Joint NCC & IIS Bull., Comp. Science, 13 (2000), 105-116
© 2000 NCC Publisher

Modularization of typed Gurevich machines*

A.V. Zamulin

An important problem of the representation of a big dynamic system as a number of interrelating typed Gurevich
Machines (Abstract State Machines or just ASMs in the sequel) and the subsequent combination of the specifications of
individual ASMs into the specification of the whole system is investigated in the paper. The structure of such a system
is formally defined and a notion of external signature of a typed ASM is introduced. Two main operations for combining
existing specifications (and their implementing ASMs) are suggested: import of existing typed ASMs by a new one and
union of several typed ASMs into a new one. The syntax and semantics of the operations are formally defined.

Keywords: abstract state machines, specification-in-the-large, modular design, dynamic system

1. Introduction

A dynamic system was defined in [1] as a typed ASM (TASM or simply machine in the sequel)
consisting of the following components:

e set of states,
e set of dependent (derived) functions for observing the current system’s state,

e set of procedures for updating the state.

Formally, a TASM is represented by the following tuple:
((20, Al‘), Ydin, (Zdepa Axdep)a (Eprom Axproc))

called a TASM specification. Its first component is the specification (the signature and axioms) of a
number of data types and related functions, the second component is the signature of a set of dynamic
functions, the third component is the signature and axioms of dependent functions, and the fourth
one is the signature and axioms of procedures. A TASM state corresponding to such a specification is
a Y-algebra A, where X = 3y UX4;,. Such an algebra consists of a static part Ag which is a 3g-algebra
and a dynamic part A(Xg,) mapping each name in Yy, to a corresponding function so that A =
Ao U A(Zgin)-

The class of all possible states (¥-algebras) is divided into subclasses, statea,(Xo, X4in), Which
share the same (static) Yo-algebra Ag. If {A(X4in)} is the set of all possible dynamic parts, then
stater(Zo,Zdin) = {Ao} X {A(Zdin)}-

The specification of a TASM can be regarded as a specification in-the-small. Such a TASM is
suitable for modeling a small dynamic system whose states are centralized. However, a sufficiently big
dynamic system can consist of several TASMs communicating with each other and thus representing
the modular structure of the system. The states of such a system are decentralized, and the overall
current state of the system is the union of the current states of the component TASMs. The specifica-
tion of such a system is a kind of specification in-the-large. Special means like those existing in some
programming languages (e.g., Oberon [4] and Ada [5]) and specification languages (e.g., Extended ML
[6] and CASL [3]) are to be elaborated for creating bigger TASMs from smaller ones.

The following structural mechanisms are investigated in this paper:

1. Use of existing TASMs when constructing a new one. The components of an existing TASM
should only be referenced in some way in the specification of the new TASM.

2. Composition of existing TASMs into a bigger one.

*This research is supported in part by Russian Foundation for Basic Research under Grant 98-01-00682.

106 A. V. Zamulin

The paper is organized in the following way. The specification technique is briefly described in
Section 2. The structure of a complex dynamic system is defined in Section 3. The notion of external
signature of a TASM is introduced in Section 4. The facilities for importing existing TASMs by a new
one are developed in Section 5. The operation of union of several TASMs into a new one is described
in Section 6. Some related work is discussed in Section 7, and some conclusions and directions of
further work are given in Section 8.

2. Specification conventions

In this section we consider that a dynamic system is a TASM. The first component of its specification is
a classic algebraic specification defining a number of data types and related functions representing the
static part of the system and used for the possible state observations/updates, its semantics is given by
the specification language used. For simplicity, we consider in the sequel that data type specifications
are collected in a special module with the signature Y. The rules for creating such a module are
not discussed here. Possible conflicts between overloaded operation names are resolved according to
the underlying specification language (for example, prefixing with the type name if a language like
Ruslan [2] is used or qualifying the operation name with its profile if a language like CASL [3] is used).
In this case the specification of a dynamic system is a triple (Xqin, (Zdeps AZdep), (Xproc, ATproc)), its
signature is (Egin, Xdep, Lproc), and its state is a Y-algebra where ¥ = (3¢, X4.p). We denote by
DS(Ap) a dynamic system with the set of states sharing the same Yy-algebra Ay.
In the general case, a function name in X4, is declared as follows:

dynamic function function-name: Ty, ...,T, — T

where T1, ..., T}, are the types of the function arguments and T is the type of result. A function without
arguments is called a constant and declared as follows:

dynamic const constant-name: T}

where T is the type of the constant. The updates of the functions and constants declared in X4,
cause the transformation of the state.

