Bull. Nov. Comp. Center, Comp.Science, 14 (2001), 79-84
(© 2001 NCC Publisher

Parallel algorithm for data array input
into distributed computer system

Mikhail S. Tarkov, Alexey V. Tsarenko

A parallel algorithm is presented for the input of data arrays (partly, of images)
into processors of a distributed computer system (CS). The algorithm minimizes
the input time by means of effective routing of array fragments in the CS inter-
connection network. The algorithm modeling shows that it is optimum for the CS
with topology of the Fs-graph (torus) and the optimum Ds-graph (circulant). The
time of the array input is determined by the number N of the graph nodes and by
the degree of the CS root node which contains the input array initially, and is not
dependent upon the graph type (torus or circulant) for N > 20.

1. Introduction

A distributed computer system (DCS) is a set of elementary computers
(EC), each EC consisting of a processor, memory and hardware for data
input/output to channels connected to other ECs [1-5]. Application of the
DCS in image processing is conditioned by advantages gained from the par-
allel processing (high performance, system scalability, robustness). In the
case of the DCS usage for computations in real time environment, a prob-
lem of large data array transmissions between the input/output devices and
every EC arises because of the absence of direct interconnections between
them. Transit message exchanges are necessary with decrease the data input
speed. For this reason, a problem of data input speed maximization is set.
The problem can be solved by means of the optimum choice of data packet
routes and the sequence of their passing to communication links.

2. Problem statement

Let DCS be given by a graph G, = (Vi, F;), where V; is a set of EC,
FE, is a set of bidirected (duplex) communication links between the EC.
Every component of F is considered to be edge of the graph G or a pair
of oppositely directed arcs. A parallel program is given by a graph G, =
(Vy, E,), where V), is a set of branches of the parallel program and F, is a
set of communications between branches, and, in addition, |V;| = |V,| = N.
The program graph is mapped on the DCS graph so that every node of
the graph G, correspond to only one node of the graph G5 (numeration of

80 M.S. Tarkov, A.V. Tsarenko

nodes on the graph G, gives the numeration of nodes on the graph G;). We
suggest that the parallel program have the following two properties:

1. Geometrical parallelism, i.e., decomposition of the program on parallel
branches is determined by data distribution on the DCS processors.

2. All data fragments are equal in size.

By Property 1, the graph G, determines the data distribution on the
DCS processors. The node of the graph G containing initially all input
data array will be called the root node. The data array (an image array, for
example) is split to fragments each being transmitted for processing to the
suitable EC. Let [; be a path length of the 7 fragment transition from the root
node to the goal node of the graph G, s;; be the number of data fragments
which are predecessors of the ¢ fragment in the node j (¢ € {1,..., N — 1},
j€40,...,N —1}). We suggest that |V;| = N and the fragment with i =0
remain in the root node. We also assume that the fragment transmissions
to different arcs outgoing from the node can be implemented independently
and simultaneously. Therefore the number of fragments passing to one arc
does not influence on the number of predecessors of any other fragment
passing to another arc.

If the time of the data fragment transmission between two nodes is con-
sidered as unit, then the time of the i-th fragment loading is equal to
=1+ 2?;1 s;;. Since the time of the data array processing initiation
is determined by the maximum of all the fragment loading times and all
the fragment loadings are initiated simultaneously, then a minimum of the
loading time is provided by minimization of the criterion

l;
T:max(li—l— SZ) 1
(i + Lo (1)
It is necessary to develop an algorithm providing the minimum time
T. The time T minimization is a complex sorting problem. To simplify the
problem we assume that all the fragments be transmitted across the shortest
paths. Then the minimization of value (1) can be realized on the basis of
the following notions:

1. Since in a common case there are several shortest paths between two
nodes (partly because there are transit nodes with several outgoing
arcs), then the minimization of the predecessor number can be reached
by the even distribution of transmitted fragments onto outgoing arcs.

