
Bull. Nov. Comp.Center, Comp. Science, 24 (2006), 119–128
c© 2006 NCC Publisher

Sisal 3.1 language structures decomposition∗

A.P. Stasenko

Abstract. The paper describes equivalent transformations of Sisal 3.1 language
structures in detail. The programming language Sisal 3.1 is based on Sisal 90.
Transformations are aimed to to decomposition of complex language structures
into more simple ones that can be directly expressed by an internal representation
IR1 based on an intermediate form language IF1. Currently some description of
similar transformations can be found in few works about Sisal 90 in the form of
examples. The specified transformations are actually performed inside the front-
end compiler from Sisal 3.1 into the internal representation IR1 and can be used to
better understand its translation strategy. The paper also briefly (but sufficiently
for understanding) describes the difference between Sisal 3.1 and Sisal 90.

1. Introduction

The Sisal 3.1 language [1], developed in the A.P. Ershov Institute of Infor-
matics Systems, is a direct successor of Sisal 90 (Stream and Iteration in
a Single Assignment Language) data-flow language [2] that was originally
designed by collaborating teams from the Lawrence Livermore National Lab-
oratory, Colorado State University, the University of Manchester and Digital
Equipment Corporation. Sisal 3.1 simplifies, improves, extends and more ex-
actly specifies Sisal 90. Sisal 3.1 also incorporates ideas of enhanced module
support and preprocessing of Sisal 3.0 [3]. The most significant extension
of Sisal 3.1 are function overloading and user-defined types, for which it is
possible to define user-defined operations.

During translation, some complex Sisal 3.1 language structures need to
be reduced to more unified objects of the internal representation IR1 [4]
based on the intermediate form language IF1 [5]. Peculiarities of such trans-
formations are shown in terms of Sisal 3.1 by decomposition of complex lan-
guage structures into more simple ones that can be directly expressed by
IR1. The aspects of parallelization are not covered in this paper, since the
IF1 language is based on the data flow which is parallelized by the compiler
back-end or run-time support system.

∗Work was financially supported by the Ministry of Education of the Russian Fed-
eration (the scientific program “Universities of Russia”, grants N UR.04.01.027 and
N UR.04.01.201).

120 A.P. Stasenko

2. Decomposition of the case expression

The conditional expression case is naturally decomposed into the condi-
tional expression if with additional elseif branches. Since the if expres-
sion with an arbitrary number of elseif branches can be already explicitly
expressed by the IF1 language, its further simplification is not performed by
the Sisal 3.1 front-end compiler and is not shown in this paper.

Every selection list of the case expression is transformed into one if
or elseif condition using logical disjunction and conjunction operations
over the comparison operation results: equality (=), “less than or equal
to” (≤) and “greater than or equal to” (≥). For expressions “case tag”
and “case type”, the infix operation tag (tag function of Sisal 90) and the
expression “type [. . .]” are used, respectively.

3. Decomposition of the multidimensional loops

Let us consider the following n-ary m-dimensional loop, where each reduc-
tion corresponds to one loop dimension (for the simplicity of further nota-
tion):

for D1 cross D2 repeat
B
returns RN1 of RV1 ;

. . . ;
RNn of RVn

end for

The name D1 denotes the loop range generator part without the operator
cross and multidimensional indices of the at construction, the name D2 de-
notes the remaining part of the range generator, the name RNi∈1...n denotes
the reduction name with possible initial values and the name RVi denotes
reduction loop values. In that notation m-dimensional loop expression can
be decomposed into the following two loop expressions of dimensions 1 and
m− 1:

for D1 repeat
x1 , . . . , xn := for D2 repeat

B
returns RN ′

1 of RV1 ;
. . . ;
RN ′

n of RVn

end for
returns RN ′′

1 of x1 ;
. . . ;
RN ′′

n of xn

end for

Sisal 3.1 language structures decomposition 121

The name xi here and any other name with overline without a special
note later denote any unique name. The names RN ′

i and RN ′′
i depend on

the name RNi as shown in Table 1.