The function names in ¥4, are declared similarly to the function names in ¥4, with the use of
the keyword depend. However, the declaration of a dependent function is accompanied with one or
more data equations, Azgep, thus building a function specification. A data equation is a pair t; == 2
where 1 and 9 are two terms of the same type. The terms are composed of universally quantified
variables, operation names from ¥, and function names from X4, and ¥4.,. The interpretation of
such a term produces an algebra element. A data equation ¢; == t5 is satisfied in a dynamic system iff
the interpretation of both #; and t5 produces the same algebra element in any its state. Since a term
containing the name of a dynamic function can evaluate differently in different states, the function
whose specification contains such a term generally produces different results in different states (i.e.,
the result depends on the state).

For this reason, a dependent function name df : Ty, ..., T, — T is interpreted in a dynamic system
DS(Ag) by a map dfP5(R0) associating a value of type T with each pair (A, (vi,...,v,)), where A is a
state of DS(Ap) and v; is an element of type T;; this map must satisfy the corresponding dynamic
equations from Azg).

A procedure name in ¥, is declared as follows:

proc procedure-name: T, ..., Ty;

where T1,...,T,, are the types of the procedure arguments (n can be zero, i.e., a procedure can have
no arguments). The declaration of a procedure is accompanied with one or more dynamic equations,
Axproc, thus building a procedure specification. A dynamic equation is a pair ¢; == ¢, where #; and
to are two transition terms. There are two kinds of transition term, a procedure call and a transition
rule. The interpretation of either of them produces an update set. A procedure call is created by

Modularization of typed Gurevich machines 107

the application of a procedure name to a list of argument terms. Thus, if p : T1, ..., T}, is a procedure
declaration and ¢y, ..., t,, are terms of types T1, ..., Ty, respectively, then p(ty, ..., t,) is a transition term.
In a dynamic equation ¢; == t9, the first term is normally a procedure call and the second one is
a transition rule. A dynamic equation is satisfied in a dynamic system iff the interpretation of both
terms in any its state produces the same update set.

Transition rules are conventionally created like in traditional ASMs [7] with an additional possi-
bility of using procedure calls in rule constructors. There is, however, an important difference in the
treatment of the assignment of an undefined value to a location. There can be no single undef value
for all data types. To simplify the specification of data types, no one of them is equipped with its
own undef value. Partial functions are used instead, and a definedness predicate, D, is introduced.
For each term ¢, the predication D(¢) holds in a given algebra A if ¢ is defined in it and does not hold
otherwise. In an update rule

f(t1, s ty) == undef
undef is just a keyword indicating that f(¢1,...,t,) becomes undefined.

A procedure declaration p : 11, ..., T, from X, is interpreted in a dynamic system DS(Ag) by a
map pP>(A0) agsociating an update set with each pair (A, (vi,...,v,)), where A is a state of DS(Aq) and
vj is an element of type Tj; this map must satisfy the corresponding dynamic equations from Azpy,.

Both a dependent function and a procedure can be partial. In this case, the function (procedure)
specification is augmented with a special clause dom defining the domain of the function or procedure:
for a domain definition dom ¢ : b, the predication D(#) must hold in a given state A iff b evaluates to
true in this state.

A dynamic system is a model of a specification DSS = (Xgin, (Zdep, ATdep), (Zproc, ATproc)) iff all
equations and domain definitions of DS'S are satisfied in it. A specification is consistent if there is at
least one its model. A counterexample: consider a specification with the procedure declaration proc
R: Integer and the dynamic equation R(x * x) == f := x where f : Integer is a dynamic constant.
It is clear that no model can satisfy the equation under both evaluations, x = 2 and z = —2. Only
consistent specifications are considered in the sequel.

The set of models of DSS is denoted by Mod(DSS). Any model contains the state where all
dynamic functions/constants are undefined. This state is called the undefined state of the system. A
procedure can be used for setting an appropriate initial state of the system.

