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Wave equation inversion with redundance data
by the wave field continuation method∗

G.M. Tsibul’chik

Abstract. The inverse problem of wave scattering for a system of data collected
at the observation surface with multiple coverage of sources and receivers is consid-
ered. It is shown that this redundant data system is equivalent to the configuration
studied previously, in which the receiver point coincides with the source point: in
both cases the wave field continuation back in time reduces the scattering prob-
lem considered in a linearized approximation to the Cauchy problem (the one with
instantaneously actuated secondary field sources represented by the sought-for in-
homogeneities) in the reference medium with a “half” value of wave velocity.

1. Introduction

In this paper, a linearized statement of the inverse dynamic problem as re-
lated to the wave equation for an observation system with multiple coverage
of sources and receivers is considered. In seismic prospecting, such systems
are widespread and generally considered to be effective for digital processing
of field data, signal extraction against the background of noise, etc. From
the point of view of information, such systems are clearly redundant for
solving the inverse problem of scattering. For instance, if oscillations of ob-
servation surface points recorded for all possible locations of a point source
are considered as initial data for the solution of the inverse problem, the in-
put data take the form of a five-dimensional function (two parameters that
determine the receiver location, two parameters that determine the source
location, and time). However, in this case, the three-dimensional velocity
function must be reconstructed.

Therefore, it is interesting to find out how this data redundancy behaves
at the inversion of the wave equation. The continuation of the field is used
to solve this problem, but then the field is continued from the observation
surface (both from receivers and sources) into the region under investigation.
This possibility is in the wave equation as it is, for which the reciprocity
principle is realized in a simple form [1].

One can obtain the most appropriate description of the field continuation
process from the observation surface into the region in question and back in
time to solve the inverse problem of reconstructing field sources by using the
Green identity, which is well-known in mathematical physics. In the case
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under consideration, the medium inhomogeneities play the role of secondary
sources. There is only one distinctive feature owing to which the use of the
Green identity in the problem of the wave field continuation differs from
the conventional rule of its use in problems of mathematical physics, that
the employment of the Green function (more precisely, the fundamental
solution) of the advanced type [2–4]:

�G+(x, ξ, t− τ) = δ(x− ξ)δ(t− τ)

for x ∈ R3, t ∈ R1; ξ ∈ D0, τ > 0; (1.1)

G+(x, ξ, t− τ) ≡ 0 for x ∈ R3, t > τ.

Here, � is a wave operator acting at the field point (x, t), (ξ, τ) are param-
eters; D0 is a finite domain in R3 (which is of interest for the investigation)
bounded by the curvilinear surface S0.

If the inequality sign in the second condition from (1.1) is changed to
the opposite one, we determine the well-known (“causal”) Green function of
the retarded type:

G−(x, ξ, t− τ) ≡ 0 for t < τ, (1.2)

From the standpoint of calculation, however, a linear combination of (1.1)
and (1.2) is most useful:

G∗(x, ξ, t− τ) = G−(x, ξ, t− τ)−G+(x, ξ, t− τ). (1.3)

The fundamental solution G∗ is defined as a solution to the following
Cauchy problem in the entire four-dimensional space R3+1 [5, 6]:

�G∗(x, ξ, t− τ) = 0 for x ∈ R3, t ∈ R1; ξ ∈ D0, τ > 0;

G∗(x, ξ, 0) = 0,
∂

∂t
G∗(x, ξ, 0) = −c2δ(x− ξ) for x ∈ R3, t = τ.

(1.4)

In a homogeneous medium characterized by the velocity c0 = const, the
solution G∗ has the following explicit form [1]:

G∗(x, ξ, t− τ) = − 1
4π

[
|x− ξ|−1δ

(
t− τ − |x− ξ|

c0

)
−

|x− ξ|−1δ

(
t− τ +

|x− ξ|
c0

)]
. (1.5)

It should be noted that G∗ is the odd function with respect to t:

G∗(x, ξ, t− τ) = −G∗(x, ξ, τ − t),

and G+ is a mirror reflection of G− onto the negative semi-axis t < 0:

G+(x, ξ, t− τ) = G−(x, ξ, τ − t).
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The advantage of using G∗ instead of G+ in the continuation procedures
is that the field continued with the help of G∗ is smoother, does not contain
any discontinuities of the field and its normal derivative at the surface S0,
which inevitably take place when using of the function G+ (Appendix A).
At the same time, G∗ includes all properties of the advanced function G+

that are necessary for the wave field inversion.

