
Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 133–142
c© 2008 NCC Publisher

Mapping a neural network onto a distributed
image processing system

Mikhail S. Tarkov

Abstract. Algorithms for mapping a weight matrix of a neural layer onto dis-
tributed computer systems with a torus structure are proposed for parallel image
processing. It is shown that the choice of the mapping technique depends upon
the ratio between the number of neurons and the number of weight coefficients
in a neuron (the number of pixels): if this ratio is sufficiently small, the column
distribution is more efficient, otherwise the row distribution is more suitable. In
particular for the Hopfield network, the row distribution is always more efficient
than the column distribution.

1. Introduction

The neurocomputer technology of image processing is one of the promising
directions in the solution of the problem of information systems performance
increase [1, 2]. A possibility to solve different image processing problems by
a common algorithmic basis is an advantage of such a technology. In addi-
tion, it is necessary to mention that most of image processing problems have
a “natural” parallelism of computations because of features of the digital im-
age representation as a two- or a three-dimensional array. A massive com-
putation parallelism is the main property of neurocomputers. Currently, for
this reason, image processing (image enhancement and segmentation, object
registration, etc.) is a conventional sphere of the neurocomputer application.

An element of a neural network (a neuron) implements the transforma-
tion y = f((w, x)), where (w, x) is the inner product of an input signal vector
x by a vector w of the neuron weight coefficients, f is a nonlinear activation
function. Every weight coefficient corresponds to one input (a synapse) of
a neuron. A set of non-connected neurons processing the same input vector
forms a neural layer. The layer functioning is described by the formula

Y = f(Wx), (1)

where W is a matrix with neuron layer weight vectors as rows, Y is a vector
of output signals. The major part of neural network computations consists
in multiplication operations of the weight matrix of its first layer by the
vector of the image pixel intensities. The result is a large-scale number of
computations and the necessity to use a highly parallel computer system.

A distributed computer system (CS) (a computer system with distributed
memory) is a set of elementary computers (EC) connected by a network

134 M.S. Tarkov

controlled by computers. The structure of the distributed CS is described
by a graph with nodes corresponding to ECs and edges corresponding to
computer interconnections. In a modern supercomputer with distributed
memory, the three-dimensional tori are most often used as computer inter-
connection graphs [3, 4].

A k-dimensional torus Ek(p1, p2, . . . , pk) is an undirected graph, in which
the nodes can be labeled as k-tuples (i1, i2, . . . , ik), 0 ≤ ij ≤ pj − 1. Every
node (i1, i2, . . . , ik) of the graph has two neighbors in each dimension of
the torus. Its left neighbor in the jth dimension is (i1, . . . , (ij − 1) mod
pj , . . . , pk), and its right neighbor in this dimension is (i1, . . . , (ij + 1) mod
pj , . . . , pk) [8].

A preliminary stage of image processing is filtration [5], which is often
described by the convolution H ∗ F of the intensity function f(i, j) with a
set of the filter weight coefficients

H = (h(k, l, i, j)), k, l = −M, . . . , M, i = 1, . . . , N1, j = 1, . . . , N2,

g(i, j) =
M∑

k=−M

M∑
l=−M

h(k, l, i, j)f(k + i, l + j). (2)

In transformation (2), a square window of the size (2M + 1)× (2M + 1),
M � min(N1, N2) is widely used. So, computations in a pixel are asso-
ciated with processing of a small neighborhood of this pixel, i.e., filtration
algorithms (2) are local. In a limit, for a maximal parallelization of compu-
tations, every image pixel is in one-to-one correspondence with a processor.
Such a style of parallelism is known as geometric.

It follows from the locality of transformation (2) that:

• the neighborhood of EC in a system must correspond to that of an
image pixel;

• mapping a data segment processed by algorithm (2) onto ECs must
preserve the neighborhood of this segment;

• the mesh shown in Figure 1 can be efficiently used as a graph of a
parallel system of processes of filtration of images.

This mesh has a good mapping onto a torus structure of the computer
system. From now on, we assume components of the image x to be equally
distributed over the system computers so that the neighboring pixels are
always mapped onto the same EC or onto the adjacent ECs of the mesh.