3. Structure of the state of a complex dynamic system

In a dynamic system consisting of several communicating TASMs, a procedure in one TASM can
generally update the state of some other TASMs. Therefore, one cannot use only the state of a
particular TASM as an argument and/or result of a procedure of this TASM. For this reason, we
define the system state on the base of individual TASM states. Let a dynamic system DS(Ap) consist
of n TASMs.

Definition 1. If 5 is the signature of data types and (Xgin, Xdep, Lproc)i is the signature of TASM,;,
then (o, Xp), where

ZJD = Lﬂi:l,__n<2dina ZJdepa Zproc)’ia

is the signature of DS(Ap). That is, the signature of a dynamic system is the discriminated union of
the signatures of the component TASMs extending the signature of the data type module.

Fact 1. If statea,(Xo, Zqin); is the set of possible states of TASM;, then statea,(Xo, Lpin), where
Ypiv = W= ,(Zain)i, is the set of states of DS(Ay).

Thus, the state of a dynamic system is the concatenation of the states of the component machines.
The change of the state of one of them causes the change of the state of the dynamic system.

108 A. V. Zamulin

4. External signature of a TASM

A TASM specification with import and export clauses introduced below is called a module. (34,
Bdeps Zproc) and (Bdin, (Bdeps ATdep), (Eprocs ATproc)) of a module are called, respectively, the own
signature and own specification of the module. A particular model of a module is called a TASM or,
simply, machine. The class of all models of a module M is denoted by Mod(M).

In the specification of a big dynamic system, some names declared in the own signature of a module
can be seen from the outside, some others can be seen only inside the module. We consider that no
name from Yg;, is seen from the outside. Special specification language conventions (export clause
listing exported symbols, keyword export in front of a symbol, etc.) can be used for indicating which
names from ¥4, and X, are seen from the outside. These names define the external signature of
the module.

Definition 2. Let a module M have the signature (X4, Sdep, Lproc) and the set of exported names

E)s. Then the external signature of M is (Eé\gp, Z%OC) composed in the following way:

o if (f:Th,...; Ty — T) € Syop and f € Eny, then (M.f : Ty, ..., T, — T) € BFL;
o if (p: T1,....,Tn) € Sproc and p € Eyy, then (M.p: T1,..., T,,) € BN,

Example 1. Specification of a stack machine (the types Boolean, Nat and Oper used in the specifi-
cation are defined in the data type module).

tasm StackOfOper = spec
export initialize, push, pop, top, is_.empty;

dynamic function cont: Nat — Oper; — content of the stack
dynamic const size: Nat; — size of the stack
proc initialize; — construction of an empty stack

initialize == set size := 0, forall x: Nat. cont(x) := undef end;
push: Oper; — pushing a stack with an element

push(o) == set size := size + 1, cont(size+1) := o end;

pop; — deleting the top element of a stack
dom pop: size > 0;
pop == set size := size - 1, cont(size) := undef end;

depend function top: Oper; — fetching the top element of a stack
top == cont(size);

depend function is_empty: Boolean; — checking whether a stack is empty
is_.empty == size = 0;

end;

In the above module all operations except dynamic functions are exported. Therefore, the external
signature of the TASM is the following:
((StackO f Oper.top : Oper;
StackO f Oper.is_empty : Boolean),
(StackO f Oper.initialize;
StackO f Oper.push : Oper;
StackO f Oper.pop) >.

Example 2. Specification of a block-structured identifier table (the types Boolean, Nat, Name
and Defdata used in the specification are defined in the data type module.

tasm IdTable = spec
export initialize, insert_entry, new_level, delete_level,

Modularization of typed Gurevich machines 109

defined_current, is_defined, find;
dynamic function id_table: Name, Nat — Defdata;

dynamic const cur_level: Nat; — the current level of block nesting
proc initialize; — construct an empty identifier table
initialize == set cur_level := 1,
forall id: Name, x: Nat. id_table(id, x) := undef end;
proc insert_entry: Name, Defdata; — insert an entry in the current block
insert_entry(id, d) == id_table(id, cur_level) := d;
proc new_level; — create a new level
new_level == cur_level := cur_level + 1;
proc delete_level; — delete the innermost level
delete_level == set cur_level := cur_level - 1,

