
Joint NCC & IIS Bull., Comp. S
ien
e, 13 (2000), 105{116





 2000 NCC Publisher

Modularization of typed Gurevi
h ma
hines

�

A.V. Zamulin

An important problem of the representation of a big dynami
 system as a number of interrelating typed Gurevi
h

Ma
hines (Abstra
t State Ma
hines or just ASMs in the sequel) and the subsequent 
ombination of the spe
i�
ations of

individual ASMs into the spe
i�
ation of the whole system is investigated in the paper. The stru
ture of su
h a system

is formally de�ned and a notion of external signature of a typed ASM is introdu
ed. Two main operations for 
ombining

existing spe
i�
ations (and their implementing ASMs) are suggested: import of existing typed ASMs by a new one and

union of several typed ASMs into a new one. The syntax and semanti
s of the operations are formally de�ned.

Keywords: abstra
t state ma
hines, spe
i�
ation-in-the-large, modular design, dynami
 system

1. Introdu
tion

A dynami
 system was de�ned in [1℄ as a typed ASM (TASM or simply ma
hine in the sequel)


onsisting of the following 
omponents:

� set of states,

� set of dependent (derived) fun
tions for observing the 
urrent system's state,

� set of pro
edures for updating the state.

Formally, a TASM is represented by the following tuple:

h(�

0

; Ax);�

din

; (�

dep

; Ax

dep

); (�

pro


; Ax

pro


)i


alled a TASM spe
i�
ation. Its �rst 
omponent is the spe
i�
ation (the signature and axioms) of a

number of data types and related fun
tions, the se
ond 
omponent is the signature of a set of dynami


fun
tions, the third 
omponent is the signature and axioms of dependent fun
tions, and the fourth

one is the signature and axioms of pro
edures. A TASM state 
orresponding to su
h a spe
i�
ation is

a �-algebra A, where � = �

0

[�

din

. Su
h an algebra 
onsists of a stati
 part A

0

whi
h is a �

0

-algebra

and a dynami
 part �(�

din

) mapping ea
h name in �

din

to a 
orresponding fun
tion so that A =

A

0

[�(�

din

).

The 
lass of all possible states (�-algebras) is divided into sub
lasses, state

A

0

(�

0

;�

din

), whi
h

share the same (stati
) �

0

-algebra A

0

. If f�(�

din

)g is the set of all possible dynami
 parts, then

state

A

0

(�

0

;�

din

) = fA

0

g � f�(�

din

)g.

The spe
i�
ation of a TASM 
an be regarded as a spe
i�
ation in-the-small. Su
h a TASM is

suitable for modeling a small dynami
 system whose states are 
entralized. However, a suÆ
iently big

dynami
 system 
an 
onsist of several TASMs 
ommuni
ating with ea
h other and thus representing

the modular stru
ture of the system. The states of su
h a system are de
entralized, and the overall


urrent state of the system is the union of the 
urrent states of the 
omponent TASMs. The spe
i�
a-

tion of su
h a system is a kind of spe
i�
ation in-the-large. Spe
ial means like those existing in some

programming languages (e.g., Oberon [4℄ and Ada [5℄) and spe
i�
ation languages (e.g., Extended ML

[6℄ and CASL [3℄) are to be elaborated for 
reating bigger TASMs from smaller ones.

The following stru
tural me
hanisms are investigated in this paper:

1. Use of existing TASMs when 
onstru
ting a new one. The 
omponents of an existing TASM

should only be referen
ed in some way in the spe
i�
ation of the new TASM.

2. Composition of existing TASMs into a bigger one.

�

This resear
h is supported in part by Russian Foundation for Basi
 Resear
h under Grant 98-01-00682.



106 A.V. Zamulin

The paper is organized in the following way. The spe
i�
ation te
hnique is brie
y des
ribed in

Se
tion 2. The stru
ture of a 
omplex dynami
 system is de�ned in Se
tion 3. The notion of external

signature of a TASM is introdu
ed in Se
tion 4. The fa
ilities for importing existing TASMs by a new

one are developed in Se
tion 5. The operation of union of several TASMs into a new one is des
ribed

in Se
tion 6. Some related work is dis
ussed in Se
tion 7, and some 
on
lusions and dire
tions of

further work are given in Se
tion 8.

2. Spe
i�
ation 
onventions

In this se
tion we 
onsider that a dynami
 system is a TASM. The �rst 
omponent of its spe
i�
ation is

a 
lassi
 algebrai
 spe
i�
ation de�ning a number of data types and related fun
tions representing the

stati
 part of the system and used for the possible state observations/updates, its semanti
s is given by

the spe
i�
ation language used. For simpli
ity, we 
onsider in the sequel that data type spe
i�
ations

are 
olle
ted in a spe
ial module with the signature �

0

. The rules for 
reating su
h a module are

not dis
ussed here. Possible 
on
i
ts between overloaded operation names are resolved a

ording to

the underlying spe
i�
ation language (for example, pre�xing with the type name if a language like

Ruslan [2℄ is used or qualifying the operation name with its pro�le if a language like CASL [3℄ is used).

In this 
ase the spe
i�
ation of a dynami
 system is a triple h�

din

; (�

dep

; Ax

dep

); (�

pro


; Ax

pro


)i, its

signature is h�

din

;�

dep

;�

pro


i, and its state is a �-algebra where � = h�

0

;�

dep

i. We denote by

DS(A

0

) a dynami
 system with the set of states sharing the same �

0

-algebra A

0

.