2. The longer is the shortest path of any fragment loading, the smaller
the number of predecessors a fragment has. Therefore the fragments
transmitted through a certain arc must be ordered by decreasing the
length of suitable shortest paths from a given node to a target to
provide minimum of criterion (1).

Parallel algorithm for data array input. . . 81

Hence follows the strategy to construct the plan of data loading from the
root node:

1. Construct an oriented graph G(SP) on the DCS graph assigning a set
of shortest paths from the root node to all other graph nodes.

2. Assign a correspondence between each orgraph arc and a set of target
nodes, to which the arcs belong, to a suitable set of the shortest paths
(the initial plan of loading).

3. For any node ¢ having outgoing arcs on the constructed orgraph
G(SP), create a list OUT, of transmitted fragments for any outgo-
ing arc p € {0,...,0"} (v is the number of outgoing arcs of the
node 7) so that all these arcs are loaded evenly, and fragments are
ordered in the list by a decrease in distance between the node 7 and
the target node (the final plan of loading).

The final plan determines the implementation of the data loading algo-
rithm in each node: any data fragment coming to the node either stays in
it for processing (if the node is the goal for the fragment, i.e., the fragment
number is equal to the node number) or transmitted to the neighboring node
according to the plan determined by the list OUT, containing the fragment
number.

All the steps of constructing the plan and the data loading are realized by
a parallel algorithm implemented by all elementary computers of the DCS.

3. Construction of the shortest path orgraph

The root node i = 0 sends to all outgoing arcs a message SP (the shortest
path), containing the mark d(SP) = 1.

Any non-root node ¢ # 0 having received the message SP for the first
time:

1) marks incoming arc p € {0,...,v; — 1} with d;, = d(SP), this mark
being equal to the distance from the node 7 to the root node (v; is the
node degree);

2) increments d(SP) by 1;

3) transmits the message SP to all outgoing arcs including an arc opposite
to the incoming arc p the message was received from.

Any outgoing arc is marked only if the mark d(SP) of the message trans-
mitted to a given arc is less than the mark of the message received from the
suitable incoming arc. It is easy to verify that one and only one message
SP will be transmitted to each arc of the graph and the resulted marking of
outgoing arcs determines the orgraph G'(SP) of the shortest paths from the
root node to all other nodes.

82 M.S. Tarkov, A.V. Tsarenko

4. Primary plan construction

Construction of the primary plan for data array loading is based on the usage
of the orgraph G(PP) = G~1(SP), which is obtained from the orgraph G(SP)
by inversion its arc directions. The construction process of the primary data
loading plan is initiated by the orgraph nodes that have no outgoing arcs on
G(SP). Every node sends to its every outgoing arc on G(PP) the message
PP (the primary plan) containing: 1) the node 7 number; 2) the value
d(PP) = 1 giving the distance from the node ¢ to the neighboring node
where the message PP is transmitted to.

Any node ¢ having outgoing arcs on the graph G(PP) after receipt of
the message PP includes into constructed message R; the number j of the
message [; source and the distance d; from the source of R; to the node
i. After receipt of messages R; from all incoming arcs on the graph G(PP),
the node ¢: 1) includes into the message R; its number 7 and the distance
d; = 1; 2) sends the message R; to outgoing arcs of the orgraph G(PP).
In the root node of the orgraph G(SP), the described process terminates
because this node has no outgoing arcs on the orgraph G(PP).

Any input arc p € {0,...,v" — 1} (vi" is an incoming semidegree) of
the orgraph G(PP), node ¢ corresponding to the set IN;, of the pairs (7, d;),
where j is a source node number and d; is the distance to the source. In the
set IN;,, numbers j of source nodes are ordered by a decrease of the value
d;. A set of the sets IN;, forms the primary plan of allowed directions for
transmitting fragments. We suggest that a data fragment be transmitted
from the node i to the arc p € {0, ..., vi"—1} if the number of its destination
belongs to the set IN;,.

