere
of a toroidal magnetic field the presence of natural spherical components Jpθ
and Jpϕ of the electric field is sufficient. There is no need in the radial electric
current for excitation of a toroidal magnetic field in the air. The toroidal
magnetic field from Jpθ - and Jpϕ-components of the current freely penetrates
into non-conducting regions including the Earth’s atmosphere with the help
of boundary conditions (27), not creating in them an additional electric
current by virtue of formula (3).

Thus, a general description of constant magnetic fields from spherical
sources leads to the generalized Maxwell’s equations (26) giving the con-
sequences verified by an experiment in terrain. Such experiments are of
constant, observable character on the world-wide net of magnetic observa-
tories. The data obtained on this net are subject to interpretation, to be
done, in our opinion, on the basis of the general system of equations (26).
The results of such an interpretation can be found in the monograph [4].
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