In the general 
ase, a fun
tion name in �

din

is de
lared as follows:

dynami
 fun
tion fun
tion-name: T

1

; :::; T

n

�! T ;

where T

1

; :::; T

n

are the types of the fun
tion arguments and T is the type of result. A fun
tion without

arguments is 
alled a 
onstant and de
lared as follows:

dynami
 
onst 
onstant-name: T ;

where T is the type of the 
onstant. The updates of the fun
tions and 
onstants de
lared in �

din


ause the transformation of the state.

The fun
tion names in �

dep

are de
lared similarly to the fun
tion names in �

din

with the use of

the keyword depend. However, the de
laration of a dependent fun
tion is a

ompanied with one or

more data equations, Ax

dep

, thus building a fun
tion spe
i�
ation. A data equation is a pair t

1

== t

2

where t

1

and t

2

are two terms of the same type. The terms are 
omposed of universally quanti�ed

variables, operation names from �

0

, and fun
tion names from �

din

and �

dep

. The interpretation of

su
h a term produ
es an algebra element. A data equation t

1

== t

2

is satis�ed in a dynami
 system i�

the interpretation of both t

1

and t

2

produ
es the same algebra element in any its state. Sin
e a term


ontaining the name of a dynami
 fun
tion 
an evaluate di�erently in di�erent states, the fun
tion

whose spe
i�
ation 
ontains su
h a term generally produ
es di�erent results in di�erent states (i.e.,

the result depends on the state).

For this reason, a dependent fun
tion name df : T

1

; :::; T

n

! T is interpreted in a dynami
 system

DS(A

0

) by a map df

DS(A

0

)

asso
iating a value of type T with ea
h pair hA; hv

1

; :::; v

n

ii, where A is a

state of DS(A

0

) and v

i

is an element of type T

i

; this map must satisfy the 
orresponding dynami


equations from Ax

dep

.

A pro
edure name in �

pro


is de
lared as follows:

pro
 pro
edure-name: T

1

; :::; T

n

;

where T

1

; :::; T

n

are the types of the pro
edure arguments (n 
an be zero, i.e., a pro
edure 
an have

no arguments). The de
laration of a pro
edure is a

ompanied with one or more dynami
 equations,

Ax

pro


, thus building a pro
edure spe
i�
ation. A dynami
 equation is a pair t

1

== t

2

where t

1

and

t

2

are two transition terms. There are two kinds of transition term, a pro
edure 
all and a transition

rule. The interpretation of either of them produ
es an update set. A pro
edure 
all is 
reated by



Modularization of typed Gurevi
h ma
hines 107

the appli
ation of a pro
edure name to a list of argument terms. Thus, if p : T

1

; :::; T

n

is a pro
edure

de
laration and t

1

; :::; t

n

are terms of types T

1

; :::; T

n

, respe
tively, then p(t

1

; :::; t

n

) is a transition term.

In a dynami
 equation t

1

== t

2

, the �rst term is normally a pro
edure 
all and the se
ond one is

a transition rule. A dynami
 equation is satis�ed in a dynami
 system i� the interpretation of both

terms in any its state produ
es the same update set.

Transition rules are 
onventionally 
reated like in traditional ASMs [7℄ with an additional possi-

bility of using pro
edure 
alls in rule 
onstru
tors. There is, however, an important di�eren
e in the

treatment of the assignment of an unde�ned value to a lo
ation. There 
an be no single undef value

for all data types. To simplify the spe
i�
ation of data types, no one of them is equipped with its

own undef value. Partial fun
tions are used instead, and a de�nedness predi
ate, D, is introdu
ed.

For ea
h term t, the predi
ation D(t) holds in a given algebra A if t is de�ned in it and does not hold

otherwise. In an update rule

f(t

1

; :::; t

n

) := undef

undef is just a keyword indi
ating that f(t

1

; :::; t

n

) be
omes unde�ned.

A pro
edure de
laration p : T

1

; :::; T

n

from �

pro


is interpreted in a dynami
 system DS(A

0

) by a

map p

DS(A

0

)

asso
iating an update set with ea
h pair hA; hv

1

; :::; v

n

ii, where A is a state of DS(A

0

) and

v

i

is an element of type T

i

; this map must satisfy the 
orresponding dynami
 equations from Ax

pro


.

Both a dependent fun
tion and a pro
edure 
an be partial. In this 
ase, the fun
tion (pro
edure)

spe
i�
ation is augmented with a spe
ial 
lause dom de�ning the domain of the fun
tion or pro
edure:

for a domain de�nition dom t : b, the predi
ation D(t) must hold in a given state A i� b evaluates to

true in this state.

A dynami
 system is a model of a spe
i�
ation DSS = h�

din

, (�

dep

; Ax

dep

), (�

pro


; Ax

pro


)i i� all

equations and domain de�nitions of DSS are satis�ed in it. A spe
i�
ation is 
onsistent if there is at

least one its model. A 
ounterexample: 
onsider a spe
i�
ation with the pro
edure de
laration pro


R: Integer and the dynami
 equation R(x � x) == f := x where f : Integer is a dynami
 
onstant.

It is 
lear that no model 
an satisfy the equation under both evaluations, x = 2 and x = �2. Only


onsistent spe
i�
ations are 
onsidered in the sequel.

