
Bull. Nov. Comp.Center, Num. Anal., 17 (2015), 61–67
c© 2015 NCC Publisher

Optimized parallel algorithm for solving the
Poisson equation in non-stationary problems∗

N.V. Snytnikov

Abstract. We compare two algorithms for solving the Poisson equation: the first
one is based on domain decomposition with direct coupling of subdomains (DDCS)
and the second one is based on multidimensional Fast Fourier Transform and data
transposition (FFTT).

Results of the comparison made helped us to introduce several optimizations
for the DDCS method and to develop a new method combining DDCS/FFTT, that
is aimed at solving the 3D Poisson equation on grids with billions of nodes using
thousands of processors.

1. Introduction

Simulating the dynamics of stars and gas in the galaxies [1–3] or circum-
stellar disks [4] requires to solve the 3D Poisson equation for a gravitational
potential. It is necessary to use grids that could provide a fine spatial reso-
lution (10243, 20483, and higher).

Such grids cannot be placed in the memory of a single processor. There-
fore some kind of computational domain decomposition is needed. At the
same time the decomposition must provide minimal communications be-
tween processors, because interconnections are considered as a main perfor-
mance bottleneck in supercomputer simulations.

In [5,6], we proposed an algorithm for solving 2D and 3D Poisson equa-
tions in the context of non-stationary problems (DDCS). It is based on cou-
pling the adjacent subdomains using the single-layer potential method [7]
and pre-computation of auxiliary values in the Fourier expansion of a single
layer potential (that is similar to the idea proposed in [8]).

In this paper, we compare two algorithms for solving the 2D Poisson
equation: the DDCS method and de facto a standard method of multi-
dimensional Fast Fourier Transform with Transposition (FFTT). The latter
one is simple, highly efficient and easy to implement. So, the comparison is
useful because it helps one to identify possible issues with the DDCS and
gives an idea of comparative performance measured in absolute units.

A detailed description of the DDCS algorithm can be found in [5, 6],
therefore we do not discuss it here. In Section 2, we briefly describe the

∗Supported by the RFBR under Grants 14-01-31088, 14-07-00241. Numerical experi-
ments were conducted at the Siberian Supercomputer Center, Joint Supercomputer Cen-
ter, and MSU Lomonosov supercomputer.

62 N.V. Snytnikov

FFTT algorithm, discuss the comparison results for DDCS and FFTT, and
propose several optimizations for DDCS. In Section 3, we outline a general
scheme of the hybrid DDCS/FFTT method.

2. Comparison with a parallel FFT-based algorithm

The 2D FFTT algorithm was implemented in the following way. The com-
putational domain Ω with Lx × Ly grid domation is divided in X direction
into N equal subdomains Ωn. One processor is assigned to treat each sub-
domain. So, the total number of processors is N .

FFTT Algorithm:

1. On each processor apply one-dimensional Fast Sine Transform to the
grid density function in Y direction (FSTY).

2. Perform data transposition from Y to X direction: subdivide a grid
function into blocks and transfer them to all the other processors. It
corresponds to the MPI procedure MPI Alltoall.

3. On each processor apply FSTX.

4. Multiply resulting values by corresponding values of wave numbers.

5. Apply the inverse FSTX.

6. Perform data transposition from X to Y direction.

7. Apply the inverse FTSY.

8. Finally, the resulting grid function of the gravitational potential de-
fined on the subdomain Ωn will be located in the memory of the cor-
responding processor.

The communication complexity of this algorithm is defined by
MPI Alltoall procedure. Each processor must send LyLx/N real values and
receive the same amount of data.

Test experiments were performed on MVS-100K at Joint Supercomputer
Center (JSCC) and on the supercomputer at Siberian Supercomputer Cen-
ter (SSCC) and on the MSU Lomonosov supercomputer. The results were
similar and compatible for all the three supercomputers (thus, we present
the measurement results only for SSCC). We used FFTW 3.1.4 library [11]
for the Fast Fourier Transforms.

We split the total time of the FFTT algorithm to the two parts: Tcalc

(the time needed to perform direct and inverse FSTX and FSTY, seri-
alize/deserialize data before and after transposing) and Tcomm (the time
needed to perform two calls of MPI Alltoall).

Optimized parallel algorithm for solving the Poisson equation. . . 63

The DDCS time was split to the three logical parts:

• Tcalc: the time needed to solve the Poisson and the Laplace equations
locally in a subdomain,

• Tcomm: interprocessor communications –– transfer data using the pro-
cedure MPI SendRecv,

• Tprop: calculation of a single layer potential and boundary conditions
for all the tree structure levels.

