
Joint NCC & IIS Bull., Comp. Science, 15 (2001), 137–157
© 2001 NCC Publisher

Typed ASMs

with updateable locations as values⋆

A.V. Zamulin

A formal model of the state of a dynamic system with updateable locations as values
is presented. A mechanism of dynamic function declaration resembling that of variable
declaration in programming languages is suggested. With each of these functions a dynamic
access function is associated. An access function can be used either explicitly or implicitly
like in programming languages (explicit or implicit dereferencing). An update of an access
function causes the update of the corresponding location. A procedure parameter declared
as a reference parameter accepts locations as arguments so that a value associated with
the location can be updated by the procedure.

Keywords: dynamic systems, formal methods, implicit state, update-
able locations.

1. Introduction

States of dynamic systems as algebras are widely investigated in recent years
(see the list of references). State components that can be different in different
states are normally represented by so-called dynamic functions updateable
by special operations, modifiers. There are elementary modifiers updating a
function at a single point and user-defined modifiers constructed as combi-
nations of modifiers and updating one or several functions at several points.
Different techniques for the specification of modifiers are proposed. Pre-
and post-conditions are used in [2, 7], conditional replacement rules in [4, 5],
transition rules in [6, 11], dynamic terms in [12], update expressions in [3, 8].

A common feature of all approaches listed above is the absence of a built-
in notion of a location value. Any function produces a value of a definite
sort. No function can produce a location which can be further dereferenced
if needed. For this reason, a notion like l-value of C++ cannot naturally
be modeled. In [4] location (reference) types can be declared explicitly and
then implicitly supplied with content functions extracting values associated
with locations. However, these functions must always be used explicitly,
thus preventing the passing of a location instead of a value if needed. At the
same time we know that passing a location instead of a value is a normal

⋆Partially supported by the Russian Foundation for Basic Research under Grant
01-01-00787.

138 A.V. Zamulin

practice of imperative programming languages. Moreover, declaring a func-
tion parameter as a location (l-value), one can implement the mechanism of
call-by-reference permitting the update of an argument location. All present
models of states provide only the mechanism of call-by-value.

The purpose of this work is the suggestion of a state model with lo-
cation values. The main task is the provision of a mechanism of dynamic
function declaration resembling that of variable declaration in programming
languages. With each of these functions (called location functions in this
paper) a dynamic access function should be associated. An access function
can be used either explicitly or implicitly like in programming languages
(explicit or implicit dereferencing). An update of an access function must
lead to the update of the corresponding location. A modifier (procedure in
this paper) parameter declared as a reference parameter must serve as an
alias of an argument location so that a value associated with the location can
be updated by the procedure. In this way a suitable model of an imperative
language can be developed.

An ASM is usually a transition rule recursively built from function up-
dates and the skip rule by a number of rule constructors. The semantics
of the transition rule is defined in [6] in terms of update sets. Each update
in the set is a pair (loc, val), where loc is a location and val a value to be
associated with it. A location is a pair (f,< a1, ..., an >) representing an
n-ary function f applied to a tuple of elements < a1, ..., an >, the value val
is then the value to be produced by f(a1, ..., an) in the new state. In this
approach a location can never be a value used and/or produced by another
function. It can only be considered as the name of a value.

We should introduce another kind of update if locations are considered
as values produced by functions. Thus, if name is a pair (f,< a1, ..., an >),
where f is a function producing locations, and loc is a location, then the
above update is transformed in the pair (name, loc) associating a location
with a certain location name. In addition to this, an update (loc, val) as-
sociates the value val with the location loc. Another kind of state update
occurs when a location is created or destroyed. For this reason the set of
update instructions should be expanded accordingly. These extensions are
described in this paper which is organized as follows.

A notion of the static part of the state of a dynamic system is given
in Section 2. Components of the state including location sorts and location
and access functions are formally described in Section 3. Primitives for state
updates are introduced in Section 4. Dependant functions defined in terms
of location and access functions and serving for observing the state are de-
fined in Section 5. Procedures serving for updating the state are introduced
in Section 6. A formal definition of a dynamic system with implicit state is

Typed ASMs with updateable locations as values 139

given in Section 7. Transition rules as a means of defining state transfor-
mations are described in Section 8. Dynamic formulae serving for procedure
specification are defined in Section 9, and the whole structure of a dynamic
system specification is given in Section 10. Some conclusions and directions
of further work are outlined in Section 11.

2. Static structure

A notion of dynamic system and its signature will be introduced in this
paper. It is sufficient to indicate for the beginning that the signature of a
dynamic system includes a part Σdat = (Sdat, Fdat) which defines some data
types (sorts and operations), using the facilities of an algebraic specification
language. These data types are used for the specification of system states and
the description of possible state updates. We do not suggest a mechanism
for the specification of this part of the system. Any specification language
whose semantics is given as a class of many-sorted algebras is suitable for
this purpose.

A Σdat-algebra is called a data algebra in the sequel.

3. State

The system states are defined by location sorts, location functions and access
functions. The names and profiles of location functions Floc are introduced
in the second part of the system signature ∆dyn with the use of sort terms
defined in the following way.

Definition 1. Sort terms:

1) given Σdat = (Sdat, Fdat), if s ∈ Sdat, then s is a sort term;
2) if s is a sort term, then loc(s) is a sort term.