The set of models of DSS is denoted by Mod(DSS). Any model 
ontains the state where all

dynami
 fun
tions/
onstants are unde�ned. This state is 
alled the unde�ned state of the system. A

pro
edure 
an be used for setting an appropriate initial state of the system.

3. Stru
ture of the state of a 
omplex dynami
 system

In a dynami
 system 
onsisting of several 
ommuni
ating TASMs, a pro
edure in one TASM 
an

generally update the state of some other TASMs. Therefore, one 
annot use only the state of a

parti
ular TASM as an argument and/or result of a pro
edure of this TASM. For this reason, we

de�ne the system state on the base of individual TASM states. Let a dynami
 system DS(A

0

) 
onsist

of n TASMs.

De�nition 1. If �

0

is the signature of data types and h�

din

;�

dep

;�

pro


i

i

is the signature of TASM

i

,

then h�

0

;�

D

i, where

�

D

=

U

i=1:::n

h�

din

;�

dep

;�

pro


i

i

,

is the signature of DS(A

0

). That is, the signature of a dynami
 system is the dis
riminated union of

the signatures of the 
omponent TASMs extending the signature of the data type module.

Fa
t 1. If state

A

0

(�

0

;�

din

)

i

is the set of possible states of TASM

i

, then state

A

0

(�

0

;�

DIN

), where

�

DIN

=

U

i=1:::n

(�

din

)

i

, is the set of states of DS(A

0

).

Thus, the state of a dynami
 system is the 
on
atenation of the states of the 
omponent ma
hines.

The 
hange of the state of one of them 
auses the 
hange of the state of the dynami
 system.



108 A.V. Zamulin

4. External signature of a TASM

A TASM spe
i�
ation with import and export 
lauses introdu
ed below is 
alled a module. h�

din

,

�

dep

, �

pro


i and h�

din

, (�

dep

; Ax

dep

), (�

pro


; Ax

pro


)i of a module are 
alled, respe
tively, the own

signature and own spe
i�
ation of the module. A parti
ular model of a module is 
alled a TASM or,

simply, ma
hine. The 
lass of all models of a module M is denoted by Mod(M).

In the spe
i�
ation of a big dynami
 system, some names de
lared in the own signature of a module


an be seen from the outside, some others 
an be seen only inside the module. We 
onsider that no

name from �

din

is seen from the outside. Spe
ial spe
i�
ation language 
onventions (export 
lause

listing exported symbols, keyword export in front of a symbol, et
.) 
an be used for indi
ating whi
h

names from �

dep

and �

pro


are seen from the outside. These names de�ne the external signature of

the module.

De�nition 2. Let a module M have the signature h�

din

;�

dep

;�

pro


i and the set of exported names

E

M

. Then the external signature of M is h�

M

dep

;�

M

pro


i 
omposed in the following way:

� if (f : T

1

; :::; T

n

�! T ) 2 �

dep

and f 2 E

M

, then (M:f : T

1

; :::; T

n

�! T ) 2 �

M

dep

;

� if (p : T

1

; :::; T

n

) 2 �

pro


and p 2 E

M

, then (M:p : T

1

; :::; T

n

) 2 �

M

pro


.

Example 1. Spe
i�
ation of a sta
k ma
hine (the types Boolean, Nat and Oper used in the spe
i�-


ation are de�ned in the data type module).

tasm Sta
kOfOper = spe


export initialize, push, pop, top, is empty;

dynami
 fun
tion 
ont: Nat �! Oper; | 
ontent of the sta
k

dynami
 
onst size: Nat; | size of the sta
k

pro
 initialize; | 
onstru
tion of an empty sta
k

initialize == set size := 0, forall x: Nat. 
ont(x) := undef end;

push: Oper; | pushing a sta
k with an element

push(o) == set size := size + 1, 
ont(size+1) := o end;

pop; | deleting the top element of a sta
k

dom pop: size > 0;

pop == set size := size - 1, 
ont(size) := undef end;

depend fun
tion top: Oper; | fet
hing the top element of a sta
k

top == 
ont(size);

depend fun
tion is empty: Boolean; | 
he
king whether a sta
k is empty

is empty == size = 0;

end;

In the above module all operations ex
ept dynami
 fun
tions are exported. Therefore, the external

signature of the TASM is the following:

h(Sta
kOfOper:top : Oper;

Sta
kOfOper:is empty : Boolean),

(Sta
kOfOper:initialize;

Sta
kOfOper:push : Oper;

Sta
kOfOper:pop) >.

Example 2. Spe
i�
ation of a blo
k-stru
tured identi�er table (the types Boolean, Nat, Name

and Defdata used in the spe
i�
ation are de�ned in the data type module.

tasm IdTable = spe


export initialize, insert entry, new level, delete level,



Modularization of typed Gurevi
h ma
hines 109

de�ned 
urrent, is de�ned, �nd;

dynami
 fun
tion id table: Name, Nat �! Defdata;

dynami
 
onst 
ur level: Nat; | the 
urrent level of blo
k nesting

pro
 initialize; | 
onstru
t an empty identi�er table

initialize == set 
ur level := 1,

forall id: Name, x: Nat. id table(id, x) := undef end;

pro
 insert entry: Name, Defdata; | insert an entry in the 
urrent blo
k

insert entry(id, d) == id table(id, 
ur level) := d;

pro
 new level; | 
reate a new level

new level == 
ur level := 
ur level + 1;

pro
 delete level; | delete the innermost level

delete level == set 
ur level := 
ur level - 1,

forall id: Name. id table(id, 
ur level) := undef end;

depend fun
tion de�ned 
urrent: Name �! Boolean;

| is the name de�ned in the 
urrent blo
k?