Table 1. Decomposition rules for multi-dimensional reductions, that show how to
determine the names RN ′

i and RN ′′
i , which are used in this section before, from

the name RNi

Value of the RNi name RN ′
i RN ′′

i

Equals to value, product, least ,
greatest, catenate, “catenate (. . .)” or
user-defined reduction.

RNi value

Equals to “array [k]1(i1, . . . , ik)”,
where:

• part “[k]” is optional and
equals to “[m]” by default;

• last indices of the part
“(i1, . . . , ik)” are optional
like this whole part and
equal to 1 if omitted.

k > 1

k = 1

array [k−1] (i2, . . . , ik) array (i1)

array [1] (i2, . . . , ik) catenate (i1)

Equals to “stream [k]1”, where
part “[k]” is optional and equals to
“[m]” by default.

k > 1
k = 1

stream [k − 1] stream
stream [1] catenate

If the range generator contains multidimensional indices “n in S at j1, . . .”
before the operator cross, then the multidimensional loop can be repre-
sented in the following way:

for D3 n in S at j1 , D4 repeat
B
returns RN1 of RV1 ;

. . . ;
RNn of RVn

end for

The name D3 denotes the range generator part without the operator
cross and multidimensional indices of the construction at, the name S de-
notes the array or stream source of multidimensional indices, the name D4

denotes the remaining part of the range generator. In that notation m-
dimensional loop expression can also be decomposed into the following two
loop expressions of dimensions 1 and m−1 (where the names RN ′

i and RN ′′
i

depend on the name RNi as shown in Table 1):

1In Sisal 3.1 array [k] and stream [k] notation replaces array kd and stream kd no-
tation of Sisal 90.

122 A.P. Stasenko

for D3 n1 in S at j1 repeat
x1 , . . . , xn := for n in n1 at D4 repeat

B
returns RN ′

1 of RV1 ;
. . . ;
RN ′

n of RVn

end for
returns RN ′′

1 of x1 ;
. . . ;
RN ′′

n of xn

end for

4. Decomposition of the array element selection

Let us represent the element selection expression from the array A as “A[se-
lection construction]”. Its notation in Sisal 3.1 differs from that in Sisal 90
only by using the symbol “!” instead of “:” to separate parts of the triplets
(the meaning of “:” in Sisal 3.1 was changed to more clearly represent the
postfix typecast operation).

If a selection construction does not have the cross (or comma) operator,
then it can be represented as “D1 dot D2 dot . . . dot Dm”, where m ≥ 1
and all expressions D1, . . . , Dm are ranges (as required by the operator
dot semantics). If m = 1 and the part D1 is a singlet, then the array
element selection operation can be represented directly in the IR1 and does
not require further decomposition, otherwise the array element selection
operation can be decomposed into the following one-dimensional loop:

for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A1 := A [x1 , x2 , . . . , xm]
returns array of A1

end for

The name xi (here and later) denotes any unique name, if the part Di

does not have the form “name N in Di”, and denotes the name N otherwise.
If the selection construction contains the operator cross (or comma), then
it can be represented as “S1, S2, . . . , Sm cross C1” or “D1 dot D2 dot
. . . dot Dm cross C2”, where S1, . . . , Sm denote singlets and the names
C1 and C2 denote the remaining parts of the selection construction and
additionally the part C1 does not begin with a singlet.