2. Statement of the problem

The following statement of the wave scattering problem in an inhomogeneous
medium is considered as basic model:(

∆− 1
c2

∂2

∂t2

)
U(x, t;z) = δ(x− z)δ(t)

for x ∈ R3, t ∈ R1; z ∈ S0; (2.1)

U(x, t;z) ≡ 0 for x ∈ R3, t < 0.

Here, the variable velocity c(x) is assumed to be different from const only in
the local domain D (the figure). From here on, the coefficient c−2 ≡ c−2(x)
in equation (2.1) is represented as sum of the two terms:

c−2(x) = c−2
0 + m(x), (2.2)

where the velocity c0 = const is considered to be known (the reference
model), and the velocity anomaly carrier D ≡ suppm(x) represents a com-
pact that is fully located in the domain under investigation, D b D0.

It is also assumed that the
variable velocity c(x) has suffi-
cient smoothness, so that there are
no boundaries with discontinuous
changes in the wave velocity. There-
fore, there is no need to set addi-
tional boundary conditions of con-
tact between the media (however,
such conditions can, in principle, be
removed, and is introduced only to
simplify the consideration).

Let the wave process be realized according to conditions (2.1), and its
trace, together with the normal derivative, be “observed” at the surface S0.
The inverse problem of scattering is to reconstruct the three-dimensional
velocity anomaly m(x) with the use of this information.

It should be noted that the union D0 ∪ S0 ∪D1 forms R3, and problem
(2.1) is set for the entire space R3. The surface S0 (see the figure) is a virtual
surface, which is used, as indicated above, to “record” the field and its
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normal derivative. Therefore, no boundary conditions are set. This refined
statement is taken specially to simplify further reasoning and, mainly, to
call attention to the conceptual aspect of the problem of the wave equation
inversion in an idealized situation of maximally possible information about
the source wave field. In fact, before using more realistic statements, one
should answer the following question: what can be said about the source of
the field of scattered waves, if this field, together with the normal derivative,
is known at all points of the closed surface surrounding the scattering object?

According to the idea of linearization, the full field U from (2.1) is rep-
resented as sum of the two terms:

U(x, t;z) = Uin(x, t;z) + u(x, t;z), (2.3)

in which the incident field (a sounding signal) Uin is due to the action of a
concentrated source in the reference medium with the velocity c0 (without
anomaly):(

∆− 1
c2
0

∂2

∂t2

)
Uin(x, t;z) = δ(x− z)δ(t)

for x ∈ R3, t ∈ R1; z ∈ S0; (2.4)

Uin(x, t;z) ≡ 0 for x ∈ R3, t < 0.

If we assume that ξ = z, τ = 0, the incident field Uin practically coin-
cides with fundamental solution (1.2) of the wave operator with a constant
velocity, and has the following form [1, 7]:

Uin(x, t;z) = − 1
4π|x− z|

δ

(
t− |x− z|

c0

)
, (2.5)

which is different from zero for t > 0 and equal to zero for t < 0.
The scattered field u(x, t;z) is determined by the conditions:(

∆− 1
c2
0

∂2

∂t2

)
u(x, t;z) = m(x)

∂2

∂t2
Uin(x, t;z)

for x ∈ R3, t > 0; z ∈ S0; (2.6)

u(x, t;z) ≡ 0 for x ∈ R3, t < 0.

The linearization problem is in the fact that the right-hand side of equa-
tion (2.6) has the incident field Uin instead of the full field U , which should
be present at a true transition from (2.1) to (2.6).

Further simplification is obtained if the convolution operator acts on
both parts of equality (2.6) only in the time domain with the function t+
determined by the following relation:
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t+ = tH(t) = H(t) ∗H(t), (2.7)

where H(t) is the Heaviside function, and the symbol “∗” denotes the con-
volution operation.

