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Mapping a parallel program structure
onto distributed computer system
structure by the Hopfield neural network
with fuzzy scheduling parameters

Mikhail S. Tarkov, Sergey A. Lapukhov

An approach to mapping structure of parallel program onto structure of dis-
tributed computer system by the Hopfield neural network is presented. For typical

structures of parallel programs (“line”, “ring”, “mesh”, “binary tree”) and regular
structures of distributed CS (“torus”, “hypercube”) it is shown that fuzzy control
of derivative of neuron activation function can essentially improve the mapping

performance.

1. Introduction

Let us consider the problem of mapping parallel program graph G(Vj, E,), Vj,
is a set of the program branches, F, is a set of communication links between
the program branches, onto the graph G(Vj, E,) of distributed computer
system (CS), V; is a set of elementary computers (EC) of the CS, E; is a set of
connections of the “point-to-point” type between the EC, n = |V,| = |V,| is
a number of parallel program branches (a number of elementary computers).

On the program graph, the nodes z,y € V,, and the edges (z,y) are usu-
ally weighted by the values which characterize computing complexities of
the program branches and intensities of communications between neighbor
branches correspondingly. For many cases of a parallel programming prac-
tice [1, 2] the weights of nodes (and edges) can be considered as equal and
can be neglected. The mapping problem is simplified and can be considered
as follows.

The graph of parallel program G,(V,, E,) is considered as a set Vj, of
nodes and as a function G : V, x V, = {0,1}:

Gp(a::y) = Gp(yaw), Gp("L',"L') =0, Vﬂ?,y € V})

The function G,(z,y) = 1 if an edge exists between the nodes z and
y. Analogously the computer system graph G4(Vs, E;) is determined as a
set of nodes (elementary computers) V; and as a function G, : V; x V; —
{0,1}. Here E; is a set of edges (communication links between elementary
computers). We define the mapping as one-to-one function fy, : V, = V.
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Let dist(z,y) be a distance between the nodes z and y of the CS graph.
We evaluate the mapping quality by the following coefficients:

dilation(f) = Y Gp(z,y) dist(fm(2), fm(y)) (1)

| P‘ z,yCVp

is an average dilation of the program graph edge mapped onto a path on
the CS graph;

is a number of the graph Gy(V}, E;) edges coinciding with edges of the CS
graph. The mapping is aimed at diminishing dilation(f,,) and increasing

card(fm)-

2. The Hopfield neural network for mapping
problem

Let us consider a matrix S of neurons with dimension n x n. Each row of
the matrix is corresponding to some branch of a parallel program and every
column of the matrix is corresponding to some EC. Every row and every
column of the matrix S must have only one nonzero component equal to
1, all other components must be equal to zero. The energy of the Hopfield
neural network is described by the Lyapunov function

E = —ZZZSX,SX]+ ZZ > SxiSyi +

X i j#i i Y#X
[ZZSX'L n] + —ZZ Z ZSXiSdeij- (3)
i YENb,(X) J

Here Sx; is the state of a neuron from the row X and the column ¢ of
the matrix S. The first term minimum provides no more than one nonzero
component in any row of the matrix S, the second term minimum provides
no more than one nonzero component in any column of S and a minimum
of the third term is attained if the matrix has exactly n components equal
to 1. So, the minimum of the first three terms of (3) is reached if every row
and every column have only one component equal to 1, and all the other
components are zero. The fourth term minimum provides a minimum of
the sum of distances between the program graph nodes mapped onto the
nodes of the CS graph. Here d;; is a distance between the CS graph nodes
containing the neighbor nodes of a parallel program graph (the “dilation” of
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the program graph edge mapped onto some path on the CS graph), Nb,(X)
is a set of the nodes which are neighbors of the node X on the program
graph.

The canonical expression of the Hopfield network energy is

1
FE = _E Z Z Z ZTXinSXiSYj - Z Z Ix;Sxi, (4)
X i Y j '

X 1

where T'x;v; is a weight matrix of interneuron connections. From expressions
(3) and (4) we have

Txivj = —[A(l — d;5)0xy + B(1 — 6xv)dij + C + Ddijdx yens,(x));
IX'L’ = Chn.

Here dxy and d;; are the Kroneker symbols and

1 if Y € Nby(X),

5X,Yerp(X) - {0 otherwise.