forall id: Name. id_table(id, cur_level) := undef end;
depend function defined_current: Name — Boolean;
— is the name defined in the current block?
defined_current(id) == D(id_table(id, cur_level));
depend function local_defined: Name, Nat — Boolean;
— local function used for the specification of the next one
local_defined(id, 0) == false;
local_defined(id, k) == D(id_table(id, k)) | local_defined(id, k-1);
depend function is_defined: Name — Boolean;
— is the name defined in some block?
is_defined (id) == local_defined(id, cur_level);
depend function local_find: Name, Nat — Defdata;
— local function used for the specification of the next one
dom local find(id, k): k > 0;
local _find(id, k) == if D(id_table(id, k)) then id_table(id, k)
else local find (id, k-1)};
depend function find: Name — Defdata; — find an entry in the table
dom find(id): is_defined(id);
find(id) == local find(id, cur_level);
end.

In the above specification the functions local_defined and local_find are auxiliary local functions
which are not exported. Therefore, the external signature of the module is the following:
((IdTable.defined_current : Name — Boolean;

IdTable.is_defined : Name — Boolean;

IdTable.find : Name — Defdata),

(IdTable.initialize;

IdTable.insert_entry : Name, Defdata;

IdTablenew_level;

IdTable.delete_level)).

5. Import of TASMs

The first operation of the in-the-large level is the use of existing modules in a new one. This means
that, when constructing a module, one can use exported names from other modules, they constitute
the import of the module. Respectively, a model (TASM) of a given module is extended by the
components of the models (TASMs) of the imported modules.

An imported name can be referenced in one of the following ways:

110 A. V. Zamulin

1) directly with a possible qualification in case the name is overloaded;
2) prefixed with the name of the module where it is originally defined as it is done for modules
in Oberon [4] or some other programming languages.

The direct use of an imported name is not possible, however, when it is declared with the same
profile in two or more modules. The name initialize in the modules StackO fOper and IdTable can
serve as an example. Therefore, we prefer the second way, i.e., prefixing an imported name with a
module name. A special clause import listing the names of imported modules is included in the
TASM specification in this case. A prefixed name can be used in the specification for creating terms
according to the following rule.

Definition 3. Let a module M have the import My, ..., M} where M; is the name of an imported
module. If (M;.f : Ty,....T, — T) € E%;) and tq,...,t, are terms of types T1,...,T,, respectively,

then M;.f(t1,...,t,) is a term of type T in M. If (M;.f : T1,...,T,) € 2%@0 and t1,...,t, are terms

of types T1, ..., T, respectively, then M;.f (¢, ...,t,) is a transition term in M. We write M;.f if the
profile of f has no argument types.

Example 3

tasm BiggerTasm = spec
import StackOfOper, IdTable;
export initialize ...; list of exported names

proc initialize;
initialize == set ... StackOfOper.initialize, IdTable.initialize, ... end;

end

In the above example StackO f Oper.initialize and IdT able.initialize are transition terms created
with the use of imported names.

Fact 2. The state of a TASM which is a model of a module importing other modules is defined
by its own signature and the signature of the module of data types. Indeed, since dynamic functions
are not exported, Y.4;, of the importing module is not influenced by the import.

Fact 3. If My,..., M, are the names of modules imported by the module M, then the own
specification of M generally defines a function F : Mod(M), ..., Mod(M,) — Mod(M). This means
that supplying different models of imported modules, we get different models of the importing module.
In other words, a TASM which is a model of a given module depends on the imported TASMs. If
Mdy, ..., Md, are models of the modules My, ..., M,,, respectively, then F(Mdy, ..., Md,) is a model of
M.

Consider the specification of the procedure initialize in the above example. Each time when the
specification of one of the procedures, IdTable.initialize or StackO fOper.initialize, is changed so
that the corresponding procedure must yield a different update set, the procedure initialize in the
model of the module ”BiggerTasm” must also produce a different update set. This does not mean,
of course, that an importing TASM must be actually reconstructed each time one of the imported
machines is reconstructed (the conventional mechanism of procedure calls helps to avoid it), but
conceptually the TASM is changed.