The way of organizing intercomputer communications for the parallel
implementation of operation (1) is determined by distribution of entries
of the matrix W over computers. Currently, many techniques for map-
ping neural networks onto parallel computer systems are being developed

Mapping a neural network onto a distributed image processing system 135

[6, 7], however these techniques do not take
into account features of the above geomet-
ric parallelism of algorithms (2) for prelim-
inary image processing. The solution to
this problem is an objective of this paper.

Let us consider two ways of a neural
layer mapping onto a distributed CS struc-
ture:

1. Distribution of the matrix W rows
over computers (parallelism of neu-
rons);

2. Distribution of the matrix W
columns over computers (parallelism
of synapses).

Figure 1. Graph of parallel
program for preliminary (low-
level) image processing (“mesh”)

2. Mapping a neural layer by distribution of weight matrix
rows over computers

Let us consider organization of intercomputer communications for distribu-
tion of the weight matrix W rows over computers. Since every matrix row
corresponds to one neuron of the network, the distribution of rows describes
the mapping of neurons onto computers. To do computations for all neu-
rons by expression (1), it is necessary to gather components of the image x
in every computer, i.e., to implement the translational-cyclic exchange (“all
to all”) of components of the vector x. As a result, multiplication of the
weight matrix W by this vector can be executed in parallel in all comput-
ers (the number of simultaneous multiplications is equal to the number of
computers).

The translational-cyclic exchange in a k-dimensional torus is reduced
to a number of translational-cyclic exchanges in the torus rings, i.e. in the
structures described by cyclic subgroups. In every ring, exchanges are exe-
cuted as shown in Figure 2. Every computer Mj , j = 0, . . . , pi− 1, sends its
array of pixels to the computer M(j−1) mod pi

, j = 0, . . . , pi− 1, and receives
an array from the computer M(j+1) mod pi

, j = 0, . . . , pi − 1. We assume all
intercomputer connections in the same ring to work simultaneously. The
described actions are iterated until all computers in the ring receive all pix-
els distributed over them. The exchanges are implemented in parallel for all
rings of the dimension i and sequentially in order of dimensions i = 1, . . . , k.
For example, for a two-dimensional torus (Figure 3), exchanges can be ex-
ecuted in parallel for horizontal rings and then in parallel for all vertical
rings.

136 M.S. Tarkov

Figure 2. Exchanges in a ring

Figure 3. Example of a two-dimensional torus

Mapping a neural network onto a distributed image processing system 137

Let n be the number of pixels in an image, m be the number of neurons
in a layer, p be the number of computers in the system, to be the time of
one arithmetical operation, tw be the time for one data transmission, pi be
the order of the ith generator of the torus. We suppose n to be a multiple
of p.

Statement 1. The time of the translational-cyclic data exchange does not
depend upon the torus dimension and is equal to

Te = n
(

1− 1
p

)
tw. (3)

Proof. It follows from the proposed algorithm of a translational-cyclic ex-
change in a k-dimensional torus that after completion of the l-th step of the
exchange, l ∈ {1, . . . , k}, every computer has n

p

∏l
i=1 pi data elements and,

respectively, after k steps it has n elements because
∏k

i=1 pi = p.
Then the time of l steps implementation is equal to

T (l)
e =

n

p

l∑
i=1

(pi − 1)
i−1∏
j=1

pjtw. (4)

Transforming formula (4) for k = l, we have

T (k)
e =

n

p

k∑
i=1

(pi − 1)
i−1∏
j=1

pjtw =
n

p

[k∑
i=1

i∏
j=1

pj −
k∑

i=1

i−1∏
j=1

pj

]
tw

=
n

p

[k∏
j=1

pj −
0∏

j=1

pj

]
tw =

n

p
(p− 1)tw.

Because the number of the image pixels n � 1, we neglect the time for
computation of the activation function f . Hence the time of the sequential
execution of multiplication W on x in the layer is

Tseq ≈ 2mnto . (5)

Let the number of neurons m be a multiple of p. We consider a case of
a uniform neuron distribution over computers, i.e., every computer has m

p
neurons. For a torus with p computers, the time of parallel execution of Wx
is

Tr =
2mn

p
to + n

(
1− 1

p

)
tw. (6)

For m to be a multiple of p and a uniform distribution of neurons over
computers, the speedup is

138 M.S. Tarkov

Sr =
Tseq

Tr
≈ 2mnto

2mnto
p + n(1− 1

p)tw
= p

1

1 + (p−1)tw
2mto

.