3. Fuzzy scheduling of parameters in the
Hopfield neural network

Numerous investigations show [3, 4] that the minimization quality of the
Hopfield energy function essentially depends upon a derivative of the sigmoid
activation function of neuron in the vicinity of zero value of its argument.
If the derivative is very small, then the energy minimum is in the center of
a hypercube of the problem solutions (incorrect solution). If the derivative
is very large, then the Hopfield network finds itself at the hypercube node
corresponding to the local energy minimum. It is shown [4] that the fuzzy
scheduling of the activation function parameters helps to overcome this dif-
ficulty for the travelling salesman problem. We use this approach to solve
the problem of mapping a parallel program structure onto the CS structure.
The activation function is as follows:

1
f@) = —————~,
1+eXp(m)
where
T) = — 20 gt+1)—g(t) + A
1+%+g(t)’ g g 9,

Ty is the initial value of the parameter T, ¢ is an iteration number, 7 = 10n,
Ag is evaluated by the rules of fuzzy scheduling [4]. Thus, on each iteration
the parameter is modified to control the slope of the activation function.
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Figure 1. Membership function of z Figure 2. Membership function of y

z\y |FW MF MD MM MY SL M§S ZO0 ML LG
SL [ Z0 z0 ML LG LG
MS | SL MS ZO ZO ML
MD | SL SL MS ZO 20
ML | SL SL MS ZO ZO 3 3
LG | SL SL ZO ZO0 ZO - 0 -

T

Figure 3. Fuzzy control rules Figure 4. Membership function for Ag

Fuzzification of t is realized by the membership function shown in Fig-
ure 1. Here SL, MS, MD, ML, LG are abbreviations of the names of
the linguistic variables SMALL, MEDIUM SMALL, MEDIUM, MEDIUM
LARGE, LARGE.

Fuzzification of a number y of the active neurons is realized by the mem-
bership function in Figure 2. Here FW, MF, MD, MM, MY are abbreviations
of the names of the linguistic variables FEW, MEDIUM FEW, MEDIUM,
MEDIUM MANY, MANY.

We use the following fuzzy rule: if £ = A; and y = By then Ag = Cy,
where x is a fuzzy value of the time step and y is a fuzzy value of the
active neurons. A set of fuzzy rules is presented by the control matrix in
Figure 3. Here SL, MS, ZO, ML, LG are abbreviations of the linguistic
variables SMALL, MEDIUM SMALL, ZERO, MEDIUM LARGE, LARGE.
A calculated fuzzy value of the necessary control action C; is defuzzified by
the membership function shown in Figure 4.

Defuzzification of Ag is realized by the following rule: the value of the
linguistic variable Ag is changed by the argument of the corresponding max-
imum of a membership function.

4. Experiments

Experiments of mapping typical structures of parallel programs (“line”,
“ring”, “mesh”, “binary tree”) onto regular structures of the distributed
CS (“torus”, “hypercube”) with n =9, 16, 25 for a torus and n = 8, 16, 32
for a hypercube were realized. Experimental results were evaluated by the
criteria card(n) and dilation(n). Parameters A = 500, B = 500, C' = 190,
D =50 and T, = 0.55 were used.
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Figure 5. Two series of 300 mappings of a line onto a torus for n = 9
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Figure 6. The average value card(f,) Figure 7. The average edge dilation
for mapping a line onto a torus for mapping a ring onto a hypercube

In all the experiments, application of the fuzzy control causes an essen-
tial reduction of a number of incorrect mappings and increasing a number
card(n) of edge coincidences. The average number of incorrect mappings
is reduced by 81% and card(n) is increased by 3.19, on the average. A
minimum increase is 1.28 for mapping a binary tree onto a torus (the av-
erage value equals 2.5). Maximum increase is 5.23 for mapping ring onto
hypercube (average value equals 5).

The value of dilation(n) is reduced by 28% on the average. The best
result is 46% for mapping a line onto a hypercube. The worst result is
6% for mapping a binary tree onto torus. For changing from 9 to 25 the
value dilation(n) is increased from 1.5 to 3.5. In addition, application of the
fuzzy control causes reduction of the number of iterations by 33.5%, on the
average. This number is in the interval from 100 to 800.

Some results of the experiments are presented in Figures 5-7. The exper-
iments without fuzzy control are shown with thick lines and the experiments
with fuzzy control are shown with thin lines.
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5. Conclusion

An approach to mapping the structure of a parallel program onto the struc-
ture of a distributed computer system by the Hopfield neural network is
presented. It is shown that the fuzzy control of a derivative of a neuron
activation function can essentially improve the mapping performance. The
Hopfield neural network is a promising technique for constructing efficient
parallel optimization algorithms for scheduling parallel processes in the dis-
tributed computer systems. Nevertheless, the Hopfield network potentiali-
ties are not sufficiently investigated. The quality of mapping presented in
this work is not satisfactory yet (for example, with respect to [2]). The Hop-
field network functioning is highly dependent upon the mutual relations of
parameters of its energy function (3). Thus, in the sequel the work should
be directed to the investigation of these relations.
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