An element of Floc is called a function symbol. It has the following form:
fws, where w = s1...sn is a sequence of sort terms called domain units and
s is a sort term called a codomain unit; ws is a function profile.

The set Floc consists of three subsets, Cloc, UFloc and SFloc, called con-
stants, unique functions and shared functions, respectively. We require that
UFloc ∩ SFloc = ∅, i. e., there cannot exist a unique function and a shared
function with the same name and profile. As it will be defined in the sequel,
the range of a unique function does not intersect with the range of any other
function while the range of a shared function can intersect with the range
of another shared function. A constant, i. e., a function symbol without
domain units, can also be shared (i. e., a constant may be in the range of

140 A.V. Zamulin

a shared function). In the examples which follow, a constant symbol cs is
preceded with a keyword const, a unique function symbol fws is preceded
with a keyword ufunc, and a shared function symbol fws is preceded with
a keyword sfunc.

Example. Suppose we wish to maintain a double-linked list of locations
storing data of type Node with a distinguished node Header and an array of
nodes. In this case, we can do the following declarations:

System LINKED LIST ** a list of locations containing nodes
use NAT, NODE; ** the specifications used
location

const head: Node;
sfunc next: Node −→ Node;
sfunc prev: Node −→ Node;
ufunc array: Nat −→ Node;

In this example,

Floc = {headNode, nextNode,Node, prevNode,Node, arrayNat,Node},
SFloc = {headNode, nextNode,Node, prevNode,Node},
UFloc = {arrayNat,Node}.

Given Floc, let S
′ be the set of sort terms constructed as follows:

• if s is a domain unit in the profile of some fws′ ∈ Floc, then s ∈ S′;

• if s is a codomain unit in the profile of some fws ∈ Floc, then both
s ∈ S′ and loc(s) ∈ S′.

The set Sloc = S′\S is called the set of location sorts. Note that the set is
finite for a finite Floc.

Example. For the system LINKED LIST we have the following sets S′

and Sloc:
S′: {Nat,Node, loc(Node)};
Sloc: {loc(Node)};

Floc is now extended by the set Facc of access function symbols !loc(s),s
for each loc(s) ∈ Sloc. For example, we have the following access function
for the system LINKED LIST:

!loc(Node),Node;

If l and a are elements of respective sorts loc(s) and s such that l! = a, then

Typed ASMs with updateable locations as values 141

a is the content of the location l. The application of the function ”!” to its
argument l is called the dereferencing of l.

A signature extension ∆dyn = 〈Sloc, Fdyn〉, where Fdyn = Floc ∪ Facc, is
called a dynamic signature extension.

An algebra A of the signature Σ = Σdat ∪∆dyn is created by extending
a Σdat-algebra Adat with:

• a set of elements (called locations) |A|loc(s) for each loc(s) ∈ Sloc;

• an element cA ∈ |A|loc(s) for each constant symbol cs from Floc;

• a partial function fA : |A|s1 × ...× |A|sn −→ |A|loc(s) for each
fs1...sn,s ∈ Floc;

• a partial function !A : |A|loc(s) −→ |A|s for each !loc(s),s ∈ Facc.

Each Σ-algebra must satisfy the following state invariant:

• each constant is supplied with a different location,

• unique functions are injective, and

• the range of a unique function does not intersect with both the range
of any other function from Floc and the set of locations assigned to
constant symbols.

A location constant can be considered as a counterpart of a program
variable having an address different from the addresses of all other variables,
and a unique location function can be considered as a counterpart of a
program array where elements have different addresses and there is a unique
address for each index value (note that a unique function is injective).

The set of all locations in an algebra A is denoted by |A|loc in the sequel.
The range of a function f in A is denoted by Ran(fA), the range of a constant
c in A is a singleton set {cA}.

The set of Σ-terms is created by extending the usual way of term con-
struction with the following rules:

• if fs1...sn,s ∈ Fdat and ti, i = 1, ..., n, is a term either of sort si or
loc(si), then f(t1, ..., tn) is a term of sort s;

• if fs1...sn,s ∈ Floc and ti, i = 1, ..., n, is a term either of sort si or loc(si),
then f(t1, ..., tn) is a term of sort loc(s);

• if l is a term of sort loc(s), then l! is a term of sort s.

Thus, a term of sort loc(s) can be used where a term of sort s is needed.
Note that a term constructed with the use of the name of a location function
is always a location sort term.

A term constructed in this way is interpreted in a Σ-algebra A as follows:

142 A.V. Zamulin

• if c is a constant name, then it is interpreted by cA;

• if f is a (partial) function symbol with the profile s1...sn, s and ti,
i = 1, ..., n, is a term either of sort si or loc(si), then f(t1, ..., tn)

A =
fA(vA

1
, ..., vA

n
) where

vi =

{

ti if ti is a term of sort si,
ti! if ti is a term of sort loc(si);

• f(t1, ..., tn)
A is undefined if at least one of vA

i
is undefined or fA is

undefined for (vA
1
, ..., vA

n
).

Note that a term of sort loc(s) is dereferenced when it is substituted for
a term of sort s. This rule may lead to ambiguities if there are overloaded
function names in the signature (the model allows for function overloading).
For instance, there could be the following function declaration in the system
LINKED LIST:

next: loc(Node) −→ Node;

In this case, if ln is a term of type Node, the function call next(ln) may
refer to both next functions. The mechanism of best matching like that in
C++ may be used in such a case.