So, we arrive at

Statement 2. For the distribution of rows of the matrix W over computers
(parallelism of neurons), the speedup does not depend upon the number of
pixels and is equal to

Sr ≈ p
1

1 + (p−1)tw
2mto

. (7)

3. Mapping a neural layer by distribution of weight matrix
columns over computers

For the distribution of the matrix W columns over computers, it is possible
to implement multiplications of the matrix coefficients by suitable compo-
nents of the image vector x without intercomputer data exchanges. Then it
is necessary to sum up the products obtained. Partial sums are evaluated
in p computers in parallel. After that, for evaluation of complete sums,
it is necessary to realize exchanges across a binary tree of intercomputer
connections mapped onto a graph of the computer system.

The number of complete sums is equal to the number m of neurons.
This number can be arbitrary and, in particular, a multiple to the number
of computers. To balance a load of all computers, it is necessary to pro-
vide a maximal parallelism of the summation operations. This requirement
is satisfied with the summation scheme known as “butterfly” (Figure 4).

Figure 4

Mapping a neural network onto a distributed image processing system 139

The butterfly scheme provides a simultaneous evaluation of several sums.
If the number of terms is sufficient, the number of simultaneously executed
operations is equal to the number of computers.

Because not all the butterfly pro-
cesses work simultaneously, it is nec-
essary to join processes that cannot
be implemented in parallel. In Fig-
ure 4, the joined processes lie along
vertical lines. As a result of join-
ing, we have a hypercube (Figure 5).
Here the numbers in brackets show
the steps of interactions between hy-
percube nodes.

Bidirectional arrows in Figure 5
show duplex channels, transmit-
ting data between hypercube nodes.
Such a channel provides two oppo-
site simultaneous message transmis-
sions. So, at every butterfly stage

Figure 5

(stages (1)–(3) in Figure 4), it is possible to make simultaneous summations
of entries for two different arrays.

The hypercube edges are mapped onto a torus with dilations [8, 9]. It
is shown in [8] that a d-dimensional hypercube can be mapped onto a torus
Ek(2d1 , . . . , 2dk), di > 1, i = 1, . . . , k, with

∑k
i=1 di = d and with an average

dilation

D =
1
d

k∑
i=1

(3 · 2di−2 − 1). (8)

The dependence of the average dilation D on the number of computers
p = 2d for mapping a d-dimensional hypercube onto a torus is shown in
Table 1. The dilation was calculated for the case of di = d/k, i = 1, . . . , k.

Table 1. Average dilation of hypercube edges mapped onto a torus

Mapping onto 2D torus Mapping onto 2D torus Mapping onto 3D torus

d p D d p D d p D

4 16 1 12 4096 7.833 6 64 1
6 64 1.667 14 16384 13.571 9 512 1.667
8 256 2.75 16 65536 23.875 12 4096 2.75

10 1024 4.6

Let us evaluate the computation speedup for the case of distribution
of the matrix W columns over computers. The time for multiplication of
weights with appropriate pixel values with p computers is

140 M.S. Tarkov

Tmult =
mn

p
to.

The time for summation of products with p computers is

Tadd = m
(n

p
− 1
)
to.

So, the time of the partial sums evaluation with p computers is

Tps = Tmult + Tadd = m
(2n

p
− 1
)
to. (9)

After that, the complete sums are evaluated in log2 p steps for all m
neurons of the hypercube mapped onto the torus. At every step, no more
than two summation operations can be executed. Because the number of
terms is divided by 2 from step to step, the time of the complete sums
evaluation for m neurons is

Tcs = (Dtw + to)
log2 p∑
i=1

max
(

1,
m

2i

)
. (10)

So, the complete time of implementation of the parallel neural layer is

Tc = Tps + Tcs = m
(2n

p
− 1
)
to + (Dtw + to)

log2 p∑
i=1

max
(

1,
m

2i

)
. (11)

For m to be multiple of p, we have from (10) that

Tcs = m(Dtw + to)
log2 p∑
i=1

1
2i

= m
p− 1

p
(Dtw + to). (12)

Therefore, we derive from expressions (11), (12):

Tc = m
(2n

p
− 1
)
to + m

p− 1
p

(Dtw + to)

=
m

p
[(2n− 1)to + (p− 1)Dtw]. (13)

