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Investigation of a sigmoid neural network
based on its state visualization

M.S. Tarkov, O.A. Kozhushko

Abstract. Based on a scatterogram of projections onto a plane of states of the
output and hidden layers of a sigmoid neural network, its behavior in solving the
problem of image recognition of letters is studied. In particular, it was found that
the method of conjugate gradients for the entire training process affects both the
weights of a hidden layer and the output layer, while the steepest descent method
determines the weights of a hidden layer on the first iteration, and in the course of
further education has practically no effect on them. An estimate for the number of
neurons in the hidden layer that is sufficient for a quality solution of the problem of
recognition is obtained. Visualization of the states of neurons is a powerful visual
tool for developing and studying the behavior of different classes of neural networks.

1. Introduction

Artificial neural networks (NNs) [1–3] are used for solving a wide set of
problems, such as pattern recognition, approximation, interpolation, data
compression, prediction, identification, control and association. The most
important NN properties are: parallel data processing by all neurons, learn-
ing and knowledge of the generalization abilities. Nevertheless, the NN
solutions do not give an accurate description of the solution technique. The
neural network looks like “black box”, and we have no possibility to look into
it. Much used numerical methods of estimating the NN operation (mean-
square error, evaluation of correspondence of network solution to analytical
solution, estimation of probability of obtaining a correct solution, etc.) are
not clear. It is sufficiently difficult to analyze them. Graphical evaluation
methods are more efficient from the practical viewpoint. In papers [4, 5],
Wlodzislav Duch proposed algorithms for visualization of neuron states.
These algorithms are based on projecting points of a multidimensional space
onto a two-dimensional plane. The algorithm results in a scatter plot known
as a scatterogram demonstrating the quality of the NN (neural network) so-
lution of the problem. In this paper, we consider a classic sigmoid neural
network. Our objective is the usage of scatterograms for investigation of the
network training for solving an image recognition problem.

2. Visualization of neuron states

A problem of the NN state visualization is reduced to construction of map-
ping multidimensional state vectors (output signals) of its hidden and out-
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put layers onto a two-dimensional plane. The plane points, corresponding to
multidimensional vectors, form a scatter plot, i.e., a scatterogram, on which
we can distinguish clusters of vector images to receive information for visual
estimation of the NN functioning efficiency.

The output neuron state visualization must save partitioning the out-
put vectors onto clusters according to the NN solution. In [4], a linear
transform satisfying this property is proposed. The transform maps a m-di-
mensional vector O onto a two-dimensional vector so that m vectors of the
type (0, . . . , 0, 1, 0, . . . , 0) and the vector (1, 1, . . . , 1) are mapped onto the
points (xi, yi), i = 1, . . . ,m, and (xc, yc), respectively, where
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a1i = xi − b1, a2i = yi − b2, i = 1, . . . ,m.

The unknown transform coefficients can be found by substitution of vectors
of the type (0, . . . , 0, 1, 0, . . . , 0) and the vector (1, 1, . . . , 1) into system (1)
and solving this system.

The algorithm makes possible to map nodes of m-dimensional cube cor-
responding to classes onto nodes of a regular m-gon (Figure 1). The clusters
of images of correctly classified vectors are mapped onto the neighborhoods
of the corresponding nodes of the m-gon. The points near to the center of
the m-gon are interpreted as those corresponding to non-recognized patterns
with the network output close to (0, . . . , 0) (there are no class including a
pattern) or (1, . . . , 1) (all classes include the pattern).

Similarly, we can consider the points into which become vectors with
multiple coordinates equal to one. The vector images located around these
points are interpreted as those assigned by the network to several classes
simultaneously. A curious fact is that the points symmetric with respect to
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Figure 1. Characteristic points and lines for a four-dimensional case [4]

the image of point (1, . . . , 1) can be obtained one from another by inversion
of components of the corresponding m-dimensional vectors. Segments con-
necting the images of vectors with components of zeros and ones with the
image of the unit vector (1, . . . , 1), as well as the segments forming the m-
gon, whose vertices are images of the vectors (0, . . . , 0, 1, 0, . . . , 0), are called
the characteristic lines of the m-gon obtained for the problem of separation
of m-classes (see Figure 1).