Let now a module M import modules M, ..., M,,, Md1, ..., Md,, be models of the modules M, ..., M,,,
respectively, and Md = F(Mdy, ..., Md,) be a model of the module M. We denote by [t]M9A the inter-
pretation of a term ¢ in the model Md at the state A. If £ is a dependent function name or a procedure
name, we simply write tV'9 since the interpretation of this name does not depend on the state. In
this case, the interpretation of a term M;.f(ty,...,t,) in the model Md at the state A is defined in the

Modularization of typed Gurevich machines 111

following way:
[Mi.f(t1y ey tn)[MEA = $MAi ([t IMEA T JMEA).

6. Union of TASMs

The second operation of the in-the-large level is the union of several existing machines into a new one.
This corresponds to the modular decomposition of a big dynamic system into several smaller dynamic
systems developed independently. Two options of the specification of a big system are possible:

1. The specifications of the component machines are developed independently and then they are
united into a single piece of specification. A machine corresponding to the resulting specification
is just a model of this specification.

2. The specifications of the component machines are developed independently and each of them
is provided with its own model. A machine corresponding to the resulting specification is the
union of the component machines.

The first case corresponds to linking several pieces of the source text of a program and then
compiling them into a single unit. The second case corresponds to the independent compilation of
programs with the subsequent linkage of the object codes. Since the first case does not impose any
structure on the set of models, its task can successfully be solved by modern text editing facilities.
Therefore, we will discuss possible solutions of the second task which provide better modularization
facilities. Recall that we have modules at the specification level and TASMs (machines) at the model
level.

Thus, we assume that the module union operation, union, is supported at the model level by a
TASM union operation, uniony. It must actually use the component machines without their recon-
struction. Therefore, the union operation is required to be persistent, i.e., the reduct of the result
of unionys to the name of a component machine must yield exactly the component machine. Re-
spectively, the reduct of the resulting module to the name of a component module must yield the
component module.

The second requirement for the union operation is that it must be constructive in the following
sense. Let Mdy,...,Md, be models of modules My, ..., M,,, respectively. Then uniony(Mdy, ..., Md,)
must be a model of union(Mjy,...,M,). This might not be the case if the united machines have
operations with the same names and profiles.

There are also problems with the creation of the external signature of the new module. The first
of them concerns prefixing. Assume that we wish to unite the modules StackO fOper and IdTable
specified above to create the module JointMachine. In all likelihood, a user will not be happy
if he now has to use operations with double prefixing, e.g., JointMachine.StackO fOper.push(z),
JointMachine.IdTable.initialize, etc. A better solution is to prefix operations only with the name of
the new machine, for example: JointMachine.push(z), JointMachine.initialize. Unfortunately, we
have a problem with overloaded names in this case. For example, the operations StackO f Oper.initialize
and IdTable.initialize will become unrecognizable if their prefixes are replaced with JointMachine.
Therefore, a mechanism of renaming the exported operations is needed.

Next problem concerns the volume of export of the new module. It might happen that the list of
exported operations of the new module is shorter than the union of the lists of exported operations
of the united modules. For example, if the modules StackO fOper, IdTable and BiggerTasm are
united, there is no need to export the operations StackO f Oper.initialize and IdTable.initialize. In
this case, a mechanism of defining a new export is needed.

Taking into account the above considerations, the following syntax of the union operation can be
proposed:

112 A. V. Zamulin

union-operation ::= union list-of-modules [, export] end
list-of-modules ::= component-module {, component-module}
component-module ::= module-name [export-renaming]
export-renaming ::= (pair-of-names {, pair-of-names})
pair-of-names ::= new-name = old-name

new-name := name

old-name ::= name

export ::= export qualified-name {, qualified-name}
qualified-name ::= module-name.name

If there is no export clause, then all exported names of the component modules are exported. The
absence of "export-renaming” for a particular component module means that no exported name of
this module is renamed.

Example 4.
tasm Union2 = union StackOfOper (empty = initialize), IdTable end

tasm Union3 = union StackOfOper, IdTable, BiggerTasm
export StackOfOper.push, StackOfOper.pop, StackOfOper.top,
StackOfOper.is-empty, IdTable.insert-entry, IdTable.new-level,
IdTable.delete-level, IdTable.defined-current,
IdTable.is-defined, IdTable.find, BiggerTasm.initialize, ... end

To define the requirements for the well-formedness of the union operation, we introduce several aux-
iliary notions. Let component modules Mj,..., M, have the sets of exported names Ey;,, ..., Er, ,
respectively, and let ELj; be the set of qualified names in the export clause of the union operation
(the set is empty if there is no export clause). The set ELy; is well-formed if, for any M;.exported-
name € ELyr, M; is the name of a component module and ezported-name belongs either to the list
of exported names of M; (if it is not renamed) or to the list of new names in the export renaming for
M;. That is, the new name must be used in the export clause if the corresponding exported name is
renamed and the old one in the opposite case.