A location sort, location function, and access function can be different
in different states.

Definition 2. A Σ-state is a Σ-algebra where Σ = Σdat ∪∆dyn.

Let Σstat = Σdat ∪Cloc. The restriction of any Σ-state A to Σstat, A|Σstat ,
is a static algebra called the base of A. Several Σ-states can have the same
base. Following [8], we denote the set of all Σ-states with the same base B

by stateB(Σ) and mean by a ΣB-state a Σ-state with the static algebra B.
Thus, the carrier of any sort s ∈ Sdat in a Σ-state A is the same as the carrier
of s in B, that is sA = sB for every s ∈ Sdat. Note that the set of locations
associated with constant symbols is the same in all states (however, the
content of the locations can be different).

4. State updates

One state can be transformed into another by a state modifier, which is
either a function update or a location update or a sort update.

Definition 3. A function update in a ΣB-state A is a triple (f, ā, l) where
f is a function symbol in UFloc ∪ SFloc with a profile ws, w = s1 . . . sn,
ā = <a1, ..., an> ∈ |A|w, and l is either an element of |A|loc(s) or the symbol
⊥.

Typed ASMs with updateable locations as values 143

A function update α = (f, ā, l) serves for the transformation of a ΣB-state
A into a new ΣB-state Aα in the following way:

• gAα = gA for any g different from f in Fdyn;

• fAα(ā) = l if l is not ⊥, fAα(ā) becomes undefined otherwise;

• fAα(ā′) = fA(ā′) for any tuple ā′ = <a′
1
, . . . , a′

n
> different from ā;

• |Aα|s = |A|s for any s ∈ Sloc.

Following Gurevich [6], we say that Aα is obtained by firing the update α
on A. Roughly speaking, firing a function update either inserts an element
to the definition domain of a location function or modifies the value of such
a function at one point in its definition domain or removes an element from
the definition domain.

Note that f in a triple (f, ā, l) is actually a function symbol, i. e., a
function name qualified by its profile, which helps us to avoid ambiguity
when function names are overloaded.

Fact 1. A function update (f, ā, l) is legal in A if:

•l /∈ Ran(gA) for any g ∈ Floc if f ∈ UFloc;

•l /∈ Ran(hA) for any h ∈ UFloc if f ∈ SFloc.

Indeed, the first case guarantees that an update of a unique function does not
violate the state invariant, and the second case guarantees that an update
of a shared function does not violate the state invariant.

Definition 4. A location update in a ΣB-state A is a triple (s, l, a),
where s is a sort name, l an element of sort |A|loc(s), and a either an element
of sort |A|s or the symbol ⊥.

A location update β = (s, l, a) serves for the transformation of a ΣB-state
A into a new ΣB-state Aβ in the following way:

• gAβ = gA for any g in Fdyn different from !loc(s),s;

• (l!)Aβ = a if a is not ⊥, (l!)Aβ becomes undefined otherwise;

• (l′!)Aβ = (l′!)A for any l′ ∈ |A|loc(s) different from l;

• |Aβ|s = |A|s for any s ∈ Sloc.

We say that Aβ is obtained by applying (or firing) the update β on A. Roughly
speaking, firing a location update either initializes a location or updates its
content or makes its content undefined. The following fact is self-evident:

Fact 2. A location update is legal, i. e., it does not violate the state invari-
ant.

144 A.V. Zamulin

Definition 5. Let s be the name of a location sort from Sloc. A sort update
δ in A is either a triple (+, s, l) where l is an element such that l /∈ |A|loc,
or a triple (−, s, l) where l is an element of |A|s that is neither used nor
produced by constants or functions associated with symbols from Floc.

A sort update δ = (+, s, l) transforms a ΣB-state A into a new ΣB-state Aδ
in the following way:

• |Aδ|s = |A|s ∪ {l};

• |Aδ|s′ = |A|s′ for any s′ ∈ Sloc different from s;

• fAδ = fA for any fws ∈ Fdyn.

Thus, the sort update δ = (+, s, l) extends the set of elements of a certain
location sort by a new element different from any location existing in A.

A sort update δ = (−, s, l) transforms a ΣB-state A into a new ΣB-state
Aδ in the following way:

• |Aδ|s = |A|s \ {l};

• |Aδ|s′ = |A|s′ for any s′ different from s;

• fAδ = fA for any fws ∈ Fdyn.

Thus, the sort update δ = (−, s, l) contracts the set of elements of a
certain location sort by an element that is not associated with a constant
symbol and not in the graph of any location function.

Fact 3. Both kinds of sort updates are legal, i. e., none of them violates the
state invariant.

Indeed, in a sort update δ = (+, s, l) the location l is not yet in the range
of any function, and in a sort update δ = (−, s, l) the location l is not in
the range of any function by definition.

We will consider only legal state updates in the sequel. A set of legal
function/location/sort updates is called an update set.

Definition 6. Let Γ be a set of function/location/sort updates. The set Γ
is inconsistent if it contains:

• two contradictory function updates of the following kind: α1 = (f, ā, a)
and α2 = (f, ā, a′), where a 6= a′ (two contradictory function updates
define the function differently at the same point), or

• two contradictory location updates of the following kind: β1 = (s,

l, a) and β2 = (s, l, a′), where a 6= a′ (two contradictory location
updates define an access function differently at the same point);

the update set is consistent otherwise.

