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Fundamental solutions of a wave operator
in problems of field continuation∗

G.M. Tsibulchik

Abstract. In this paper, fundamental solutions of a wave operator in an inhomo-
geneous medium having the properties of advanced (anti-causal) type are analyzed.
These are such functions that act for the future when the field is calculated at the
present time. It is shown that the use of this anti-causal property when the wave
field is continued from some observation surface allows, in principle, “to look” into
the domain containing unknown wave field sources. On the observation surface, the
trace of the field and its normal derivative are considered to be known. It is shown
that for a certain structure of sources, in particular, for those instantaneously act-
ing in time (Cauchy data), the solution to the inverse problem of reconstructing
the sources is given simply by fixing the continued field at the time t = 0.

1. Introduction

Continuation of wave fields is an effective instrument for an approximate
solution to inverse problems of practical value. In particular, in seismology
and seismic prospecting, in which a wave process is generated by a pulse and
develops in time, a time-reversed field continuation means that the field is
calculated from the observation surface into the medium being investigated
and back in time. This procedure of data processing has a clear analogy
with the methods of continuation of potential fields in gravimetry, where the
process of analytical continuation of the field of gravity has been well studied,
but in contrast to gravimetry, in this case appears one more independent
variable (time), and the physical process of wave propagation is described
by the hyperbolic type equation. The physical basis of this approach is the
Huygens principle as well as the possibility of its use for a field continuation
both in the direct and in the opposite direction of time.

It should be noted that Yu.V. Timoshin, in his attempts to improve the
methods of reflection survey data processing, was the first to indicate to
this possibility as applied to seismic prospecting problems [1]. Only later,
procedures of a similar type called “wave migration” came into use abroad.

However, despite a wide use of the algorithms based on a time-reversed
field continuation, in the practice of processing of seismic prospecting reflec-
tion survey data, the literature still lacks a clear description of the functional
relations existing between the true and the continued fields in an arbitrary
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inhomogeneous medium. Without a clear understanding of the foregoing,
one cannot expect essential advances in the development of seismic methods
to investigate complicated media.

In this paper, such functional relations between the true and the con-
tinued fields in an arbitrary inhomogeneous medium are established and
analyzed from the standpoint of solving inverse problems of wave propaga-
tion theory. In other words, this paper gives the answer to the following
question: what sort of information about the wave field source can be ob-
tained if a trace of the wave field and its normal derivative on a certain
observation surface covering this source are considered to be known.

2. Statement of the problem

A most adequate instrument for considering and analyzing such problems
is the Green identity, which is well known in theoretical physics. The only
feature that distinguishes the use of this apparatus in the problem of a
wave field continuation from the conventional scheme used in problems of
mathematical physics is the employment of the Green function (and, more
precisely, a fundamental solution) of the advanced (anti-causal) type (see
[2–4]):

�G+(x, ξ, t− τ) = δ(x− ξ)δ(t− τ)

for x ∈ R3, t ∈ R1; ξ ∈ D0, τ > 0; (1)

G+(x, ξ, t− τ) ≡ 0 for x ∈ R3, t > τ.

Here � ≡ ∆ − c−2
0 ∂2

tt denotes the wave operator acting on the field point
(x, t), (ξ, τ) are parameters; D0 is a finite domain bounded by the curvilinear
surface S0 in R3, which is of interest for the investigation.

If we reverse the inequality sign in the second condition from (1), we will
be able to determine a well-known (causal) Green function of retarded type:

G−(x, ξ, t− τ) ≡ 0 for t < τ. (2)

It should be noted that in the general case, the wave velocity in (1) and
(2) is a known and specified variable, i.e., c0 ≡ c0(x) is the velocity in the
so-called reference model. Thus, everywhere in the text (unless otherwise
specified) G is a fundamental solution to the wave equation in an inhomo-
geneous medium.

When c0 = const the geometrical meaning of these Green functions is
illustrated in Figures 1 and 2. The function G− is shown in Figure 1 and
the function G+ is shown in Figure 2.

In Figure 1, the inner sphere appears earlier in time and serves as a
source of secondary Huygens waves, whose envelope causes the appearance
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Figure 1 Figure 2

of the external sphere: thus, the wave process propagates from the source
(in the sphere center) to infinity.