The array element selection operation beginning with a singlet can be
decomposed into the following let expression (further decompositions need
to be applied recursively):

Sisal 3.1 language structures decomposition 123

let A1 := A [S1 , S2 , . . . , Sm]
in A1 [C1]

end let

The array element selection operation beginning with a range can be
decomposed into the following one-dimensional loop (further decompositions
need to be applied recursively):

for x1 in D1 dot x2 in D2 dot . . . xm in Dm repeat
A1 := A [x1 , x2 , . . . , xm]
returns array of A1 [C2]

end for

The presented decomposition of the array element selection operation
also explains an additional restriction, which is missed in Sisal 90 user man-
ual, for the selection construction triplets with omitted parts: they must
be placed as the first operand of the selection construction or just after the
cross operator. In the range D1, the first and second omitted triplet parts
are explicitly represented via “liml (A)” and “limh (A)”, correspondingly.
In the ranges D2, . . . , Dm the triplet parts cannot be omitted because there
is no corresponding univocal array dimension available whose lower and up-
per bounds can be taken. In summary, an arbitrary array element selection
operation was decomposed into the array element selection with simple in-
dices.

5. Decomposition of the array element replacement

In this section, we continue to use the notation of selection construction
introduced before. The array element replacement expression in a general
form looks like “A [selection construction := replacement construction]”.
The array element replacement operation in Sisal 3.1 differs from the same
operation of Sisal 90 only by using the symbols “:=” with a more clear
meaning instead of the symbol “!” between the selection and replacement
constructions. It is further shown that any array element replacement ex-
pression can be decomposed into the array one-element replacement with
simple index.

5.1. Array element replacement with a singlet list selection
construction

If the selection construction is a singlet list S1, . . . , Sn, then the replacement
construction is allowed to be an expression list E1, . . . , Et and the array
element replacement operation is elementary represented as a composition
of the following one-element replacement operations:

124 A.P. Stasenko

A [S1 , . . . , Sn := E1]
[S1 , . . . , (Sn) + 1 := E2]
. . .
[S1 , . . . , (Sn) + (t−1) := Et]

5.2. Array element replacement with a scalar replacement
construction

Let us consider the case then the selection construction is not a singlet
list and the replacement construction is an expression of type of the n-th
dimension of the array A, where n is the number of the selection construction
ranges and singlets. In this case the array element replacement operation
can be decomposed into nested one-dimensional loops, obtained after the
recursive application of the decompositions given below.

If the selection construction does not have the cross (or comma) oper-
ator, the array element replacement operation can be decomposed into the
following one-dimensional loop:

for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A := old A [x1 , x2 , . . . , xm := replacement construction]
returns value of A

end for

The array element replacement operation beginning with a singlet can be
decomposed into the following let expression (further decompositions need
to be applied recursively):

let A1 := A [S1 , S2 , . . . , Sm]
in A1 [C1 := replacement construction]

end let

The array element replacement operation beginning with a range can be
decomposed into the following one-dimensional loop (further decompositions
need to be applied recursively):

let A1 := A
in for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A2 := old A1 [x1 , x2 , . . . , xm] ;
A3 := A2 [C2 := replacement construction] ;
A1 := old A1 [x1 , x2 , . . . , xm := A3]
returns value of A1

end for
end let

Sisal 3.1 language structures decomposition 125

5.3. Array element replacement with array replacement
construction

Let us consider the case then the selection construction is not a singlet list
and the replacement construction is an expression of type of a k-dimensional
array of elements that have the type of the n-th dimension of the array
A. In the considered case, k should be a sum of ranges in the selection
construction minus the number of its dot operators. In this case the array
element replacement operation can be also decomposed into nested one-
dimensional loops, obtained after the recursive application of decompositions
given below.

If the selection construction does not have the cross (or comma) oper-
ator, the array element replacement operation can be decomposed into the
following one-dimensional loop:

let i := 1
in for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A := old A [
x1 , x2 , . . . , xm :=
(replacement construction) [i]