Typed ASMs with updateable locations as values 145

A consistent update set Γ applied to a ΣB-state A transforms A into a
new ΣB-state A

′ by the simultaneous firing of all α ∈ Γ, β ∈ Γ, and δ ∈ Γ. If
Γ is inconsistent, the new state in not defined. If Γ is empty, A′ is the same
as A. Following [9], we denote the application of Γ to a state A by AΓ. The
set of all consistent sets of updates in stateB(Σ) is denoted by update

B
(Σ)

in the sequel.

Definition 7. Let Γ1 and Γ2 be two consistent update sets in a ΣB-state A,
α1 = (f, 〈a1, . . . , an〉, a), α2 = (f, 〈a1, . . . , an〉, a

′), β1 = (s, l, a), and β2 =
(s, l, a′) where a 6= a′. The sequential union of Γ1 and Γ2, denoted by Γ1;Γ2,
is defined as follows: u ∈ Γ1;Γ2 iff u ∈ Γ1 or u ∈ Γ2 except the following cases:

• if α1 ∈ Γ1 and α2 ∈ Γ2, then α2 ∈ Γ1;Γ2 and α1 /∈ Γ1;Γ2;

• if β1 ∈ Γ1 and β2 ∈ Γ2, then β2 ∈ Γ1;Γ2 and β1 /∈ Γ1;Γ2.

Thus, in a sequential union of update sets, each next update of a loca-
tion/access function at a certain point waives each preceding update of this
function at the same point. It is not difficult to prove the following:

Fact 4. If Γ1 ∪ Γ2 is consistent, then for any consistent Γ:

Γ;Γ1 ∪ Γ;Γ2 = Γ;(Γ1 ∪ Γ2).

Fact 5. If Γ, Γ1 and Γ2 are consistent update sets, then

Γ;Γ1 = Γ;Γ2 if Γ1 = Γ2.

Fact 6. For any ΣB-state A and all consistent update sets Γ1 and Γ2 in
ΣB-states, A(Γ1;Γ2) = (AΓ1)Γ2.

As an immediate consequence, for any sequence of update sets Γ1, · · · , Γn and
any algebra A, the algebra AΓ, where Γ = Γ1; · · · ;Γn, is the algebra produced
by the application of Γ to A.

5. Dependant functions

A number of dependant (derived) functions can be defined on the stateB(Σ)
using the functions from ∆dyn and the operations from Σdat. The values pro-
duced by these functions depend both on the particular state and the values
of arguments if any. The names and profiles of these functions,∆dep = (Fdep),
are introduced in the third part of the system signature with the use of sorts
of Σ. For example, the following dependant functions can be defined in the
system LINKED LIST:

146 A.V. Zamulin

depend

func has: Node −→ Boolean; ** checks whether a node is in the list
func find: Node −→ loc(Node); ** fetches a location with a given node

Definition 8. A Σ′

B-state is a Σ′-algebra with the static algebra B where
Σ′ = Σ ∪∆dep.

A Σ′-algebra A′ is created by extending a Σ-algebra A with a (partial) func-
tion fA : |A|s1 × ...× |A|sn −→ |A|s for each fs1...sn,s ∈ Fdep.

Thus, dependant functions extend a ΣB-state to a Σ′

B-state. The set of
all Σ′

B-states with the same static algebra B is denoted by stateB(Σ
′). Σ′-

terms are constructed in the same way as Σ-terms using function symbols
from Fdep in addition.

6. Procedures

A state update modifies location sorts and/or location and access functions.
Several state updates can be performed by a procedure defined in the fourth
part of the system signature ∆proc that consists of a set Pw of procedure
names where w is a sequence of argument sorts. An argument sort is either
s or ref s where s ∈ Sdat ∪ Sloc. An argument sort of the form s indicates
that an element of the corresponding sort is passed to the procedure when it
is invoked (call-by-value) while an argument sort of the form ref s indicates
that an element of sort loc(s) is passed to the procedure when it is invoked
(call-by-reference). For example, the following procedures can be defined in
the system LINKED LIST:

proc

initialize; ** construction of the empty list
insert: loc(Node), Node; ** insertion of a node in the list
update: ref Node, Node; ** update of the node data

7. Dynamic system

Definition 9. A dynamic system DS(B) of signature DΣ = Σ′ ∪∆proc con-
sists of

• a set of states |DS(B)| = stateB(Σ
′) with the same static algebra B

called the carrier of the system;

• a partial surjective function mapDS(B) : stateB(Σ) −→ |DS(B)| such that,
for each A ∈ stateB(Σ), map

DS(B)(A)|Σ = A if mapDS(B)(A) is defined;

Typed ASMs with updateable locations as values 147

• a partial map pDS(B), for each procedure symbol pu1···un
, where ui is

either si or ref si, associating an update set Γ ∈ update
B
(Σ) with each

pair 〈A, 〈a1, · · · , an〉〉, where A ∈ |DS(B)| and ai ∈ |A|loc(si) if ui is ref si
and ai ∈ |A|si in the opposite case.

Note that the procedure produces an update set.