If EL s is well-formed, we construct, for each component module M; with the export set Eyy,, the
renaming set, FR;, as the set of pairs (new-name, old-name) in the following way:

1. if there is no export-renaming for M;, then

e if FL, is empty, then ER; is the set of all pairs (old-name, old-name), where
old-name € Epy;;
e if ELys is not empty, then (old-name, old-name) € ER; iff M;.old-name € ELy;

2. if there is an export-renaming for M;, then

e if EL); is empty, then (new-name, old-name) € ER; if the pair (new-name = old-name) is
part of the export-renaming, and (old-namel, old-namel) € ER; if old-namel € Ey;, and
there is no new-namel such that (new-namel = old-namel) is part of the export-renaming.

e if E L), is not empty, then (new-name, old-name) € ER; if the pair (new-name = old-name)
is part of the export-renaming and M;.new-name € ELy;, and (old-namel, old-namel)
€ ER; if old-namel € Eyy,, there is no new-namel such that (new-namel = old-namel) is
part of the export-renaming and M;.old-namel € ELs;.

Modularization of typed Gurevich machines 113

Thus, the renaming sets for the module Union2 are the following:

StackO f Oper : {(empty, initialize), (push, push), (pop, pop), (top,top),
(is_empty,is_empty)},

IdTable : {(initialize,initialize), (insert_entry,insert_entry),
(new_level, new_level), (delete_level, delete_level),
(defined_current,defined_current), (is_defined,is_defined),
(find, find)}

and the renaming sets for the module Union3 are the following:

StackO fOper : {{push,push), (pop,pop), (top,top), (is_empty,is_empty)},

IdTable : {(insert_entry,insert_entry), (new_level, new_level),
(delete_level, delete_level), (defined_current,defined_current),
(is_defined,is_defined), (find, find)},

BiggerTasm : {(initialize, initialize), ...}.

The set ER; is consistent iff for any pair (new-name, old-name) € ER;, old-name € Ejs, and
there is no old-namel such that (new-name, old-namel) € ER;. This means that new names must be
unique within the module. According to this, all renaming sets above are well-formed.

The set of renaming sets, ERy, ..., ERy,, is consistent if any E'R; is consistent and for any pair (new-
name, old-name) € ER;, there is no old-namel such that (new-name, old-namel) € ER;, j =1,...,n
and j # ¢. This means that new names must be unique in the family of renaming sets. For example,
the set of renaming sets for the module Union3 would be inconsistent if there were no export clause
(there would be pairs (initialize,initialize) in three renaming sets).

Now we can construct the set of exported names, Ejs, of the resulting module: if a pair (new-name,
old-name) € ER;, then new-name € E)y.

Thus, the set of exported names of the module Union2 is {push, pop, empty, top, is_empty, initial-
ize, insert_entry, new_level, delete_level, defined_current,
is_defined, find, initialize} and the set of exported names of the module Union3 is {push, pop, top,
is_empty, insert_entry, new_level, delete_level, defined_current, is_defined, find, initialize ... }.

The external signature of the resulting module is constructed as follows:

e if f € Ey, fi is a name such that the pair (f, fi) € ER; and (M;.f1 : Ty, ..., T, — T) € £

dep’
then (M.f : T1,..., Ty — T) € B3] ;
e if p € Ey, p1 is a name such that the pair (p,p1) € ER; and (p; : T4,...,T,) € Z%@c, then

(Mp:T,..T,) € oM

proc*

Thus, the external signature of the module Union2 is the following:
((Union2.top : Oper;

Union2.is_empty : Boolean;

Union2.is_defined : Name — Boolean;

Union2.defined_current : Name — Boolean;

Union2.find : Name — Defdata),

(Union2.empty;

Union2.push : Oper;

Union2.pop;

Union2.initialize;

Union2.insert_entry : Name, Defdata;

Union2.new_level;

Union2.delete_level)).

and the external signature of the module Unzon3 differs from the previous one only by the absence of
the procedure name empty.