de�ned 
urrent(id) == D(id table(id, 
ur level));

depend fun
tion lo
al de�ned: Name, Nat �! Boolean;

| lo
al fun
tion used for the spe
i�
ation of the next one

lo
al de�ned(id, 0) == false;

lo
al de�ned(id, k) == D(id table(id, k)) j lo
al de�ned(id, k-1);

depend fun
tion is de�ned: Name �! Boolean;

| is the name de�ned in some blo
k?

is de�ned(id) == lo
al de�ned(id, 
ur level);

depend fun
tion lo
al �nd: Name, Nat �! Defdata;

| lo
al fun
tion used for the spe
i�
ation of the next one

dom lo
al �nd(id, k): k > 0;

lo
al �nd(id, k) == if D(id table(id, k)) then id table(id, k)

else lo
al �nd (id, k-1)g;

depend fun
tion �nd: Name �! Defdata; | �nd an entry in the table

dom �nd(id): is de�ned(id);

�nd(id) == lo
al �nd(id, 
ur level);

end.

In the above spe
i�
ation the fun
tions lo
al defined and lo
al find are auxiliary lo
al fun
tions

whi
h are not exported. Therefore, the external signature of the module is the following:

h(IdTable:defined 
urrent : Name �! Boolean;

IdTable:is defined : Name �! Boolean;

IdTable:find : Name �! Defdata),

(IdTable:initialize;

IdTable:insert entry : Name;Defdata;

IdTable:new level;

IdTable:delete level)i.

5. Import of TASMs

The �rst operation of the in-the-large level is the use of existing modules in a new one. This means

that, when 
onstru
ting a module, one 
an use exported names from other modules, they 
onstitute

the import of the module. Respe
tively, a model (TASM) of a given module is extended by the


omponents of the models (TASMs) of the imported modules.

An imported name 
an be referen
ed in one of the following ways:



110 A.V. Zamulin

1) dire
tly with a possible quali�
ation in 
ase the name is overloaded;

2) pre�xed with the name of the module where it is originally de�ned as it is done for modules

in Oberon [4℄ or some other programming languages.

The dire
t use of an imported name is not possible, however, when it is de
lared with the same

pro�le in two or more modules. The name initialize in the modules Sta
kOfOper and IdTable 
an

serve as an example. Therefore, we prefer the se
ond way, i.e., pre�xing an imported name with a

module name. A spe
ial 
lause import listing the names of imported modules is in
luded in the

TASM spe
i�
ation in this 
ase. A pre�xed name 
an be used in the spe
i�
ation for 
reating terms

a

ording to the following rule.

De�nition 3. Let a module M have the import M

1

; :::;M

k

where M

i

is the name of an imported

module. If (M

i

:f : T

1

; :::; T

n

�! T ) 2 �

M

i

dep

and t

1

; :::; t

n

are terms of types T

1

; :::; T

n

, respe
tively,

then M

i

:f(t

1

; :::; t

n

) is a term of type T in M . If (M

i

:f : T

1

; :::; T

n

) 2 �

M

i

pro


and t

1

; :::; t

n

are terms

of types T

1

; :::; T

n

, respe
tively, then M

i

:f(t

1

; :::; t

n

) is a transition term in M . We write M

i

:f if the

pro�le of f has no argument types.

Example 3

tasm BiggerTasm = spe


import Sta
kOfOper, IdTable;

export initialize ...; list of exported names

. . .

pro
 initialize;

initialize == set ... Sta
kOfOper.initialize, IdTable.initialize, ... end;

. . .

end

In the above example Sta
kOfOper:initialize and IdTable:initialize are transition terms 
reated

with the use of imported names.

Fa
t 2. The state of a TASM whi
h is a model of a module importing other modules is de�ned

by its own signature and the signature of the module of data types. Indeed, sin
e dynami
 fun
tions

are not exported, �

din

of the importing module is not in
uen
ed by the import.

Fa
t 3. If M

1

; :::;M

n

are the names of modules imported by the module M , then the own

spe
i�
ation of M generally de�nes a fun
tion F : Mod(M

1

); :::; Mod(M

n

) �! Mod(M). This means

that supplying di�erent models of imported modules, we get di�erent models of the importing module.

In other words, a TASM whi
h is a model of a given module depends on the imported TASMs. If

Md

1

; :::;Md

n

are models of the modules M

1

; :::;M

n

, respe
tively, then F(Md

1

; :::;Md

n

) is a model of

M .

Consider the spe
i�
ation of the pro
edure initialize in the above example. Ea
h time when the

spe
i�
ation of one of the pro
edures, IdTable:initialize or Sta
kOfOper:initialize, is 
hanged so

that the 
orresponding pro
edure must yield a di�erent update set, the pro
edure initialize in the

model of the module "BiggerTasm" must also produ
e a di�erent update set. This does not mean,

of 
ourse, that an importing TASM must be a
tually re
onstru
ted ea
h time one of the imported

ma
hines is re
onstru
ted (the 
onventional me
hanism of pro
edure 
alls helps to avoid it), but


on
eptually the TASM is 
hanged.