We write pDS(B)(A, ā) for the application of a procedure pDS(B) to 〈A, ā〉,
where A is a state, and ā = 〈a1, ..., an〉. When n = 0, the tuple ā is the empty
tuple 〈〉.

A new kind of term, transition term, is created with the use of procedure
names.

Definition 10. If pu1...un
is a procedure symbol, where ui, i = 1, ..., n, is

either si or ref si, and

ti is

{

a Σ′-term of sort loc(si) when ui is ref si,
a term either of sort si or loc(si) in the opposite case,

then p(t1, ..., tn) is a transition term called a procedure call.

Interpretation. Let DS(B) be a dynamic system of signature DΣ =
Σ′∪∆proc and p(t1, ..., tn) a transition term constructed as above. We denote
by tA the interpretation of a Σ-term t in a ΣB-state A and by [[t]]A(B) the
interpretation of a transition term t in DS(B) in the current ΣB-state A. The
interpretation of a procedure call p(t1, ..., tn) is defined as follows:

[[p(t1, ..., tn))]]
A(B) = pDS(B)(A, 〈vA

1
, ..., vA

n
〉), where

vi =











ti if either ui is ref si and ti is a term of sort loc(si)
or ui is si and ti is a term of sort si,

ti! if ui is si and ti is a term of sort loc(si),

if pDS(B) is defined for the tuple 〈vA
1
, ..., vA

n
〉 in the state A; [[p(t1, ..., tn))]]

A(B)

is undefined otherwise.
Thus, an argument is dereferenced when a location is substituted where

its content is needed, and it is directly substituted in all other cases.

8. Transition rules

State updates are specified by means of transition rules. A transition rule
is a special kind of transition term. It is applicable either to a location
function or to an access function from Fdyn. The successful interpretation
of a transition term R in a dynamic system DS(B) in a state A produces an

148 A.V. Zamulin

update set Γ. The resulting state A′ can be obtained as A′ = mapDS(B)(A|ΣΓ).
That is, the current Σ′

B-state is reduced to a ΣB-state, updated by Γ, and
converted into the corresponding Σ′

B-state. This two-way transformation of
a state is needed for providing the appropriate dependant functions in the
resulting state.

8.1. Basic transition rules

Update instructions. Let f be the name of a partial location function
with profile s1 . . . sns, ti, i = 1, ..., n, a term either of sort si or loc(si), t a
term either of sort s or loc(s), and lt a term of sort loc(s) over signature Σ.
Then

f(t1, ..., tn)← lt,
f(t1, ..., tn)← undef,
lt := t,
lt := undef

are transition rules called update instructions. The first two instructions
serve for updating a partial location function while the second two serve for
updating an access function.

Interpretation. Let A be the current state of DS(B). If lt, t and ti are
defined in A, then

[[f(t1, ..., tn)← lt]]A(B) = {(f, 〈vA
1
, . . . , vA

n
〉, ltA)},

[[f(t1, ..., tn)← undef]]A(B) = {(g, 〈vA
1
, . . . , vA

n
〉,⊥)},

[[lt := t]]A(B) = {(s, ltA, vA)},
[[lt := undef]]A(B) = {(s, ltA,⊥)},

where v = t and vi = ti if t and ti are terms of sorts s and si, respectively,
and v = t! and vi = ti! if t and ti are terms of sorts loc(s) and loc(si),
respectively. If at least one of vi, lt, v is not defined in A, then the semantics
of a rule including this term is undefined.

Examples. Let xNat be a location constant and fNat,Nat a partial location
function symbol from Floc. The execution of the transition rule

f(x) := f(x) + 1

will transform a state A into a state A′ so that fA′

(x!A)! = fA(x!A)!+1. The
execution of the transition rule

x := undef

will make x! undefined in the new state. The execution of the transition rule

f(x)← l,

Typed ASMs with updateable locations as values 149

where l is a term of sort loc(Nat), will transform a state A into a state A′ so
that fA′

(x!A) = lA.

Fact 7. An update instruction f(t1, ..., tn) ← lt evaluates in A to a legal
function update if:

•ltA /∈ Ran(gA) for any g ∈ Floc if f ∈ UFloc;

•ltA /∈ Ran(hA) for any h ∈ UFloc if f ∈ SFloc;

all other kinds of update instruction always evaluate to a legal function up-
date.

The fact immediately follows from facts 1 and 2.

Sort contraction instruction. If x is a variable of a location sort s, then
drop x is a transition term called a sort contraction instruction.

Interpretation. Let A be a state and σ : {x} −→ |A| a variable assign-
ment. Then

[[drop x]]A(B),σ = {δ} where δ = (−, s, xA,σ) if there is no constant c such
that cA = xA,σ and no location function fA : |A|s1 × ... ×|A|sn −→ |A|sn+1

with
a maplet 〈a1, ..., an 7→ an+1〉 such that xA,σ = ai, i = 1, ..., n + 1;

[[drop t]]A(B),σ = ∅ otherwise.

Fact 8. The interpretation of the sort contraction instruction does not vio-
late the state invariant.

Indeed, the interpretation of the sort contraction instruction produces ei-
ther a legal sort update or the empty update set. Therefore, an element of
a location sort is not deleted if it is used in this state.

Skip instruction. A transition term skip causes no state update, i. e.,
[[skip]]A(B) = ∅.