To estimate the average scatter of points with respect to m given centers,
a function is introduced similar to the sample variance:

E(P ) =
1
K

K∑
i=1

min
j=1,...,m

ρH(Pi, Oj), ρH(x, y) =
ρ(x, y)
R

,

where Pi are points, Oj are centers, ρ(x, y) is a classical Euclidean distance
between two points, R is a maximum distance from the center to a certain
midpoint. To estimate the scatter of points in m-dimensional space, the
following data are used: Pi are output vectors, Oj are unit vertices of the
m-dimensional cube, R is the Euclidean distance from the unit vertices
of the cube to the zero point. We will consider the scatter of points in
the m-dimensional space with the scatter of their projections on the two-
dimensional plane (with a scatterogram).

The values of the function E(P ) belong to the segment [0, 1], and the
value 0 corresponds to the exact classification (i.e., the output vectors have
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the form (0, 0, . . . , 1, . . . , 0)), and value 1 corresponds to the absence of clas-
sification (i.e., all the output vectors are given by (1, . . . , 1)). Qualitatively,
the value of the function E(P ) can be described as a mean relative distance
from the scatterogram points to the m-gon vertices. Since the value E(P )
is averaged over all vectors, its use can not completely replace the use of a
scatterogram due to the loss of information. However, this function allows
us to evaluate the correctness of the transformation, that is, to compare
the scatter of points in an m-dimensional cube, and the scatter in a two-
dimensional plane. It can also be used to estimate the average deviation of
the network solution from the expected one.

The task of visualizing the state of neurons of the hidden layer is anal-
ogously reduced to the choice of converting the k-dimensional vector to a
two-dimensional one, but the approach to the selection of a mapping is dif-
ferent. To visualize the output signals of neurons of the hidden layer, we use
the orthogonal projection of the signal vectors onto the plane spanned by a
pair of vectors {e1, e2} forming an orthonormal basis. In [5], it is proposed
to determine the direction e1 as (1, 1, . . . , 1)T , and to compute the direction
e2 by applying the principal component analysis [6] to a set of projections
of the vertices of a k-dimensional cube onto the subspace orthogonal to the
vector e1. In case k = 4, the basis has the form e1 = (1, 1, 1, 1)T and
e2 = (−0.2113, 0.7889,−0.5774, 0)T . The choice as e1 of any other vector
with coordinates equal to 1 or −1, gives a similar division of vertices on
the plane. This visualization aims at studying the behavior of neurons in
the hidden layer, and at an attempt to slightly open the “black box” of a
sigmoidal neural network to gain some understanding of how it works.

3. The study of neuron states in the sigmoid network
output layer by solving the image recognition problem

The visualization algorithm is carried out in an environment using MATLAB
and the library NETLAB [7] including a set of models of neural networks and
algorithms for the neural network training and applications more extensive
than in the Neural Network Toolbox.

Experiments for the problem of recognizing monochrome images of let-
ters A, B, D, R with different fonts were carried out (Figure 2). The choice
in favor of these letters has been made for the following reasons: the letters
B and D for some fonts have similar images, significantly different from the
picture of the letter A. Therefore, it is expected that the network results in a
clear separation of the class of the letter A and a partial mixing of classes of
the letters B and D. The letter R is similar to the other three letters, there-
fore, the location of the output image vectors is supposed to be around the
point of defining the class of R and the point of determining unrecognized
vectors. As a test, two different samples are taken: one of them is obtained
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Figure 2. Examples of images of Latin letters

by mixing training sample with noise, therefore, a good separation of the
classes is expected, the other is obtained using other fonts for the letters A,
B, D, R, the expected separation of the classes being worse.