Finally, the speedup in this case is

Sc =
Tseq

Tc
≈ 2mnto

m
p [(2n− 1)to + (p− 1)Dtw]

= p
1

2n−1
2n + (p−1)Dtw

2nto

, (14)

and we arrive at

Mapping a neural network onto a distributed image processing system 141

Statement 3. For the column distribution of the matrix W over computers
(the synapse parallelism), the speedup does not depend upon the number of
neurons in the layer and is equal to

Sc ≈ p
1

1 + (p−1)Dtw
2nto

. (15)

Comparing (7) and (15), we conclude

Statement 4. If m > n/D, then Sr > Sc, otherwise Sr ≤ Sc. In other
words, if the number m of neurons exceeds the number n of synapses (pixels)
divided by the average dilation D of mapping the hypercube edges onto a
torus, then the row distribution of the matrix W (parallelism of neurons)
is more efficient than its column distribution (parallelism of synapses), and
vice versa.

To evaluate the speedup, we use parameters of the supercomputer Cray
T3E [2]: the processor performance of 1200 Mflops and the channel commu-
nication capacity of 480 Mb/s. We assume any data item to have 4 bytes.
Then to = 1

1.2·109 ≈ 0.83 · 10−9 s and tw = 4
480·106 ≈ 8.3 · 10−9 s. In Table 2,

the speedup coefficient Sr is compared with Sc for p = 1024 for different
values of m. It is seen that the neuron parallelism is more efficient for a
large number of neurons in a layer (m ≥ 16384) and the synapse parallelism
is more suitable for smaller values (m ≤ 8192).

Table 2. The speedup coefficient Sr versus Sc = 753

m 1024 2048 4096 8192 16384 32768 65536

Sr 171 293 455 630 780 886 950

4. Mapping the Hopfield network

The Hopfield neural network is a one-layer network with feedback (Figure 6).
Its functioning is described by the recurrent expression

xk+1 = f(Wxk). (16)

The suitable weight matrix is a square matrix, i.e., the number of neurons
is equal to the number of neuron synapses (or to the number of image pixels).

142 M.S. Tarkov

Figure 6

With regard to this restriction, we
have from (7) that

Sr = p
1

1 + (p−1)tw
2nto

. (17)

Comparing (15) and (17) and
taking into account the fact that
D ≥ 1, we conclude that Sr ≥ Sc

regardless parameters of an image
and of the computer system, i.e.,
the neuron parallelism is always
more efficient than the synapse
parallelism for mapping the Hop-
field neural networks onto a torus.

References

[1] Egmont-Petersen M., de Ridder D., Handels H. Image processing with neural
networks–– a review // Pattern Recognition.–– 2002.–– Vol. 35. –– P. 2279–2301.

[2] Ghennam S., Benmahammed K. Image restoration using neural networks //
Proc. of IWANN 2001.–– Springer, 2001. –– P. 227–234. –– (LNCS; 2085).

[3] Cray T3E.–– http://www.cray.com/products/systems/crayt3e/1200e.html.

[4] Yu H., Chung I-H., Moreira J. Topology mapping for Blue Gene/L supercom-
puter // Proc. of the ACM/IEEE SC2006 Conf. on High Performance Network-
ing and Computing, November 11–17, 2006, Tampa, FL, USA. –– ACM Press,
2006. –– P. 52–64.

[5] Gonzalez R.C., Woods R.E. Digital Image Processing. –– Prentice Hall, 2002.

[6] Sundararajan N., Saratchandran P. Parallel architectures for artificial neural
networks. Paradigms and implementations. –– IEEE Computer Society, 1998.

[7] Ayoubi R.A., Bayoumi M.A. Efficient mapping algorithm of multilayer neu-
ral network on torus architecture // IEEE Trans. on Parallel and Distributed
Systems.–– 2003. –– Vol. 14, No. 9. –– P. 932–943.

[8] Gonzalez A., Valero-Garcia M., Diaz de Cerio L. Executing algorithms with
hypercube topology on torus multicomputers // IEEE Trans. on Parallel and
Distributed Systems.–– 1995.–– Vol. 6, No. 8. –– P. 803–814.

[9] Tarkov M.S., Mun Y., Choi J., Choi H.-I. Mapping adaptive fuzzy Kohonen
clustering network onto distributed image processing system // Parallel Com-
puting. –– 2002. –– Vol. 28, No. 9. –– P. 1239–1256.