8.2. Rule constructors

Complex transition terms are recursively constructed from update instruc-
tions and procedure calls by means of several rule constructors, e.g., sequence
constructor, set constructor, condition constructor, guarded update, and loop
constructors.

Sequence constructor. IfR1, . . . , Rn are transition terms, then seq R1, . . . ,
Rn end is a transition term called a sequence of transition rules.

150 A.V. Zamulin

Interpretation. Let A be a state, Γ1 = [[R1]]
A(B), A1 = AΓ1, Γ2 =

[[R2]]
A1(B), A2 = A1Γ2, . . . , Γn = [[Rn]]

An−1(B). Then

[[seq R1, R2, . . . , Rn end]]A(B) = Γ,

where Γ = Γ1;Γ2;...;Γn and each [[Ri]]
Ai−1(B) is defined.

Thus, to execute a sequence of rules starting with a state A, it is suffi-
cient to create the sequential union of their update sets and use it for the
transformation of A (which is equivalent to the sequential execution of the
rules one after another).

Set constructor. If R1, . . . , Rn are transition terms, then set R1, . . . , Rn

end is a transition term called a set of transition rules.

Interpretation. Let A be a state and Γ1 = [[R1]]
A(B), . . . , Γn = [[Rn]]

A(B).
Then

[[set R1, . . . , Rn end]]A(B) = Γ1 ∪ . . . ∪ Γn

if each [[Ri]]
A(B) is defined and Γ1 ∪ . . . ∪ Γn is consistent; the semantics is

not defined otherwise.

In other words, to execute a set of rules, execute all of them in parallel
and unite the results if they are defined and consistent.

Example. Let xNat, yNat, zNat, fNat,Nat be location function symbols from
Floc. Then the execution of a set of rules:

set f(x) := y, y := x, x := z end

will produce a new state A′ where fA′

(x!A)! = y!A; y!A
′

= x!A; x!A
′

= z!A.

Conditional constructor. If k is a natural number, g0, ..., gk are Boolean
terms, and R0, ..., Rk are transition terms, then the following expression is
a transition term called a conditional transition rule:

if g0 then R0

elseif g1 then R1

.

.
elseif gk then Rk

endif

If gk is the constant true, then the last elseif clause can be replaced with
”else Rk”.

Interpretation. Let A be a state and R a conditional transition rule,
then

Typed ASMs with updateable locations as values 151

[[R]]A(B) = [[Ri]]
A(B)

if gi holds in A, but every gj with j < i fails in A. [[R]]A(B) = ∅ if every gi
fails in A.

A guarded update instruction is a rule of the form if g then R where
g is a Boolean term and R is a transition term.

Interpretation. Let R1 = if g then R. Then [[R1]]A(B) = [[R]]A(B) if g
holds in A; [[R1]]A(B) = ∅ otherwise. In other words, perform the transition
if the condition holds and do nothing in the opposite case.

Loop constructors. The guarded update together with the sequence con-
structor gives us a possibility to define some loop constructors. If R is a
transition term and g is a Boolean term, then

while g do R and
do R until g

are transition terms called loops.
Interpretation.

[[while g do R]]A(B) = [[if g then seq R, while g do R end]]A(B);
[[do R until g]]A(B) = [[seq R, if¬g then do R until g]]A(B).

Import constructor. If x is a variable, s is a location sort name, R is a
transition term using x as a term of type loc(s) and not having x as a fresh
variable, and there is no total location function symbol fws′ such that s is
in w, then

import x: s in R

is a transition term with a fresh variable x called an import term.
Interpretation.

[[import x : s in R]]A(B) = {δ}; [[R]]A
′(B),σ

where A′ = Aδ, δ = (+, s, a) for some a 6∈ |A|loc, and σ = {x 7→ a} is a
variable assignment.

Note that one cannot insert a new element into a location sort if the sort
is used in the domain of a total function (otherwise the function becomes
partial).

8.3. Massive update

A massive update permits the specification of a parallel update of one or
more sorts/functions at several points. The corresponding transition term
has the following form:

forall x1 : s1, ..., xn : sn.R,

152 A.V. Zamulin

where x1, ..., xn are variables of sorts s1, ..., sn, respectively, and R is a tran-
sition term having no free variables.

Interpretation. Let A be a state. Then for all σ : {x1, ..., xn} −→ |A|:

• if Γ =
⋃

{[[R]]A(B),σ} is defined and consistent, then

[[forall x1 : s1, ..., xn : sn.R]]A(B) = Γ;

• [[forall x1 : s1, ..., xn : sn.R]]A(B) is not defined otherwise.

Example. Let fNat,Nat be a location function. A transition rule

forall x: Nat. f(x) := f(x) + 1

is equivalent to the set of rules

{(f(t) := f(t) + 1) : t ∈ T (Σ′)Nat}.

This means that fA′

(tA)! = fA(tA)! + 1 if fA(tA)! is defined for all t.

9. Dynamic formulae

For the specification of dynamic systems we introduce dynamic formulae
which can be either procedure definition or precondition formula.

F ::= p(x1, ..., xn) = tt | pre p(t1, . . . , tn) : ϕ

A procedure definition serves for the specification of the behavior of a
procedure in terms of a transition rule, and a precondition formula allows
us to define the domain of a partial procedure.

