Bull. Nov. Comp. Center, Comp. Science, 21 (2004), 113-118
(© 2004 NCC Publisher

Real-time image rotation on the array
microprocessor NM6403

Mikhail S. Tarkov

Abstract. An algorithm for the real-time image rotation on the array micropro-
cessor NM6403 is proposed. For implementation of this image transformation on
the microprocessor NM6403, decomposition of a rotation matrix is used. This de-
composition reduces any pixel rotation to a sequence of unidimensional translations
which can be effectively vectorized.

1. Introduction

When an image rotates, the pixel coordinates are transformed by the formula

(5)=ro(5) me=(0i)

Here 0 is the rotation angle.
For implementation of this transformation on the array microprocessor
NM6403, the following rotation matrix decomposition is used [1]:

o= (30) (2 1) (30 o

This decomposition reduces the image rotation to a sequence of unidi-
mensional translations of the image rows along the direction x and transla-
tions of the image columns along the direction y. Since all translation values
for all pixels of the same row or of the same column are equal to each other,
then any translation can be readily vectorized. In this paper, we consider
organization of parallel computations for the image rotation on the array
microprocessor NM6403.

2. Architectural features of the microprocessor NM6403

The new 64-bit processor NM6403[2] is a high-performance microprocessor
with the hardware implemented matrix-by-matrix, matrix-by-vector multi-
plication, vector addition and other vector operations support. This pro-
cessor performs some operations over the data vectors for one clock cycle.
Each data vector is a 64-bit word of packed integer data.

The kernel of the NM6403 architecture is an operating unit including a
vector (array) coprocessor (VCP) and a masking device. The VCP consists

114 M. Tarkov

of 64 x 64 cells and is capable to realize matrix operations on data with a
variable number of components. The dimension of the VCP matrix is defined
by programming special registers. The input 64-bit data word consists of
n < 64 vector components. Every input vector component is multiplied by
the values packed into a 64-bit word; the products are added to a calculated
partial sum. These multiplications and summation of values are realized for
one step of a vector operation.

The vector arithmetic and logical unit (ALU) implements operations on
pairs of vectors packed into 64-bit words. The data come to inputs of the
VCP and the ALU through a programmable masking device. The masking
device has three vector inputs: two inputs for the data vectors and one
input for the mask vector. A vector command can include an operation for
masking data inputs.

3. The image rotation algorithm on the processor NM6403

Before the rotation, the following translation tables are constructed: the
table Row contains values of translations along the direction x, the value

Rowli], i = 0,1,...,imax — 1, is equal to the translation value of the i-
th row, the table Col contains values of translations along the direction y,
the value Col[j], 7 = 0,1,..., jmax — 1, is equal to the translation value of

the j-th column. The translations evaluated are rounded off. When the
translation tables are ready, the image rotation procedure is called. The
rotation procedure includes subprograms for translation along the direction
x (the row translation) and for translation along the direction y (the column
translation).

The row translation is realized by the following procedure. First, a
contiguous 8-byte row segment is cyclically shifted to the right by n < 8
pixels across multiplication by a suitable permutation matrix loaded into
the VCP. The permutation matrix for implementation of the right cyclic

T7
Zg
Ts
Ty
T3
T2
Z
Zo

OO OO O OO
OR OO oo oo
— OO o0 o oo
SO OHRH OO OO

OO DD OO OO
OO OO OO+ O
[elevlien el S =R
SO O, OOoOOo

4

(.’L’Q 1 o T7 g Ty X4 .’1?3)

Figure 1. Cyclic shift of 8-pixel row to the right by 3 pixels

Real-time image rotation on the array microprocessor NM6403 115

[18]17]16]23]22]21]20] 19]10] 9 [8 [15[14[13[12] 11| 2] 1|0 7]6]|5]4] 3]
Third segment | Second segment | First segment

Figure 2. Result of the right cyclic shift

First row
L18[17[16] [« [+ [« Jr0[o 8]« x| «]s]«[2 1] x]s]x]*]]

Second row
[] =]« [23]22]21]20]19] # | # | « [1s[1a]13] 2] 1n] = [« [« [7] 6 [5] 4] 3]

Result row
[] = | = [23]22]21]20] 19] 18] 17]16] 15[14 13] 12] 11]10] 9| 8 | 7| 6 | 5| 4] 3|

Figure 3. The row translated to right by 3 bytes

shift by 3 bytes is shown in Figure 1. As a result of this shift, we have, for
example, a row consisting of three 8-byte segments and shown in Figure 2.

The row resulted from the right cyclic shift is used for distinguishing
two rows on the vector ALU by masking. First, row has 3 bytes shifted to
the left (distinguished in Figure 2 by shadowing) and the second row has 5
bytes shifted to the right. Next, the first row is translated to the right by
one 64-bit word and added to the second row. As a result, we have the row
translated to the right by n < 8 pixels (Figure 3).