114 A. V. Zamulin

The resulting module consists of the set of the names of the component modules with their renaming
sets, the set of the names of the imported modules, and the set of the exported names. The own
signature and own specification of the resulting module are empty. The module is consistent if the set
of the renaming sets is consistent.

If the resulting module is consistent, then the components of the resulting machine itself are defined
as follows:

e the set of states is the Cartesian product of the sets of the states of the component machines as
stated by Fact 1;

e the set of dependent functions is the discriminated union of the sets of dependent functions of
the component machines;

e the set of procedures is the discriminated union of the sets of procedures of the component
machines;

Thus, the state of the resulting machine is a tuple (Ag, Ay, ..., An) where Ag is the algebra of data
types and Aq, ..., A, are the states of the component machines.

Fact 4. The union operation as defined above is persistent. Indeed, the reduct of the resulting
machine to the name of a component machines produces exactly that machine. This fact permits us
to reconstruct a component machine if needed, without reconstructing the other component machines.

Fact 5. The union operation as defined above is constructive. Indeed, the resulting machine is a
model of the resulting module since it provides a unique function for any function/procedure name
defined in the component modules.

If a module M produced by the union of modules M, ..., M,, is imported in a module M’, then the
terms prefixed with M in M’ are interpreted differently then the terms prefixed with ordinary modules
as described in Section 5. Let f be a name from the set of exported names of M, M.f(t1,....,t,) a
term constructed according to Definition 3, Md’ a model of M' and ER; the renaming set for M; in
M, then

[M.f (b1, ey ta) A = [M. f1 (b1 oy £) MO A

if the pair (f, f1) € ER;. That is, such a term is interpreted as if f is imported directly from a
component module.

7. Related work

Specification in-the-large is one of the main concerns of the traditional algebraic specification lan-
guages. The aim is the splitting of the specification and design of a single task into a number of
well-defined modules so that each of them could be independently implemented. For example, a
specification framework which allows the independent construction and implementation of specifica-
tion modules and incorporates the separation of an implementation task into smaller units with the
subsequent stepwise development of single ”implementation pieces” is described in [8]. Two basic
specification units are introduced: specification modules (classes of algebra-valued functors) and sys-
tem specifications (classes of algebras constructed by successive functor applications according to the
modular structure of the system specification). However, no language constructs implementing these
theoretical notions are suggested.

The specification in-the-large in [9] deals with specification modules and their interconnections.
A specification module consists of three parts: an export interface, an import interface and a body.
Three operations for module interconnections are proposed: composition, union, and extension. The
composition of two modules M1 and M2 connects the import of M2 with the export interface of M1.
The operation roughly corresponds to the use of existing machines in the new one as described in
Section 5. The union of two modules M1 and M2 is the disjoint union of M1 and M2. The constituent

Modularization of typed Gurevich machines 115

parts of the resulting module are the union of the corresponding parts of the original modules. This
operation corresponds to our union operations. Unfortunately, no formal semantics of the operation
is given in [9]. The eztension of a module M is the result of extending some or all constituent parts of
the module by additional items. We believe that this operation can be easily realized by modern text
editing facilities and, therefore, do not include it in the list of specification-in-the-large operations.

In the most developed way the specification in-the-large is incorporated in the specification lan-
guage CASL [3]. It is represented in the language in the form of so-called structural specifications
and architectural specifications [10]. The first ones provide means for composing larger specifications
from smaller ones (composing the source text of a program) while the second ones provide means for
creating larger modules ("units” in the language) from smaller ones implementing the corresponding
specifications (linkage of object codes). At both levels the means for specification reduction, trans-
lation, union and instantiation are provided. We have concentrated in this paper on some problems
related to architectural specifications, paying the major attention to the union operation as most
important in the modular design and specification of a big dynamic system. Our definition of the
operation as discriminated union of the component specifications has allowed us to avoid many name
sharing problems specific for the CASL architectural specifications.

Concrete constructs supporting the specification in-the-large in some earlier algebraic specification
languages can be found in [11, 12, 13].