9.1. Procedure definition

A procedure definition has the following form:

p(x1, ..., xn) == tt

where pu1...un
is a procedure symbol such that ui is either si or ref si, X =

{x1, ..., xn} a set of variables such that

xi is of sort

{

si if ui is si,
loc(si) if ui is ref si,

and tt a transition term over X.
The variables x1, ...xn are called procedure parameters, and the term tt is

called a procedure body. A procedure parameter xi is called a value parameter
if ui is si, and it is called a reference parameter if ui is ref si.

A dynamic system DS(B) satisfies a procedure definition p(x1, ..., xn) ==
tt iff for all states A of DS(B) and variable assignments σ : X → |A|:

Typed ASMs with updateable locations as values 153

A|Σ[[p(x1, ..., xn)]]
A(B),σ = A2

where the algebra A2 is created as follows.

We know that in a programming language a value parameter is typically
regarded in the procedure body as a local variable (location) whose update
does not influence the environment in which the procedure is called. We will
follow the same line in giving semantics for our procedure definition. Let
Σ̄ be the extension of Σ′ by symbols yi : loc(si) for those 1 ≤ i ≤ n for
which ui is si in the profile of p, such that no yi is an operation (function)
symbol in Σ′. A variable xi is said to correspond to yi in the sequel. Given a
Σ′-algebra A, a Σ̄-algebra Ā is created as an extension of A in the following
way:

• initially |Ā| = |A|; then, for each ui that is si in the profile of p, the
sort Āloc(si) is extended by an element yĀ

i
/∈ loc(A),

• each yi is mapped to the element yĀ
i
.

Note that a sort Āloc(s)will be expanded several times if s is used several
times in the profile of p as a value parameter sort.

Now A2 = (ĀΓ̄)|Σ where

Γ̄ = [[seq set yi := xi end, tt′ end]]Ā,σ

and set yi := xi end means the parallel update of each yi by the corre-
sponding xi, the term tt′ is obtained from tt by replacing with yi each xi
corresponding to yi (this means that the term tt is type-checked only when it
is converted into tt′, so the specifier, when writing the term tt, may consider
xi as a term of sort loc(si), i. e., may assign to it).

Thus, a value parameter xi : si is a term of sort loc(si) in the procedure
body, like a location constant c : si is a term of sort loc(si). This corresponds
one-to-one to the practice of imperative programming languages.

Example. Let

p: int, loc(int);

be a procedure declaration and x : int, l : loc(int) be variables. Then the
right-hand side of procedure definition

p(x, l) == l := x;

will be converted into the transition term

seq set xy := x, ly := l end, ly := xy end

where ly and xy are local location constants of sorts loc(loc(int)) and loc(x),
respectively, initialized by procedure arguments. Therefore, the interpreta-
tion of the instruction ly := xy will actually put the location xy into the
location ly without any effect on the state in which p is invoked. However, if

154 A.V. Zamulin

the right-hand side of procedure definition were the instruction l! := x, then
the value residing in the location xy (i. e., x) would be put in the location l
passed as argument, and the state in which p is invoked would be updated.

If the procedure is declared as follows:

p: int, ref int;

and defined as follows:

p(x, l) == l := x;

then the right-hand side of the definition will be converted into the transition
term

seq set xy := x end, l := xy end.

Its interpretation will put x in the location l, thus updating the state in
which the procedure is invoked.

9.2. Precondition formula

A precondition formula of the form

pre p(t1, . . . , tn) : ϕ,

where p is a procedure name, t1, . . . , tn terms over Σ′ with variables from a
set X, and ϕ a Boolean term, can be used to state under what conditions a
partial procedure p is guaranteed to produce a result.

A dynamic system DS(B) satisfies a precondition formula

pre p(t1, . . . , tn) : ϕ

iff pDS(B)(A, <t
A,σ
1

, . . . , tA,σ
n

>) is defined only in those states A and only for
those variable assignments σ : X → |A| for which ϕ holds.

10. Specification of a dynamic system

Let DSS = 〈(Σdat, Axdat), (∆dyn), (∆dep, Axdep), (∆proc, Axproc)〉 be a dy-
namic system specification. It has four levels:

• The first level is an algebraic specification 〈Σdat, Axdat〉 which defines
the data types used in the system.

• The second level defines those aspects of the system state which are
likely to change. It includes a signature extension Floc that declares
some location functions. Floc is extended to ∆dyn as described in Sec-
tion 3.

A model of the 〈Σdat∪∆dyn, Axdat〉 specification is a Σ-algebra where
Σ = 〈Σdat ∪∆dyn〉.

Typed ASMs with updateable locations as values 155

• The third level defines some dependant functions. It uses the sort
terms from Σ and ∆dyn, the names of locaton/access functions from
∆dyn, the names of dependant functions from ∆dep, and the operations
of Σdat. The specification 〈∆dep, Axdep〉 must be sufficiently complete
and hierarchically consistent with respect to 〈Σ,Axdat〉. This reflects
the fact that a Σ-state is a Σ-algebra where Σ = 〈Σdat ∪ ∆dyn〉. A
model of the 〈Σ ∪∆dep, Axdep〉 specification is a Σ′-algebra where Σ′

= 〈Σ∪∆dep〉. Thus, a formula from Axdep must hold in any Σ′-state of
the dynamic system. Note that the function mapDS(B) maps Σ-states
to those Σ′-states which satisfy all formulae from Axdep.