As a result, instead of (2.6) we obtain for the transformed field

v(x, t;z) = t+ ∗ u(x, t;z) (2.8)

the following conditions:(
∆− 1

c2
0

∂2

∂t2

)
v(x, t;z) = m(x)Uin(x, t;z)

for x ∈ R3, t > 0; z ∈ S0; (2.9)

v(x, t;z) ≡ 0 for x ∈ R3, t < 0.

The character of transformation (2.8) becomes clear if we take into ac-
count the spectral form of the function t+ in the frequency domain [7]:

F [t+] = iπδ′(ω)− 1
ω2

, (2.10)

where F [t+] denotes the Fourier transform of the function t+.
Transformation (2.8) can be treated as a sort of filtration, in whose

process low-frequency components are intensified in the observation data.
This, in turn, reveals a general low-frequency nature of the Born scattering,
within which the inverse problem is considered. It should also be noted that
the delta function at zero frequency included in (2.10) does not practically
“act”, since the frequency characteristic of a seismic channel with whose
help the wave field is recorded tends at ω = 0 to zero stronger than ω2.

3. Solution of the problem

Now, let us apply the Green identity (A.1) to two functions, namely, to v
from (2.9) and G∗ from (1.4). As a result, for x ∈ R3, t ∈ R1, z ∈ S0 we
have

w(x, t;z) = −
∫∫∫

D
m(ξ)G∗(x, ξ, t) ∗ Uin(ξ, t;z) dVξ, (3.1)

where w denotes the field continued (at receivers) from the surface S0,
formed with the surface integral in the Green formula:

w(x, t;z) =
∫∫

S0

[
v0(y, t;z) ∗ ∂

∂ny
G∗(x,y, t)−

µ(y, t;z) ∗G∗(x,y, t)
]
dSy, (3.2)
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We use here the following notations:

y ≡ x ∈ S0; v0(y, t;z) ≡ v(x ∈ S0, t;z); µ(y, t;z) ≡ ∂v

∂nx
(x ∈ S0, t;z),

and the symbol “∗” in (3.1) and (3.2) denotes the time convolution opera-
tion.

Owing to the properties of the fundamental solution G∗, the field w con-
tinued with its help is smooth and satisfies the homogeneous wave equation:

�w(x, t;z) = 0 for x ∈ R3, t ∈ R1, z ∈ S0. (3.3)

The wave operator in (3.3) acts at the field point (x, t), and z is a
parameter. It should also be noted that as x → S0, the field w0 does not
coincide with v0, and their normal derivatives at points of the surface S0 are
also different.

Now let us continue both parts of equality (3.1) at the source points
z ∈ S0. As a result, for x ∈ R3, t ∈ R1 we obtain

W (x, t) =
∫∫∫

D

m(ξ)G∗(x, ξ, t; c0) ∗G∗(x, ξ, t; c0) dVξ, (3.4)

where formula (A.2) is used, and the continued field W is given by a surface
integral (at a source point) in the Green formula:

W (x, t) =
∫∫

S0

[
w0(x, t;z) ∗ ∂

∂nz
G∗(x,z, t; c0)−

γ(x, t;z) ∗G∗(x,z, t; c0)
]
dSz, (3.5)

where γ(x, t;z) ≡ ∂nzw(x, t;z), and the symbol “∗” denotes, as before, the
time convolution operation.

Owing to the reciprocity property of the fundamental solution G∗(x, ξ, t)
concerning the points x and ξ, the continued field W (at sources and re-
ceivers) is smooth and satisfies the homogeneous wave equation:

�W (x, t) = 0 for x ∈ R3, t ∈ R1, (3.6)

and as x → S0, the field W0 does not coincide with w0, and their normal
derivatives at points of the surface S0 are also different.