] ;
i := old i + 1
returns value of A

end for
end let

The array element replacement operation beginning with a singlet can be
decomposed into the following let expression (further decompositions need
to be applied recursively):

let A1 := A [S1 , S2 , . . . , Sm]
in A1 [C1 := replacement construction]

end let

The array element replacement operation beginning with a range can be
decomposed into the following one-dimensional loop (further decompositions
need to be applied recursively):

let A1 := A; i := 1
in for x1 in D1 dot x2 in D2 dot . . . xm in Dm

A2 := old A1 [x1 , x2 , . . . , xm] ;
A3 := A2 [C2 := (replacement construction) [i]] ;
A1 := old A1 [x1 , x2 , . . . , xm := A3] ;
i := old i + 1
returns value of A1

126 A.P. Stasenko

end for
end let

6. Decomposition of the “where” expression

The where expression in Sisal 3.1 was seriously reconsidered since Sisal 90.
In Sisal 90, it has a limited case-based design, requiring all conditions to be
functions of the same array, that is unnatural and needs a special handling
by a parser. In Sisal 3.1, the where expression has the following form:

where n-dimensional array A i s name I in
expression R

end where

The new where expression is semantically more powerful because:

• it does not require the expression R to be the case expression;

• it is easier to parse due to the isolation of the control array A on the
syntax level;

• it is more natural due to the semantics of the name I, representing
an array A element, in the expression R, that removes duality of the
control array name in the Sisal 90 where expression.

The Sisal 3.1 where expression is decomposed into nested one-dimensional
loops in the following way:

for A1 in A returns array of
for A2 in A1 returns array of

. . .

for I in An−1 returns array of
expression R

end for
. . .

end for
end for

7. Decomposition of the vector operations

In addition to arithmetic, relational and boolean vector operations of Sisal
90, Sisal 3.1 allows any infix, prefix and postfix operations (including user
defined operations) to be extended to their vector forms. Sisal 3.1 also al-
lows vector operations between streams and arrays that produce streams.
All vector operations are decomposed into one-dimensional loops. An oper-
ation on multidimensional vectors is decomposed into a vector operation on
vectors of lower dimensions.

Sisal 3.1 language structures decomposition 127

Prefix and postfix operations on arrays op (A) are decomposed into:

for i in A

returns array (l im l (A)) of op (i)
end for

Prefix and postfix operations on streams op (S) are decomposed into:

for i in S

returns stream of op (i)
end for

An infix operation op on two arrays A1 and A2 is decomposed into:

for i1 in A1 dot i2 in A2

returns array of i1 op i2
end for

An infix operation op on array A and stream S is decomposed into:

for ia in A dot is in S

returns stream of ia op is
end for

An infix operation op on array A and non-vector value V is decomposed
into:

for i in A

returns array (l im l (A)) of i op V
end for

An infix operation op on stream S and non-vector value V is decomposed
into:

for i in S

returns stream of i op V
end for

References

[1] Stasenko A.P. Basic means of the Sisal 3.1 language. — Novosibirsk, 2006.
— 60 p. — (Prepr. / Siberian Division of the Russian Academy of Sciences.
A.P. Ershov Institute of Informatics Systems; N 132) (in Russian).

[2] Feo J.T. Sisal 90 user’s guide / Feo J.T., Miller P.J., Skedzielewski S.K. and Den-
ton S.M. — Livermore, CA: Lawrence Livermore National Laboratory, Draft
0.96, 1995. — 80 p.

[3] Kasyanov V.N., Biryukova Yu.V., Evstigneev V.A. A functional language Sisal
3.0 // Supercomputing support and Internet-oriented technologies. — Novosi-
birsk, 2001. — P. 54–67 (in Russian).

128 A.P. Stasenko

[4] Stasenko A.P. Internal representation of functional programming system Sisal
3.0. — Novosibirsk, 2004. — 54 p. — (Prepr. / Siberian Division of the Russian
Academy of Sciences. A.P. Ershov Institute of Informatics Systems; N 110) (in
Russian).

[5] Skedzielewski S.K., Glauert J. IF1 – An intermediate form for applicative lan-
guages, version 1.0. — Livermore, CA, 1985. — 68 p. — (Tech. Rep. / Lawrence
Livermore National Laboratory; M-170).