In Figure 2, the external sphere appears earlier in time and serves as a
source of secondary Huygens waves whose envelope causes the appearance
of the inner sphere at a later time: thus, the wave process propagates from
infinity to the sphere center, in which there is an energy sink. After this
“source” is triggered for t > τ , the medium is at rest (the source acting in
reversed time is an energy sink acting in the direct (natural) direction of
time) [6].

From the computational standpoint, it is better to use a linear combi-
nation from (1) and (2), since the field has no jumps when it is continued
through the observation surface:

G∗(x, ξ, t− τ) = G−(x, ξ, t− τ)−G+(x, ξ, t− τ). (3)

The fundamental solution G∗, which preserves properties of both the
advanced and the retarded types, is determined as solution to the following
Cauchy problem in the entire 4D space R3+1 [4, 5]:

�G∗(x, ξ, t− τ) = 0 for x ∈ R3, t ∈ R1; ξ ∈ D0, τ > 0;

G∗(x, ξ, 0) = 0,
∂

∂t
G∗(x, ξ, 0) = −c2

0δ(x− ξ) for x ∈ R3, t = τ.
(4)

The following statement of the wave radiation and propagation problem
in R3+1 serves as basic model:(

∆− 1
c2
0

∂2

∂t2

)
u(x, t) = f(x, t) for x ∈ R3, t > 0;

u(x, t) ≡ 0 for x ∈ R3, t < 0.

(5)



128 G.M. Tsibulchik

Here, the velocity, c0 ≡ c0(x), as mentioned above, is considered to be a
given function (in the general case, a medium is not assumed to be homo-
geneous).

The inverse problem is to determine the source function f(x, t) using
the field u0(x, t) and its normal derivative µ(x, t) ≡ ∂nu(x, t) known on
the closed surface S0 containing a compact domain of a source D b D0

(Figure 3).

Figure 3

It should be noted that the union
D0 ∪ S0 ∪D1 forms R3, problem (5)
is stated for the entire space R3, and
the observation surface S0 in Fig-
ure 3 is a fictitious surface. On the
latter, only the field trace u0 and its
normal derivative µ are “recorded”,
no boundary conditions are formu-
lated. This refined statement was
chosen deliberately to simplify fur-
ther manipulations and, mainly, to
call attention to the conceptual part

of the problem of wave equation inversion in the idealized situation of max-
imally possible information about the source wave field. Actually, before
passing on to more realistic statements, the following question should be
answered: what can be said about the wave field source if this field, to-
gether with the normal derivative, is known at all points of the closed surface
surrounding the source?

The Green identity (22), (23) from Appendix applied to a pair of func-
tions, namely, u from (5) and G from (1), (2), or (4), gives a full answer to
this question.

If G− from (2) is taken as G, the Green formula determines the following
functional relations:

w−(x, t) =

{
0 for x ∈ D0, t ∈ R1;
−u(x, t) for x ∈ D1, t ∈ R1.

(6)

If G+ from (1) is taken as G, the Green formula determines the following
functional relations:

w+(x, t) =


u(x, t)− u+(x, t) for x ∈ D0, t ∈ R1;
1

2
u0(x, t)− u+(x, t) for x ∈ S0, t ∈ R1;
−u+(x, t) for x ∈ D1, t ∈ R1.

(7)

If G∗ from (4) is taken as G, the Green formula gives a functional relation
between the true and the continued fields in the following form:
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w∗(x, t) = u(x, t)− u+(x, t) for x ∈ R3, t ∈ R1. (8)

In expressions (6)–(8), the field u(x, t) is a true field, existing in the
medium. It is determined as solution to problem (5) in the form of a volume
potential distributed along the domain of sources D (see Figure 3):

u(x, t) =
∫

D
f(ξ, t) ∗G−(x, ξ, t) dVξ. (9)

Here and below the symbol ∗ is the time convolution operation.
The field u+(x, t) describes the contribution of the volume “sources”

f(x, t) radiating inverse in time, or energy sinks

u+(x, t) =
∫

D
f(ξ, t) ∗G+(x, ξ, t) dVξ. (10)

3. Analysis of the solution

If we add a zero to the function f(x, t) to the entire space R3+1 and take
into account (3), (9), (10), functional relation (8) allows a representation in
the form of an integral equation of the first kind:

for x ∈ R3, t ∈ R1 w∗(x, t) =
∫

R3

f(ξ, t) ∗G∗(x, ξ, t) dVξ. (11)

In a homogeneous medium c0 = const equation (11) takes the form of a
4D convolution in the space R3+1:

f(x, t) ∗G∗(x, t) = w∗(x, t),

or
∞∫

−∞

dτ

∫
R3

f(ξ, τ)G∗(x− ξ, t− τ) dξ = w∗(x, t).