Let us transform (only with respect to time) the continued field W ac-
cording to the following rule:

V (x, t) =
8π

c0
t W (x, t). (3.7)



Wave equation inversion with redundance data 87

Now, instead of (3.4), taking into account formula (B.2), we obtain

V (x, t) = −
(

2
c0

)2 ∫∫∫
D

m(ξ)G∗(x, ξ, t; c0/2) dVξ. (3.8)

The field V (x, t) is the solution to the following Cauchy problem in the
medium with the velocity c0/2:(

∆− 4
c2
0

∂2

∂t2

)
V (x, t) = 0 for x ∈ R3, t ∈ R1;

V (x, 0) = 0,
∂

∂t
V (x, 0) = m(x).

(3.9)

The last equality in (3.9) gives the solution to the inverse problem of scat-
tering: it reconstructs the velocity anomaly m(x) and, hence, the velocity
c(x) according to (2.2).

4. Analysis of the solution

To compare the results, let us consider the inverse problem of scattering (2.1)
for the data at S0 collected by the observation system, in which the source
point coincides with the receiver, that is, y = z (see the figure on page 83).
In this case, repeating the reasoning of the previous section, we find that
the transformation of the scattered field in the time domain, which reduces
the scattering problem to the Cauchy problem, has the following form:

v(x, t) =
8π

c0

∂

∂t

{
t
[
t+ ∗ u(x, t;x)

]}
. (4.1)

Now, the field v(x, t), instead of (2.9), is determined by the conditions(
∆− 4

c2
0

∂2

∂t2

)
v(x, t) = − 4

c2
0

m(x)δ′(t) for x ∈ R3, t ∈ R1;

v(x, t) ≡ 0 for x ∈ R3, t < 0.

(4.2)

Assuming that the field trace (4.1) and its normal derivative at S0 are
known, we continue this field into the medium with the velocity c0/2:

w(x, t) =
∫∫

S0

[
v0(y, t) ∗ ∂

∂ny
G∗(x,y, t; c0/2)−

µ(y, t) ∗G∗(x,y, t; c0/2)
]
dSy. (4.3)
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The following notations were used here:

y ≡ x ∈ S0; v0(y, t) ≡ v(x ∈ S0, t); µ(y, t) ≡ ∂v

∂nx
(x ∈ S0, t),

and the symbol “∗” in (4.1) and (4.3) denotes the time convolution opera-
tion.

Owing to the properties of the fundamental solution G∗, the field w of
(4.3) continued with its help is smooth everywhere in R3+1 and satisfies the
following conditions:(

∆− 4
c2
0

∂2

∂t2

)
w(x, t) = 0 for x ∈ R3, t ∈ R1;

w(x, 0) = m(x),
∂

∂t
w(x, 0) = 0.

(4.4)

A comparison of (3.9) and (4.4) shows that the field continuation in both
cases reduces, in fact, the scattering problem to the same Cauchy problem in
the medium with the velocity c0/2. The only difference is that in the case of
data redundancy, the field is continued from the surface S0 into the medium
both at receivers and sources with the velocity c0, whereas in the case of the
observation system, in which the source coincides with the receiver, the field
is continued from the surface S0 into the medium with the velocity c0/2.

Solution to the inverse problem of scattering for the observation system,
in which the source coincides with the receiver, was obtained earlier in a
more realistic statement in [8–10]. A plane, at whose points the second
boundary condition (an analogue to the “free surface” in elasticity theory)
must be satisfied was taken as the observation surface S0. The solution
to this problem has the form of (4.1)–(4.4) up to the factor “2” (due to
the influence of the “free surface”). This indicates to the fact that the
restrictions associated with the closure of the observation surface and with
the need for “measuring” the normal derivative of the field, prove to be
insignificant and can be removed. However, the restrictions, associated with
the problem linearization, present in all these cases, are of a fundamental
nature, and still cannot be removed.

It should also be noted that the linearized inverse problem of wave scat-
tering for the data system, in which the source point coincides with the
receiver point, can be reduced to the problem of integral geometry of the
function reconstruction by using its spherical averages, for which the theo-
rem of solution uniqueness has been proved [11].