Each monochrome image can be represented by a vector of length M×N ,
M and N are, respectively, the length and the width of the image, whose
pixel values lie in the range [0, 1]. Images will be viewed as vectors in the
Euclidean space. The similarity of the images X and Y will be evaluated as
the function

H(X,Y ) =
(X,Y )
|X||Y |

,

where (X,Y ) is a scalar product, |X| = (X,X)1/2. The function takes
a maximum value 1, when the images coincide. For two different letters,
H(X,Y ) ∈ [0.3, 0.6].

The images used have the size of 10×15 pixels. Respectively, the number
of neurons in the input layer of the sigmoidal network is 150. The number
of neurons in the output layer (the number of classes) is 4. The number of
neurons in the hidden layer is chosen to be 10 in the experiments without the
number variation. As the main training method the method of conjugate
gradients was used. The research allowed us to draw the conclusion about
the choice of the NN training algorithm and its dynamics.

3.1. Dynamics of neural network training. When training the neural
network by the conjugate gradient algorithm, a gradual refinement of weights
occurs, which is reflected in the scatterogram. After initializing the network
with small values of weights, the scatterogram is chaotic (Figure 3), but
after 40 iterations of training there was obtained some separation of data
into classes (clusters)(Figure 4).

In the subsequent training, the scatterogram points contract to vertices
of the square, which indicates to a higher quality of image classification. It
should be noted that the division into classes irregularly occurs. The first
class separated in the scatterogram corresponds to the letter A (‘◦’ symbol),
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Figure 3. Initial scatterogram

Figure 4. Scatterogram after 40 iterations of training

the next one corresponds to the letter R (‘·’ symbol), but the classes of
the letters B (‘+’ symbol) and D (‘∗’ symbol) are partially mixed. Upon
completion of the NN training, clusters of points are concentrated near the
square vertices. Thus, a high quality of classification of the sample vectors is
achieved. Hence, when the number of training iterations is insufficient, there
is a set of points near the center of the m-gon in the scatterogram. If the
number of training iterations is sufficient for a qualitative classification, there
are clearly separated clusters of points around the vertices of the m-gon.
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3.2. Robustness of the neural network solutions with respect to
the test sample noise. The experiments varied the degree of the test sam-
ple noise, which was determined by using the similarity function H(X,Y ) of
two images, where the image X is seen as a test sample, and the image Y is
seen as a version of X-image noised by normal or uniform law. Figure 5 rep-
resent examples of versions of the letter A noised by the normal law. When
the degree of noise is increased, the number of unrecognized or incorrectly
recognized vectors also increases. In Figure 5, the image of the letter A,
noised by 30 %, is not recognized by the human eye, so we are interested
in less strong noise. Using a scatterogram, we can trace values of the noise
degree retaining a high quality of the sample classification and evaluate the
robustness of the NN solutions with respect to noise. In experiments with
a variable number of hidden neurons, we detect that the network with 10
hidden neurons has a greater robustness than that with two hidden neu-
rons. With 10 hidden neurons and the noise level of 3 and 9 %, the quality
of the letter classification remains high, while for a network with two hidden
neurons we observe the points treated as unrecognized in the center of the
scatterogram.

Figure 5. An example of noised training samples. From left to right:
the degree of noise pollution 3, 9, and 30 %

3.3. The choice of the number of neurons in the hidden layer. The
network was trained using the conjugate gradient algorithm by varying the
number of neurons in the hidden layer for 150 iterations, after which the
scatterogram was constructed for a slightly noised (3 %) training set. The
scatterograms of outputs of trained neural networks, having the same error
a the training set, show that their tests on noised samples give different
results.

Based on the results of the experiment, the number of neurons in the
hidden layer is determined, for which a high quality of classification is ob-
tained with a fixed level of noise, i.e., the scatterogram points are divided
into four clusters around the vertices, and there are no points in the center
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of the square. This number belongs to the segment [10, 20]. As the scat-
terogram shows, further increase in the number of hidden neurons does not
increase the quality of the separation of classes.