Here the kernel G∗ is known in the explicit form [2–4] as solution to prob-
lem (4):

G∗(x, ξ, t− τ) = − 1
4π

{
|x− ξ|−1δ

(
t− τ − |x− ξ|

c0

)
−

|x− ξ|−1δ

(
t− τ +

|x− ξ

c0

)}
.

In the case of a homogeneous medium, the fields (9)–(11) can have
the following physical interpretation (Figures 4–6). In these figures, B ≡
supp f(x, t) denotes a set in R3+1, where the source of waves is concentrated.
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Figure 4 Figure 5 Figure 6

In Figure 4, each source point (ξ, τ) radiates waves along the lateral
surface of the “future” characteristic cone, which is the solution carrier
G−(x, ξ, t− τ).

In Figure 5, each “source” point (ξ, τ) radiates waves along the lat-
eral surface of the “past” characteristic cone which is the solution carrier
G+(x, ξ, t − τ). However, the source acting back in time is an energy sink
acting in the direct (natural) direction of time (see Figure 2). Therefore,
Figure 5 allows the following interpretation: the waves for t < τ are radi-
ated from infinity, gather at the point (ξ, τ), at which they subsequently
vanish [6]. After such a “source” for t > τ is “triggered”, the medium is at
rest.

Figure 6 shows the choice of the fundamental solution G∗(x, ξ, t − τ).
In this case, both parts of the characteristic cone, directed to the “past”
and to the “future”, are acting. On the basis of the above-said for energy
sinks, Figure 6 demonstrates the field focusing process: waves for t < τ are
radiated from infinity and focused at the point x = ξ for t = τ . Then they
again diverge in space [6].

A full picture of the influence of the energy source (sink) can be obtained
by uniting the corresponding cone boundaries with the help of the point
(ξ, τ) running through the set B.

In the case of an inhomogeneous medium, c0 ≡ c0(x), the pictures pre-
sented in Figures 4–6 should be improved, since in this case, the charac-
teristic cone becomes deformed (rays in an inhomogeneous medium become
curvilinear) and, what is most important, in addition to the lateral surface,
the inside of the corresponding cones will also act.

The field w(x, t) with the corresponding subscript in the left-hand side
of equalities (6)–(8), (11) is considered to be known in R3+1 (since u0 and
µ are known) and is a continued field formed by a surface integral in the
Green formula (see Appendix):

w−(x, t) =
∫

S0

{
u0(ξ, t) ∗ ∂G−

∂nξ
(x, ξ, t)− µ(ξ, t) ∗G−(x, ξ, t)

}
dSξ, (12)
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w+(x, t) =
∫

S0

{
u0(ξ, t) ∗ ∂G+

∂nξ
(x, ξ, t)− µ(ξ, t) ∗G+(x, ξ, t)

}
dSξ, (13)

w∗(x, t) = −
∫

S0

{
u0(ξ, t) ∗ ∂G∗

∂nξ
(x, ξ, t)− µ(ξ, t) ∗G∗(x, ξ, t)

}
dSξ. (14)

The smoothness properties of the above functions considerably differ.
Thus, w−(x, t), w+(x, t) are potentials of the double and the simple layers
spread on the observation surface S0. The properties of these potentials have
been well studied in the classical theory of the Laplace equation. Now they
are generalized to the case of the wave equation [7,8]. It follows from these
properties that the potentials are smooth, infinitely differentiable functions
everywhere outside the surface S0 on which they (when passing through
it) have a discontinuity. The jumps of the field and its normal derivative
determined from (6), (7),