In Figure 3, the rows realized by a masking row from Figure 2, and the
result of their summation are shown. In the resulting row, the left-three
bytes (marked with stars in Figure 3) are empty, and the right-three bytes
are lost. Analogously, the left row translation by n < 8 bytes is implemented.

If n > 8, then we evaluate the number of 8-byte words N = |g], |z] is
an integer part of x, and the number of bytes n’ = n — 8N, n/ < 8, for the
row translation. Next, we translate the row by n/ bytes, as described above,
and after that, by N 8-byte words by means of simple copying.

Column translation. Since the vector instructions in the processor
NM6403 process 8-byte words only, then to translate a byte column we
need to delete bytes from 8-byte words by masking. The column is trans-
lated by a given number of bytes by simple copying. The image rotation
can be realized in the two ways:

1. Translation along the rows + translation along the columns + trans-
lation along the rows;

116 M. Tarkov

2. Translation along the columns + translation along the rows 4+ trans-
lation along the columns.

The second way corresponds to the permutation z and y in expression (1).
We choose the first way, because it has the smallest rotation time. The al-
gorithm is capable of rotating the images both to the positive angles (coun-
terclockwise) and to the negative angles (clockwise).

4. Experiments

In the table below, the data for the
dependence of the rotation time on
the rotation angle value for the im-
age “Lena” (Figure 4) of the size of
240 x 264 pixels is shown. Here the
time for creating translation tables
is not taken into consideration. This
time is in the interval from 24 to
28 milliseconds. The translation ta-
bles does not use much memory and
can be evaluated beforehand. The
data of the table show that the ro-
tation time is not greater than 22
milliseconds and is weakly depen-
dent upon the rotation angle in the range from 4 to 150 degrees. A relatively
fast increase of the rotation time in the range from 1 to 4 degrees is due to
increase in the number of translated rows and columns.

Figure 4. Original image

Dependence of rotation time ¢ (msec) on rotation angle 6 (degrees)

0 1(2| 3| 4| 5[10|15|20|30|45|60 | 75|90 | 105|135 | 150
t 13116 |17 (18 |18 |19 |20 (20|20 |21 |21 |22 |22 | 22| 21| 20

In Figures 5-7, the results of three sequential rotation steps of the im-
age shown in Figure 4 are presented for the rotation angle of 30 degrees.
Figures 7 and 8 show an increasing of a number of the lost pixels, when
the rotation angle increases. These losses are caused by the translation of
pixels behind the boundaries of the image under processing. It is possible
to avoid losses by expanding the boundaries of the field under processing,
but with the increase in the rotation time. Another way to decrease losses
is to realize the necessary rotation angle by means of n-multiple rotation of
the image by the angle % with n-multiple increase of the rotation time and
an increase in distortions caused by rounding the new pixel coordinates.

Real-time image rotation on the array microprocessor NM6403 117

\

Figure 7. Translation along rows Figure 8. Rotation by 60 degrees

5. About the image rotation on a multiprocessor system

Representation (1) of the rotation matrix as a product of translation matri-
ces (i.e., reduction of any pixel rotation to a sequence of translations) both
simplifies the vector realization of the rotation on the processor NM6403
and allows one to implement the image rotation in the parallel mode on a
system of processors interconnected to the line structure. For multiprocessor
implementation of the image rotation, it is necessary to distribute the image
rows uniformly among the processors (as shown in Figure 8 with the dashed
lines). It makes possible to execute the row translations along = direction
independent of each other.

For execution of translations along y direction, it is necessary to organize
the exchange of the column data fragments between the neighboring pro-
cessors. In Figure 9, a change in boundaries between the neighboring data

118 M. Tarkov

Figure 9. Distribution of image rows among processors

fragments is shown by the sloping lines for the column translations along
the direction y, when the image rotates at a negative angle.

6. Conclusion

An algorithm for the real time implementation of an image rotation on the
array microprocessor NM6403 is proposed. For this image transformation,
the decomposition of the rotation matrix is used. The decomposition reduces
the rotation of the image pixels to a sequence of translations of the image
rows and columns. Since values of translations for all the pixels of the
same row or column are equal to each other, the translation operation can
be readily vectorized. Experiments show that the rotation time is weakly
dependent upon the rotation angle. Future modifications of the algorithm
suggest its implementation on a multiprocessor system. The simplicity of
this implementation is also conditioned by the above decomposition of the
rotation matrix.

References

[1] Bourennane E., Milan C., Paindavoine M., Bouchoux S. Real time image rota-
tion using dynamic reconfiguration // Real-Time Imaging. — 2002. — Vol. 8. —
P. 277-2809.

[2] Research Center MODULE. “Processor NeuroMatrix NM6403. Introduction to
architecture”. — http://www.module.ru/files/archover.pdf.