Since a dependant function can be partial, a definedness predicate D

is used in specifications. That is, if t is a term, then the predication
D(t) holds in an algebra A iff t is defined in it. A precondition formula
of the form dom t : bt states in the specification that the term t is
defined iff the Boolean term bt evaluates to true.

• The fourth level, 〈∆proc, Axproc〉, defines some procedures by means of
dynamic formulae. If a dynamic formula de holds in DS(B), we say that
DS(B) is a model of de. A dynamic formula de is consistent if there is
at least one model of it.

If DE is a set of consistent dynamic formulae, then DS(B) is a model
of DE if each de ∈ DE holds in DS(B).

Example. Specification of the ”LINKED LIST” system.

System LINKED LIST ** we ignore the function prev in this specification
use BOOLEAN, NAT, NODE; ** the specifications used
location

const head: Node;
sfunc next: Node −→ Node;
ufunc array: Nat −→ Node;

depend

func local has: loc(Node), Node −→ Boolean;
** auxiliary function needed for the specification of the next one

func has: Node −→ Boolean;
func local find: loc(Node), Node −→ loc(Node);

** auxiliary function needed for the specification of the next one
func find: Node −→ loc(Node);
var ln: loc(Node), n: Node.
• dom find(n): has(n);
• local has(ln, n) ==

if ¬D(ln!) then false

156 A.V. Zamulin

elseif ln! = n then true else local has(next(ln), n);
• has(n) == local has(next(head), n);
• local find(ln, n) == if ln! = n then ln else local find(next(ln), n);
• find(n) == local find(next(head), n);

proc

initialize; ** construction of the empty list
insert: loc(Node), Node; ** insertion of a node in the middle of the list
update: ref Node, Node; ** update of the node data
local delete: ref Node, Node;

** auxiliary procedure needed for the specification of the next one
delete: Node;
var ln: loc(Node), n: Node.
• pre delete(n): has(n);
• collect garbage == forall l: loc(Node). drop l;
• initialize == seq forall l: loc(Node). set l := undef, next(l) ← undef end,

collect garbage end;
** parallel deletion of all elements of the sort loc(Node)

• insert(ln, n) == import new loc: loc(Node) in
set next(ln) ← new loc, next(n) ← next(ln), update(new loc, n) end;

• update(ln, n) == ln := n;
• local delete(ln, n) == ** it is assumed that the list contains n

if next(ln) = n
then next(ln) ← next(next(ln))
else local delete(next(ln), n);

• delete(n) == local delete(head, n);
end.

11. Conclusion

A model of the state of a dynamic system as a many-sorted algebra with
updateable locations as values is given in the paper. The model provides
both the mechanism of call-by-value and the mechanism of call-by-reference
typical of imperative programming languages. A specification technique for
this model is suggested. The use of this technique for program specification
permits one to write specifications naturally refined to practical programs.
On the other hand, the model can serve as a high-level representation of the
semantics of an imperative language.

In the present form, the model still lacks many means needed for a suit-
able modeling of programming languages, e.g., local objects in procedures
and function parameters. All of this is a subject of further research.

Typed ASMs with updateable locations as values 157

References

[1] Astesiano E., Zucca E. D-oids: a model for dynamic data types // Mathemat-
ical Structures Comput. Sci. — 1995. — Vol. 5, � 2. — P. 257–282.

[2] Baumeister H. Relations as abstract data types: an institution to specify rela-
tions between algebras // Lect. Notes Comput. Sci. — 1995. — Vol. 915. —
P. 756–771.

[3] Dauchy P., Gaudel M.C. Algebraic Specifications with Implicit State. — Paris,
1994. — (Tech. rep. / Laboratoire de Recherche en Informatique, Univ. Paris-
Sud; � 887).

[4] Grosse-Rhode M. Concurrent state transformation on abstract data types //
Lect. Notes Comput. Sci. — 1995. — Vol. 1130. — P. 222–236.

[5] Grosse-Rhode M. Algebra transformation systems and their composition //
Lect. Notes Comput. Sci. — 1998. — Vol. 1382. — P. 107–122.

[6] Gurevich Y. Evolving algebras 1993: lipary guide // Specification and Valida-
tion Methods. — Oxford University Press, 1995. — P. 9–36.

[7] Jonkers H.B.M. An introduction to COLD-K // Lect. Notes Comput. Sci. —
1989. — Vol. 394. — P. 139–205.

[8] Gaudel M.-C., Khoury C., Zamulin A. Dynamic systems with implicit state //
Lect. Notes Comput. Sci. — 1999. — Vol. 1577. — P.114–128.

[9] Lellahi K., Zamulin A. Dynamic Systems Based On Update Sets. — Paris,
1999. — (Tech. rep. / LIPN, Univ. Paris 13; � 99-03)

[10] Spivey J. M. Understanding Z. A Specification Language and its Formal Se-
mantics. — Cambridge University Press, 1988.

[11] Zamulin A. V. Dynamic system specification by typed Gurevich machines //
Proc. Intern. Conf. on Systems Science. —Wroclaw, Poland, September 15–18,
1998.

[12] Zucca E. Fundamental Study. From static to dynamic abstract data-types: an
institution transformation // Theor. Comput. Sci. — 1999. — Vol. 216. —
P. 109–157.

158