Let now a moduleM import modulesM

1

; :::;M

n

,Md

1

; :::;Md

n

be models of the modulesM

1

; :::;M

n

,

respe
tively, and Md = F(Md

1

; :::;Md

n

) be a model of the module M . We denote by [[t℄℄

Md;A

the inter-

pretation of a term t in the model Md at the state A. If t is a dependent fun
tion name or a pro
edure

name, we simply write t

Md

sin
e the interpretation of this name does not depend on the state. In

this 
ase, the interpretation of a term M

i

:f(t

1

; :::; t

n

) in the model Md at the state A is de�ned in the



Modularization of typed Gurevi
h ma
hines 111

following way:

[[M

i

:f(t

1

; :::; t

n

)℄℄

Md;A

= f

Md

i

([[t

1

℄℄

Md;A

; :::; [[t

1

℄℄

Md;A

).

6. Union of TASMs

The se
ond operation of the in-the-large level is the union of several existing ma
hines into a new one.

This 
orresponds to the modular de
omposition of a big dynami
 system into several smaller dynami


systems developed independently. Two options of the spe
i�
ation of a big system are possible:

1. The spe
i�
ations of the 
omponent ma
hines are developed independently and then they are

united into a single pie
e of spe
i�
ation. A ma
hine 
orresponding to the resulting spe
i�
ation

is just a model of this spe
i�
ation.

2. The spe
i�
ations of the 
omponent ma
hines are developed independently and ea
h of them

is provided with its own model. A ma
hine 
orresponding to the resulting spe
i�
ation is the

union of the 
omponent ma
hines.

The �rst 
ase 
orresponds to linking several pie
es of the sour
e text of a program and then


ompiling them into a single unit. The se
ond 
ase 
orresponds to the independent 
ompilation of

programs with the subsequent linkage of the obje
t 
odes. Sin
e the �rst 
ase does not impose any

stru
ture on the set of models, its task 
an su

essfully be solved by modern text editing fa
ilities.

Therefore, we will dis
uss possible solutions of the se
ond task whi
h provide better modularization

fa
ilities. Re
all that we have modules at the spe
i�
ation level and TASMs (ma
hines) at the model

level.

Thus, we assume that the module union operation, union, is supported at the model level by a

TASM union operation, union

M

. It must a
tually use the 
omponent ma
hines without their re
on-

stru
tion. Therefore, the union operation is required to be persistent, i.e., the redu
t of the result

of union

M

to the name of a 
omponent ma
hine must yield exa
tly the 
omponent ma
hine. Re-

spe
tively, the redu
t of the resulting module to the name of a 
omponent module must yield the


omponent module.

The se
ond requirement for the union operation is that it must be 
onstru
tive in the following

sense. Let Md

1

; :::;Md

n

be models of modules M

1

; :::;M

n

, respe
tively. Then union

M

(Md

1

; :::;Md

n

)

must be a model of union(M

1

; :::;M

n

). This might not be the 
ase if the united ma
hines have

operations with the same names and pro�les.

There are also problems with the 
reation of the external signature of the new module. The �rst

of them 
on
erns pre�xing. Assume that we wish to unite the modules Sta
kOfOper and IdTable

spe
i�ed above to 
reate the module JointMa
hine. In all likelihood, a user will not be happy

if he now has to use operations with double pre�xing, e.g., JointMa
hine:Sta
kOfOper:push(x),

JointMa
hine:IdTable:initialize, et
. A better solution is to pre�x operations only with the name of

the new ma
hine, for example: JointMa
hine:push(x), JointMa
hine:initialize. Unfortunately, we

have a problem with overloaded names in this 
ase. For example, the operations Sta
kOfOper:initialize

and IdTable:initialize will be
ome unre
ognizable if their pre�xes are repla
ed with JointMa
hine.

Therefore, a me
hanism of renaming the exported operations is needed.

Next problem 
on
erns the volume of export of the new module. It might happen that the list of

exported operations of the new module is shorter than the union of the lists of exported operations

of the united modules. For example, if the modules Sta
kOfOper, IdTable and BiggerTasm are

united, there is no need to export the operations Sta
kOfOper:initialize and IdTable:initialize. In

this 
ase, a me
hanism of de�ning a new export is needed.

Taking into a

ount the above 
onsiderations, the following syntax of the union operation 
an be

proposed:



112 A.V. Zamulin

union-operation ::= union list-of-modules [, export℄ end

list-of-modules ::= 
omponent-module f, 
omponent-moduleg


omponent-module ::= module-name [export-renaming℄

export-renaming ::= (pair-of-names f, pair-of-namesg)

pair-of-names ::= new-name = old-name

new-name ::= name

old-name ::= name

export ::= export quali�ed-name f, quali�ed-nameg

quali�ed-name ::= module-name.name

If there is no export 
lause, then all exported names of the 
omponent modules are exported. The

absen
e of "export-renaming" for a parti
ular 
omponent module means that no exported name of

this module is renamed.