In traditional ASMs, a high-level concept of modularity is realized, according to [14], by function
classification. This means that they distinguish between basic functions and derived (”dynamic” in
this paper) functions. Within derived or basic functions they distinguish between static functions and
dynamic functions; among dynamic functions they distinguish between controlled ones and monitored
ones. As stated in [14], ”Distinguishing between basic and derived, static and dynamic or controlled
and monitored functions constitutes a rigorous high-level realization of Parnas’ information hiding
principle”. Fully supporting this classification of functions and the facilities for information hiding
provided by this variety of sorts of functions, we still believe that more powerful modularization
facilities and means of their interconnection are needed.

8. Conclusion

The main contribution of this work is the elaboration of some formal mechanisms for combining
individual TASMs in a big dynamic system. For this purpose, each TASM specification is provided
with an export interface permitting us to hide TASM’s features used exclusively for its internal needs.
A TASM specification using exported operations of some other TASMs is also provided with an
import interface. The most important operation for combining existing TASMs is the union of several
TASMs into a new one. The requirements for such an operation are stated in the paper, and syntax
and semantics of the operation are formally defined.

The presented facilities still do not provide a possibility to define a generic TASM and instantiate
it later for producing a number of ”sibling” TASMs. This remains a subject of further research. A
need for it is also indicated in [14].

References

[1] A.V. Zamulin, Dynamic System Specification by Typed Gurevich Machines, Proc. Intern. Conf. on Systems Sci.,
Wroclaw, Poland, September 15-18, 1998.

[2] A.V. Zamulin, The Database Specification Language RUSLAN: Main Features, East-West Database Workshop,
Proc. Second International East-West Database Workshop, Klagenfurt, Austria, September 25-28, 1994, Springer,
Workshops in Computing, 1994, 315-327.

[3] P. Mosses, CASL: a guided tour of its design, Recent Trends in Algebraic Development Techniques: Selected Papers
from WADT’98, Lisbon, Springer, Lect. Notes Comput. Sci., 1589, 1999.

116

[4]

[7]
8]

[12]

[13]
[14]

A. V. Zamulin

N. Wirth, The Programming language Oberon (Revised edition), Departement Informatik, Institute for Computer-
systeme, ETH, Zurich, 1990.

Ada Reference Manual: Language and Standard Libraries, Version 6.0, International standard ISO/IEC
8652:1995(E), 1994.

D. Sannella, A. Tarlecki, Toward Formal Development of ML Programs: Foundation and Methodology, Proc. 3rd
Joint Conf. On Theory and Practice of Software Development, Barcelona,Lect. Notes Comput. Sci., 352, 1989,
375-389.

Y. Gurevich, May 1997 Draft of the ASM Guide, University of Michigan, EECS Department Technical Report
CSE-TR-336-97, (available electronically from http://www.eecs.umich.edu/gasm/).

M. Bidoit, R. Hennicker, A General Framework for Modular Implementations of Modular System Specifications,
Proc. 5th Joint Conf. on Theory and Practice of Software Development, Orsay, Lect. Notes Comput. Sci., 668,
1993, 199-214.

I. A. Hamid, M. Erradi, Dynamic Evolution of Distributed Systems Specifications Using Reflective Language, Intl.
J. of Software Engineering and Knowledge Engineering, 5, No 4, 1995, 511-540.

M. Bidoit, D. Sannella, A. Tarlecki, Arcitectural Specifications in CASL, Proc. 7th Intl. Conf. On Algebraic Method-
ology and Software technology (AMAST’98), Manaus, Brasil, Lect. Notes Comput. Sci., 1548, 1999, 341-357.

B. Krieg-Brueckner, D. Sannella, Structuring Specifications in-the-Large and in-the-Small: Higher-Order Functions,
Dependent Types and Inheritance in SPECTRAL, Proc. Intl. Joint Conf. on Theory and Practice of Software
Development (TAPSOFT’91), Brighton, Lect. Notes Comput. Sci., 494, 1991, 313-336.

M.-C. Gaudel, Structuring and modularizing algebraic specifications: the PLUSS specification language, evolution
and perspectives, Proc. STACS’92, Lect. Notes Comput. Sci., 577, 1992, 3—20.

J. Guttag, J. Horning, Larch: Languages and Tools for Formal Specification, Springer, 1993.

E. Boerger, High Level System Design and Analysis using Abstract State Machines, Current Trends in Applied
Formal methods (FM-Trends 98), Lect. Notes Comput. Sci., 1641, 1999.