4. The study of neuron states in the hidden layer

A neural network having 150 neurons in the input layer (image size), 4 neu-
rons in the hidden layer and 4 neurons in the output layer was considered.
The number of neurons in the hidden layer is reduced to simplify a scattero-
gram. The scatterograms were built for two different learning algorithms:
the conjugate gradient method and the method of gradient descent with a
different number of iterations. The neuron weights were initialized with ran-
dom small values displayed in the scatterogram as a cluster of vector images
of the hidden weights located in the vicinity of the zero point. For differ-
ent training algorithms, the neural network shows a different dynamics of
the hidden layer in the scatterogram. In training by the conjugate gradient
algorithm, several situations have occurred in the scatterogram:

1. The signals of hidden neurons form four clusters. In the training pro-
cess, these clusters are gradually segregated as classes (Figure 6, top).
The share of such point distributions in scatterogram is very small.

2. In the course of training, the lines occurred along the borders of the
projections of the cube edges (Figure 6, bottom).

3. The vector images shrink to a point.

In the second and third case, there is a problem of uncertainty, since
due to the reduction of data dimensionality, a part of information is lost,
and in a four-dimensional space points can be placed on a plane or on a
line. An attempt to solve this problem by projecting the vectors onto the
plane spanned by the other axis, a similar behavior of points reveals in the
scatterogram. In this case, as the basis vectors

e1 = (−1, 1, 1, 1)T , e2 = (−0.2113, 0.7889,−0.5774, 0)T

and
e1 = (1, 1,−1,−1)T , e2 = (−0.2113, 0.7889,−0.5774, 0)T

were taken.
In the NN training by the method of gradient descent, the first two situ-

ations did not take place. Images of the hidden vectors form a cluster in the
vicinity of the projection of one of the vertices of the four-dimensional cube
and were placed along projections of the edges adjacent to this vertex. This
behavior of signals of the hidden layer neurons was detected after the first
iteration of the algorithm and did not change during the network training.
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Figure 6. Different kinds of behavior of neurons in the hidden
layer in the course of training by the conjugate gradient method

Thus, the visualization of neurons states in the hidden layer has identified
the following kinds of behavior of the sigmoid NN:

1. In the course of training by the gradient descent, weights are adjusted
so that the output vectors of hidden neurons are shifted to the vertices
or faces of a k-dimensional cube, i.e. one or more components of the
vector take extreme values.

2. Upon reaching the state, described in Section 1, the weights of the
hidden layer neurons remain essentially unchanged, and further train-
ing of the network only leads to modifications of the weights of output
layer neurons.
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3. Having found that the conjugate gradient method for the entire train-
ing process affects both the weights of the hidden layer and the output
layer weights for a while, as a method of gradient descent determines
the weight of the hidden layer on the first iteration, and in the course
of further education almost does not change them.

5. Conclusion

Based on scatterograms of the projections on the plane of the states of the
output and of the hidden layers of sigmoid neural networks, the NN behavior
is studied in solving the problem of recognition of the letters images. The
following is established:

1. When the number of training iterations or the number of neurons in
the hidden layer neurons is increased, the variance of the states decreases.

2. Noising the test samples increases the variance of the neuron states.
3. For a fixed number of iterations, the dispersion of the neuron states de-

pends on the choice of a training algorithm: the conjugate gradient method
gives a lesser variance than the method of steepest descent.

4. The conjugate gradient method consistently improves classification,
while for the method of gradient descent it is not true, in general.

5. The conjugate gradient method for the entire training process affects
both the weights of the hidden layer and the output layer, while the gradient
descent method sets the weights of the hidden layer on the first iteration,
and in the course of further education does not change them.

Based on the experiments performed, an estimate is obtained for the
number of neurons in the hidden layer, to be sufficient for a quality solution
to the problem of recognition. The peculiarities of the behavior of neurons
in the hidden layer in the training process are identified.

The scatterogram of projections of state vectors of neurons is a powerful
tool for assessing the performance of the neural network. The scatterogram
facilitates the process of the NN development and can be used as a tool for
studying the behavior of different classes of neural networks. The conclusion,
based on the scatterogram, can be immediately obtained after training the
network and used for its modification and optimization. The scatterogram
tool is clear and easy to understand.
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