Example 4.

tasm Union2 = union Sta
kOfOper (empty = initialize), IdTable end

tasm Union3 = union Sta
kOfOper, IdTable, BiggerTasm

export Sta
kOfOper.push, Sta
kOfOper.pop, Sta
kOfOper.top,

Sta
kOfOper.is-empty, IdTable.insert-entry, IdTable.new-level,

IdTable.delete-level, IdTable.de�ned-
urrent,

IdTable.is-de�ned, IdTable.�nd, BiggerTasm.initialize, ... end

To de�ne the requirements for the well-formedness of the union operation, we introdu
e several aux-

iliary notions. Let 
omponent modules M

1

; :::;M

n

have the sets of exported names E

M

1

; :::; E

M

n

,

respe
tively, and let EL

M

be the set of quali�ed names in the export 
lause of the union operation

(the set is empty if there is no export 
lause). The set EL

M

is well-formed if, for any M

i

.exported-

name 2 EL

M

, M

i

is the name of a 
omponent module and exported-name belongs either to the list

of exported names of M

i

(if it is not renamed) or to the list of new names in the export renaming for

M

i

. That is, the new name must be used in the export 
lause if the 
orresponding exported name is

renamed and the old one in the opposite 
ase.

If EL

M

is well-formed, we 
onstru
t, for ea
h 
omponent module M

i

with the export set E

M

i

, the

renaming set, ER

i

, as the set of pairs h new-name, old-namei in the following way:

1. if there is no export-renaming for M

i

, then

� if EL

M

is empty, then ER

i

is the set of all pairs hold-name, old-namei, where

old-name 2 E

M

i

;

� if EL

M

is not empty, then hold-name, old-namei 2 ER

i

i� M

i

.old-name 2 EL

M

;

2. if there is an export-renaming for M

i

, then

� if EL

M

is empty, then hnew-name, old-namei 2 ER

i

if the pair hnew-name = old-namei is

part of the export-renaming, and hold-name1, old-name1i 2 ER

i

if old-name1 2 E

M

i

and

there is no new-name1 su
h that hnew-name1 = old-name1i is part of the export-renaming.

� if EL

M

is not empty, then hnew-name, old-namei 2 ER

i

if the pair hnew-name = old-namei

is part of the export-renaming and M

i

.new-name 2 EL

M

, and hold-name1, old-name1i

2 ER

i

if old-name1 2 E

M

i

, there is no new-name1 su
h that hnew-name1 = old-name1i is

part of the export-renaming and M

i

.old-name1 2 EL

M

;.



Modularization of typed Gurevi
h ma
hines 113

Thus, the renaming sets for the module Union2 are the following:

Sta
kOfOper : fhempty; initializei; hpush; pushi; hpop; popi; htop; topi;

his empty; is emptyig,

IdTable : fhinitialize; initializei; hinsert entry; insert entryi;

hnew level; new leveli; hdelete level; delete leveli;

hdefined 
urrent; defined 
urrenti; his defined; is definedi;

hfind; findig

and the renaming sets for the module Union3 are the following:

Sta
kOfOper : fhpush; pushi; hpop; popi; htop; topi; his empty; is emptyig,

IdTable : fhinsert entry; insert entryi; hnew level; new leveli;

hdelete level; delete leveli; hdefined 
urrent; defined 
urrenti;

his defined; is definedi; hfind; findig,

BiggerTasm : fhinitialize; initializei; :::g.

The set ER

i

is 
onsistent i� for any pair hnew-name, old-namei 2 ER

i

, old-name 2 E

M

i

and

there is no old-name1 su
h that hnew-name, old-name1i 2 ER

i

. This means that new names must be

unique within the module. A

ording to this, all renaming sets above are well-formed.

The set of renaming sets, ER

1

; :::; ER

n

, is 
onsistent if any ER

i

is 
onsistent and for any pair hnew-

name, old-namei 2 ER

i

, there is no old-name1 su
h that hnew-name, old-name1i 2 ER

j

, j = 1; :::; n

and j 6= i. This means that new names must be unique in the family of renaming sets. For example,

the set of renaming sets for the module Union3 would be in
onsistent if there were no export 
lause

(there would be pairs hinitialize; initializei in three renaming sets).

Now we 
an 
onstru
t the set of exported names, E

M

, of the resulting module: if a pair hnew-name,

old-namei 2 ER

i

, then new-name 2 E

M

.

Thus, the set of exported names of the module Union2 is fpush, pop, empty, top, is empty, initial-

ize, insert entry, new level, delete level, de�ned 
urrent,

is de�ned, �nd, initializeg and the set of exported names of the module Union3 is fpush, pop, top,

is empty, insert entry, new level, delete level, de�ned 
urrent, is de�ned, �nd, initialize ... g.

The external signature of the resulting module is 
onstru
ted as follows:

� if f 2 E

M

, f

1

is a name su
h that the pair hf; f

1

i 2 ER

i

and (M

i

:f

1

: T

1

; :::; T

n

�! T ) 2 �

M

i

dep

,

then (M:f : T

1

; :::; T

n

�! T ) 2 �

M

dep

;

� if p 2 E

M

, p

1

is a name su
h that the pair hp; p

1

i 2 ER

i

and (p

1

: T

1

; :::; T

n

) 2 �

M

i

pro


, then

(M:p : T

1

; :::; T

n

) 2 �

M

pro


.

Thus, the external signature of the module Union2 is the following:

h(Union2:top : Oper;

Union2:is empty : Boolean;

Union2:is defined : Name �! Boolean;

Union2:defined 
urrent : Name �! Boolean;

Union2:f ind : Name �! Defdata),

(Union2:empty;

Union2:push : Oper;

Union2:pop;

Union2:initialize;

Union2:insert entry : Name;Defdata;

Union2:new level;

Union2:delete level)i.

and the external signature of the module Union3 di�ers from the previous one only by the absen
e of

the pro
edure name empty.