From the physical point of view, the full field of oscillations (2.3) can be
separated into a sounding signal and the medium response in a simple and,
what is more important, more reliable way, only by observing the field near
a source of oscillations, and at other surface S0 points, such a separation
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is an unclear procedure. However, from the information standpoint, the
field continuation by using both receivers and sources leads to the Cauchy
problem, which is obtained if to solve the inverse problem we use only data
with y = z; the other data simply do not play any role in the wave field
inversion. Therefore, even if there are certain advantages of the system with
multiple coverage, they exist in the paradigm “signal/noise” which, in the
case of the wave scattering problem, again has an unclear physical nature
(because of an unclear definition of a “signal” in this case).
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A. The Green identity

Let the functions u and G satisfy the wave equation in R3+1, and let the
function G (see (1.1)–(1.5)) be a fundamental solution. Then the Green
identity can be written down in the following form:
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κ u(x, t)−
∫∫∫

D0

�u(ξ, t) ∗G(x, ξ, t) dVξ

=
∫∫

S0

[
u(ξ, t) ∗ ∂

∂nξ
G(x, ξ, t)− ∂nu(ξ, t) ∗G(x, ξ, t)

]
dSξ, (A.1)

where

κ =


1 for x ∈ D0,

0 for x /∈ D0,

0.5 for x ∈ S0

(see the figure on page 83).
Any of the solutions G−, G+ can be taken as function G. If G∗ is used,

then κ = 0 everywhere for x ∈ R3. It should be noted that the above Green
formula is written in the form including the initial conditions of the function
u: they are transferred into the right-hand side of the wave operator �u in
the form of instantaneously actuated sources (which can always be done) [7].
The symbol “∗” in (A.1) denotes the time convolution operation.

Expression (A.1) clearly shows a discontinuous character of the field
determined from the fundamental solutions G−, G+, and smooth properties
of the field formed with the help of the fundamental solution G∗.

If we take a pair of functions, u ≡ Uin and G ≡ G∗, the Green formula
gives the following representation of the function G∗: for x, ξ ∈ R3, t ∈ R1

−G∗(x, ξ, t) =
∫∫

S0

[
Uin(x, t;z) ∗ ∂

∂nz
G∗(ξ,z, t)−

∂

∂nz
Uin(x, t;z) ∗G∗(ξ,z, t)

]
dSz. (A.2)

B. Formulas for G∗

To calculate the time convolution of the function G∗ with itself, we use its
explicit expression (1.5). As a result, we obtain

G∗(x, ξ, t; c0) ∗G∗(x, ξ, t; c0) =
1

16π2

[
|x− ξ|−2δ

(
t− |x− ξ|

c0/2

)
+

|x− ξ|−2δ
(
t +

|x− ξ|
c0/2

)
− 2|x− ξ‖−2δ(t)

]
. (B.1)

Let us multiply both parts of equality (B.1) by t and use the known
properties of delta functions [7]:

tδ(t) = 0, f(t)δ(t− τ) = f(τ)δ(t− τ).
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As a result, we have

1
16π2

t

[
|x− ξ|−2δ

(
t− |x− ξ|

c0/2

)
+ |x− ξ|−2δ

(
t +

|x− ξ|
c0/2

)]
=

1
16π2

2
c0

[
|x− ξ|−1δ

(
t− |x− ξ|

c0/2

)
− |x− ξ|−1δ

(
t +

|x− ξ|
c0/2

)]
= − 1

2πc0
G∗(x, ξ, t; c0/2)

Thus, we obtain the following formula:

t
{
G∗(x, ξ, t; c0) ∗G∗(x, ξ, t; c0)

}
= − 1

2πc0
G∗(x, ξ, t; c0/2). (B.2)

This formula makes it possible to reduce the scattering problem (in the
medium with the velocity c0) in the Born approximation for a system with
multiple coverage of receivers and sources to the Cauchy problem in the
medium with the velocity c0/2.

Owing to the properties of the fundamental solution G∗ (1.4), from rep-
resentation (B.2) we finally obtain the following formula:

∂

∂t

{
t
[
G∗(x, ξ, t; c0) ∗G∗(x, ξ, t; c0)

]}∣∣∣
t→0

=
c0

8π
δ(x− ξ). (B.3)

This formula solves the inverse problem of scattering under consideration
for the system with multiple coverage of receivers and sources.
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