[w−](x, t) = [w+](x, t) = −u(x, t)
[∂nw−](x, t) = [∂nw+] = −µ(x, t),

(15)

serve as a right-hand side for the wave equation of the “dipole” and “mono-
pole” types distributed on the observation surface S0 [9]. These fields satisfy
the following conditions:

�w−(x, t) = − ∂

∂n
(u0δ(S0))− µδ(S0) for (x, t) ∈ R3+1;

w−(x, t) = 0 for x ∈ R3, t < 0;

w−(x, t) = 0 for x ∈ D0, t ∈ R1;

(16)

�w+(x, t) = − ∂

∂n
(u0δ(S0))− µδ(S0) for (x, t) ∈ R3+1. (17)

Here δ(S0) denotes the surface delta-function [9].
The continued field w∗(x, t) being their difference:

w∗(x, t) = w+(x, t)− w−(x, t). (18)

It does not have any discontinuities (the field jumps are cancelled out), is
everywhere in R3+1 a smooth function satisfying the following homogeneous
wave equation:

�w∗(x, t) = 0 for (x, t) ∈ R3+1. (19)

Therefore, the use of w∗(x, t) instead of w+(x, t) is attractive for a field
continuation, although both algorithms contain the necessary field focusing,
which, in principle, makes possible “to look” into the domain D0 containing
the sought for wave sources, in contrast to the field w−(x, t) which gives an
identical zero in this case.
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In the general case of an arbitrary f(x, t), the solution to the basic
integral equation of the first kind (11) is non-unique. A set of the sources
distributed inside D0 and not changing the field trace u0 and its normal
derivative µ (and, hence, the continued field w∗ from (14)) are the so-called
“non-radiating” sources: they do not radiate in terms of an observer on the
closed surface S0 but are different inside D0 [10, 11].

For sources with a special structure, in particular, those acting instan-
taneously in time (Cauchy data)

f(x, t) = −c−2
0 f(x)δ′(t), (20)

the solution to the inverse problem is unique [12]. In this case, the additional
field u+(x, t) from (10) is different from zero only for t < 0 and is an odd
continuation of the true field u(x, t) to negative time: u+(x, t) = −u(x,−t).
As a result, functional relation (8) between the true and the continued fields
takes the following form:

w∗(x, t) =

{
u(x, t) for x ∈ R3, t > 0
u(x,−t) for x ∈ R3, t < 0,

which determines the function w∗(x, t) that is even with respect to t.
The sought for solution to the inverse problem is given by fixing the

continued field at the time t = 0:

w∗(x, 0) = u(x, 0) = f(x), ∂tw∗(x, 0) = ∂tu(x, 0) = 0. (21)

Appendix. The Green identity

The Green identity is valid for functions u and G satisfying the wave equation
in R3+1. One of these functions, namely, the function G from (1), )2), or (4)
is a fundamental solution. Let us present the Green identity in the following
form [2,3, 7, 9]:

κu(x, t)−
∫

D0

�u(ξ, t) ∗G(x, ξ, t) dVξ

=
∫

S0

{
u(ξ, t) ∗ ∂G

∂nξ
(x, ξ, t)− ∂nu(ξ, t) ∗G(x, ξ, t)

}
dSξ, (22)

where (see Figure 3)

κ =


1 for x ∈ D0,

0 for x ∈ D1,
1

2
for x ∈ S0.

Any of the solutions (G− or G+) can be taken as the function G in (22).
If we use G∗ as the function G, κ = 0 everywhere for x ∈ R3, the Green

formula becomes simpler:
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−
∫

D0

�u(ξ, t) ∗G∗(x, ξ, t) dVξ

=
∫

S0

{
u(ξ, t) ∗ ∂G∗

∂nξ
(x, ξ, t)− ∂nu(ξ, t) ∗G∗(x, ξ, t)

}
dSξ. (23)

It should be noted that the Green formulas (22), (23) are written down
in the form that includes the initial conditions of the function u: they are
transferred to the right-hand side of the wave operator �u in the form of
instantaneously acting sources (which can always be done [9]). The symbol
∗ in (22), (23) denotes, as usual, the time convolution operation.

Expressions (22), (23) clearly show the discontinuous character of the
field determined with the use of the fundamental solutions G− and G+ and
the smooth properties of the field formed with the help of the fundamental
solution G∗.
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