114 A.V. Zamulin

The resulting module 
onsists of the set of the names of the 
omponent modules with their renaming

sets, the set of the names of the imported modules, and the set of the exported names. The own

signature and own spe
i�
ation of the resulting module are empty. The module is 
onsistent if the set

of the renaming sets is 
onsistent.

If the resulting module is 
onsistent, then the 
omponents of the resulting ma
hine itself are de�ned

as follows:

� the set of states is the Cartesian produ
t of the sets of the states of the 
omponent ma
hines as

stated by Fa
t 1;

� the set of dependent fun
tions is the dis
riminated union of the sets of dependent fun
tions of

the 
omponent ma
hines;

� the set of pro
edures is the dis
riminated union of the sets of pro
edures of the 
omponent

ma
hines;

Thus, the state of the resulting ma
hine is a tuple hA

0

;A

1

; :::;A

n

i where A

0

is the algebra of data

types and A

1

; :::;A

n

are the states of the 
omponent ma
hines.

Fa
t 4. The union operation as de�ned above is persistent. Indeed, the redu
t of the resulting

ma
hine to the name of a 
omponent ma
hines produ
es exa
tly that ma
hine. This fa
t permits us

to re
onstru
t a 
omponent ma
hine if needed, without re
onstru
ting the other 
omponent ma
hines.

Fa
t 5. The union operation as de�ned above is 
onstru
tive. Indeed, the resulting ma
hine is a

model of the resulting module sin
e it provides a unique fun
tion for any fun
tion/pro
edure name

de�ned in the 
omponent modules.

If a moduleM produ
ed by the union of modules M

1

; :::;M

n

is imported in a module M

0

, then the

terms pre�xed withM inM

0

are interpreted di�erently then the terms pre�xed with ordinary modules

as des
ribed in Se
tion 5. Let f be a name from the set of exported names of M , M:f(t

1

; :::; t

n

) a

term 
onstru
ted a

ording to De�nition 3, Md

0

a model of M

0

and ER

i

the renaming set for M

i

in

M , then

[[M:f(t

1

; :::; t

n

)℄℄

Md

0

;A

= [[M

i

:f1(t

1

; :::; t

n

)℄℄

Md

0

;A

if the pair hf; f1i 2 ER

i

. That is, su
h a term is interpreted as if f is imported dire
tly from a


omponent module.

7. Related work

Spe
i�
ation in-the-large is one of the main 
on
erns of the traditional algebrai
 spe
i�
ation lan-

guages. The aim is the splitting of the spe
i�
ation and design of a single task into a number of

well-de�ned modules so that ea
h of them 
ould be independently implemented. For example, a

spe
i�
ation framework whi
h allows the independent 
onstru
tion and implementation of spe
i�
a-

tion modules and in
orporates the separation of an implementation task into smaller units with the

subsequent stepwise development of single "implementation pie
es" is des
ribed in [8℄. Two basi


spe
i�
ation units are introdu
ed: spe
i�
ation modules (
lasses of algebra-valued fun
tors) and sys-

tem spe
i�
ations (
lasses of algebras 
onstru
ted by su

essive fun
tor appli
ations a

ording to the

modular stru
ture of the system spe
i�
ation). However, no language 
onstru
ts implementing these

theoreti
al notions are suggested.

The spe
i�
ation in-the-large in [9℄ deals with spe
i�
ation modules and their inter
onne
tions.

A spe
i�
ation module 
onsists of three parts: an export interfa
e, an import interfa
e and a body.

Three operations for module inter
onne
tions are proposed: 
omposition, union, and extension. The


omposition of two modules M1 and M2 
onne
ts the import of M2 with the export interfa
e of M1.

The operation roughly 
orresponds to the use of existing ma
hines in the new one as des
ribed in

Se
tion 5. The union of two modules M1 and M2 is the disjoint union of M1 and M2. The 
onstituent



Modularization of typed Gurevi
h ma
hines 115

parts of the resulting module are the union of the 
orresponding parts of the original modules. This

operation 
orresponds to our union operations. Unfortunately, no formal semanti
s of the operation

is given in [9℄. The extension of a module M is the result of extending some or all 
onstituent parts of

the module by additional items. We believe that this operation 
an be easily realized by modern text

editing fa
ilities and, therefore, do not in
lude it in the list of spe
i�
ation-in-the-large operations.

In the most developed way the spe
i�
ation in-the-large is in
orporated in the spe
i�
ation lan-

guage CASL [3℄. It is represented in the language in the form of so-
alled stru
tural spe
i�
ations

and ar
hite
tural spe
i�
ations [10℄. The �rst ones provide means for 
omposing larger spe
i�
ations

from smaller ones (
omposing the sour
e text of a program) while the se
ond ones provide means for


reating larger modules ("units" in the language) from smaller ones implementing the 
orresponding

spe
i�
ations (linkage of obje
t 
odes). At both levels the means for spe
i�
ation redu
tion, trans-

lation, union and instantiation are provided. We have 
on
entrated in this paper on some problems

related to ar
hite
tural spe
i�
ations, paying the major attention to the union operation as most

important in the modular design and spe
i�
ation of a big dynami
 system. Our de�nition of the

operation as dis
riminated union of the 
omponent spe
i�
ations has allowed us to avoid many name

sharing problems spe
i�
 for the CASL ar
hite
tural spe
i�
ations.

Con
rete 
onstru
ts supporting the spe
i�
ation in-the-large in some earlier algebrai
 spe
i�
ation

languages 
an be found in [11, 12, 13℄.