5. Final plan construction

Construction of the final plan of the data array loading is initiated by the
root node i = 0 of the orgraph G(SP). Any outgoing arc p of the root node
corresponds to the set OUT, of numbers of data fragments transmitted
to the arc p € {0,..., v/ — 1}. A number j of the goal node is included
into the set OUT,, of the arc p which corresponds to the minimum of the
criterion /;, + 5, where [;, is the distance to the goal node for transmitting
the fragment j to the arc p. Here s;, is the number of predecessors of the
fragment j in the ordered set OUT, (data fragments in the set OUT, are
ordered by a decrease in the distance [;, to the goal).

After completion of the construction of sets OUT, to all outgoing arcs
the messages F'P (the final plan) are transmitted. Each message FP contains
the set OUT, of numbers of the goal nodes, which correspond to the arc p.

In the non-root node ¢ # 0, the final plan construction is implemented
in the same way as in the root one, but the construction begins only after

Parallel algorithm for data array input. . . 83

receipt of the messages FP from all the incoming arcs of the node in the

orgraph G(SP).

6. Modeling of data array input to distributed
computer system

The above parallel algorithm for the input of data arrays has been simulated
for the distributed CS with the two-measured toroidal graphs (£3) and the
optimal two-measured circulant graphs (D3) [5]. The simulation shows that
for such a DCS, the time of the system loading is equal to T' = % +1, where
N = |V]|. For N > 20, the time T does not depend upon the graph type,
i.e., the time is determined by the number of the graph nodes and by the
degree vg = 4 of the root node.

The minimum time T, < T of the data input cannot be less than the
time T, of the previous data fragment transmission from the root node to
the neighboring one. If in the root node the data fragments are distributed
approximately evenly among the sets OUT, (i.e., the difference of the set
OUT, cardinalities is no more than 1), then 7, = T. Hence Tyin > 1}, it

follows that

N
T=Toin= 7 1, (2)

i.e., for the above graphs the proposed algorithm of the data array input is
optimal.

The time (2) is determined by the time T}, because the data fragments
in the sets OUT,, are ordered by a decrease in distance to the goal node. As
a result, the time of the data fragment transmission to the goal node which
is most distant from the root coincides with 7.

The further development of the presented algorithm suggests a consid-
eration of several input nodes in the DCS graph. It is assumed to realize an
optimum partitioning of the DCS graph into connected subgraphs [4] and to
use own input (root) node for each subgraph (subsystem). In addition, it is
interesting to study the influence of the DCS component (processing units
and interconnections) failures on the organization of the data array input.

References

[1] Korneev V.V. Parallel Computing Systems. — Moscow: Znanie, 1999 (in Rus-
sian).

[2] Tarkov M.S. Parallel fault-tolerant image processing on transputer system
MICROS-T // Nauchnoe priborostroenie. — 1995. — Vol. 5, Ne 3—4. — P. 74—
79 (in Russian).

84 M.S. Tarkov, A.V. Tsarenko

[3] Tarkov M.S. Mapping parallel programs onto distributed robust computer sys-
tems // Proc. of the 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics / Ed. Achim Sydow. — Berlin, August
1997. — Vol. 6: Applications in Modelling and Simulation. — P. 365-370.

[4] Tarkov M.S. Parallel algorithm for structure bisection of a distributed computer
system // Proc. of the 16th IMACS World Congress on Scientific Computa-
tion, Applied Mathematics and Simulation / Eds. Michel Devil and Robert
Owens. — Lausanne, Switzerland, August 21-25, 2000. — Parallel Computing
Session, 217-6 (CD-ROM, 217-6.pdf).

[65] Monakhova E.A. Synthesys of optimum circulant networks for computer sys-
tems // Parallel Algorithms and Structures. — Novosibirsk, 1991. — P. 20-29
(in Russian).