In traditional ASMs, a high-level 
on
ept of modularity is realized, a

ording to [14℄, by fun
tion


lassi�
ation. This means that they distinguish between basi
 fun
tions and derived ("dynami
" in

this paper) fun
tions. Within derived or basi
 fun
tions they distinguish between stati
 fun
tions and

dynami
 fun
tions; among dynami
 fun
tions they distinguish between 
ontrolled ones and monitored

ones. As stated in [14℄, "Distinguishing between basi
 and derived, stati
 and dynami
 or 
ontrolled

and monitored fun
tions 
onstitutes a rigorous high-level realization of Parnas' information hiding

prin
iple". Fully supporting this 
lassi�
ation of fun
tions and the fa
ilities for information hiding

provided by this variety of sorts of fun
tions, we still believe that more powerful modularization

fa
ilities and means of their inter
onne
tion are needed.

8. Con
lusion

The main 
ontribution of this work is the elaboration of some formal me
hanisms for 
ombining

individual TASMs in a big dynami
 system. For this purpose, ea
h TASM spe
i�
ation is provided

with an export interfa
e permitting us to hide TASM's features used ex
lusively for its internal needs.

A TASM spe
i�
ation using exported operations of some other TASMs is also provided with an

import interfa
e. The most important operation for 
ombining existing TASMs is the union of several

TASMs into a new one. The requirements for su
h an operation are stated in the paper, and syntax

and semanti
s of the operation are formally de�ned.

The presented fa
ilities still do not provide a possibility to de�ne a generi
 TASM and instantiate

it later for produ
ing a number of "sibling" TASMs. This remains a subje
t of further resear
h. A

need for it is also indi
ated in [14℄.

Referen
es

[1℄ A.V. Zamulin, Dynami
 System Spe
i�
ation by Typed Gurevi
h Ma
hines, Pro
. Intern. Conf. on Systems S
i.,

Wro
law, Poland, September 15{18, 1998.

[2℄ A.V. Zamulin, The Database Spe
i�
ation Language RUSLAN: Main Features, East-West Database Workshop,

Pro
. Se
ond International East-West Database Workshop, Klagenfurt, Austria, September 25{28, 1994, Springer,

Workshops in Computing, 1994, 315{327.

[3℄ P. Mosses, CASL: a guided tour of its design, Re
ent Trends in Algebrai
 Development Te
hniques: Sele
ted Papers

from WADT'98, Lisbon, Springer, Le
t. Notes Comput. S
i., 1589, 1999.



116 A.V. Zamulin

[4℄ N. Wirth, The Programming language Oberon (Revised edition), Departement Informatik, Institute for Computer-

systeme, ETH, Zuri
h, 1990.

[5℄ Ada Referen
e Manual: Language and Standard Libraries, Version 6.0, International standard ISO/IEC

8652:1995(E), 1994.

[6℄ D. Sannella, A. Tarle
ki, Toward Formal Development of ML Programs: Foundation and Methodology, Pro
. 3rd

Joint Conf. On Theory and Pra
ti
e of Software Development, Bar
elona,Le
t. Notes Comput. S
i., 352, 1989,

375{389.

[7℄ Y. Gurevi
h, May 1997 Draft of the ASM Guide, University of Mi
higan, EECS Department Te
hni
al Report

CSE-TR-336-97, (available ele
troni
ally from http://www.ee
s.umi
h.edu/gasm/).

[8℄ M. Bidoit, R. Henni
ker, A General Framework for Modular Implementations of Modular System Spe
i�
ations,

Pro
. 5th Joint Conf. on Theory and Pra
ti
e of Software Development, Orsay, Le
t. Notes Comput. S
i., 668,

1993, 199{214.

[9℄ I. A. Hamid, M. Erradi, Dynami
 Evolution of Distributed Systems Spe
i�
ations Using Re
e
tive Language, Intl.

J. of Software Engineering and Knowledge Engineering, 5, No 4, 1995, 511{540.

[10℄ M. Bidoit, D. Sannella, A. Tarle
ki, Ar
ite
tural Spe
i�
ations in CASL, Pro
. 7th Intl. Conf. On Algebrai
 Method-

ology and Software te
hnology (AMAST'98), Manaus, Brasil, Le
t. Notes Comput. S
i., 1548, 1999, 341{357.

[11℄ B. Krieg-Brue
kner, D. Sannella, Stru
turing Spe
i�
ations in-the-Large and in-the-Small: Higher-Order Fun
tions,

Dependent Types and Inheritan
e in SPECTRAL, Pro
. Intl. Joint Conf. on Theory and Pra
ti
e of Software

Development (TAPSOFT'91), Brighton, Le
t. Notes Comput. S
i., 494, 1991, 313{336.

[12℄ M.-C. Gaudel, Stru
turing and modularizing algebrai
 spe
i�
ations: the PLUSS spe
i�
ation language, evolution

and perspe
tives, Pro
. STACS'92, Le
t. Notes Comput. S
i., 577, 1992, 3{20.

[13℄ J. Guttag, J. Horning, Lar
h: Languages and Tools for Formal Spe
i�
ation, Springer, 1993.

[14℄ E. Boerger, High Level System Design and Analysis using Abstra
t State Ma
hines, Current Trends in Applied

Formal methods (FM-Trends 98), Le
t. Notes Comput. S
i., 1641, 1999.