Tables 1 and 2 represent a weak scaling of the DDCS and the FFTT
algorithms (where the number of grid nodes is proportional to the number
of processors, i.e. amount of nodes per processor is kept the same).

Tables 3 and 4 represent a strong scaling for 16384× 16384 and 65536×
65536 problems (where the number of grid nodes is kept the same, while the
number of processors is increasing).

Table 1. Weak scaling of DDCS and FFTT algorithms on supercomputer NKS-G6
SSCC: the computational domain and grid size are increasing in one direction pro-
portional to the number of processors

Np Lx × Ly

Solving time for 2048Np × 2048 grid, s

DDCS FFTT

Tall Tcalc Tcomm Tprop Tall Tcalc Tcomm

4 4096× 2048 1.02 0.98 0.04 0.0004 0.55 0.49 0.06
8 8192× 2048 0.98 0.97 0.01 0.0008 0.73 0.64 0.09

16 16384× 2048 0.99 0.98 0.01 0.0011 0.80 0.65 0.15
32 32768× 2048 0.98 0.97 0.01 0.0014 0.97 0.76 0.21
64 65536× 2048 0.99 0.97 0.02 0.0017 1.17 0.91 0.25

128 131072× 2048 1.07 0.98 0.09 0.0020 1.78 1.12 0.66
256 262144× 2048 1.08 0.98 0.10 0.0023 2.25 1.27 0.97
512 524288× 2048 1.07 0.97 0.09 0.0025 2.60 1.57 1.03

Table 2. Weak scaling of DDCS and FFTT algorithms on supercomputer NKS-G6
SSCC: the computational domain is increasing in two directions, but the total grid
size is kept proportional to the number of processors

Np Lx × Ly

Solving time for 2048
√

Np × 2048
√

Np grid, s

DDCS FFTT

Tall Tcalc Tcomm Tprop Tall Tcalc Tcomm

4 4096× 4096 1.05 1.00 0.05 0.001 0.56 0.49 0.07
16 8192× 8192 1.03 1.00 0.02 0.005 0.77 0.64 0.13
64 16384× 16384 1.11 1.07 0.02 0.019 0.94 0.71 0.23

256 32768× 32768 1.37 1.15 0.16 0.062 1.33 0.81 0.53

64 N.V. Snytnikov

Table 3. Strong scaling of DDCS and FFTT algorithms on supercomputer
NKS-G6 SSCC: the computational domain is kept the same (16384 × 16384) and
the number of processors is increasing

Np
of nodes
per proc.

Solving time for 16384× 16384 grid, s

DDCS FFTT

Tall Tcalc Tcomm Tprop Tall Tcalc Tcomm

16 16,777,216 5.74 5.66 0.07 0.01 3.50 2.97 0.53
32 8,388,608 2.32 2.20 0.10 0.02 1.83 1.39 0.43
64 4,194,304 1.11 1.07 0.02 0.02 0.94 0.71 0.23

128 2,097,152 0.62 0.53 0.07 0.02 0.56 0.35 0.21
256 1,048,576 0.34 0.26 0.05 0.03 0.32 0.18 0.14
512 524,288 0.20 0.13 0.04 0.03 0.37 0.09 0.28

Table 4. Strong scaling of DDCS and FFTT algorithms on supercomputer
NKS-G6 SSCC: the computational domain is kept the same (65536 × 65536) and
the number of processors is increasing

Np
of nodes
per proc.

Solving time for 65536× 65536 grid, s

DDCS FFTT

Tall Tcalc Tcomm Tprop Tall Tcalc Tcomm

256 16,777,216 6.79 6.29 0.35 0.15 7.10 3.95 3.15
512 8,388,608 3.10 2.63 0.30 0.17 3.58 1.95 1.63

The analysis of the results brings about the following conclusions:

1. The time spent on communications for the DDCS algorithm (Tcomm)
is less (by several times) than the time spent on communications for the
FFTT algorithm.

2. The total time for the DDCS algorithm (Tall) is not much better than
the total time for FFTT. In some cases (like strong scaling on 16384 ×
16384 grid) it is even worse unless it is launched on 512 processors. The
explanation is the following: modern supercomputers (both their hardware
and software) are good when providing fast communications for a moderate
number of processors (less than 1024) as it used to be, so the calculation
time for FFTT (Tcalc) is comparable with the time communication (Tcomm).
However, the calculation time for the DDCS includes solving the Poisson
equation two times (see a detailed description in [5]), so this time cannot be
easily compensated.

3. The DDCS algorithm has an extremely good scalability in the case of
increasing the computational domain in one direction (see Table 1). How-
ever, if the domain increases in two directions, the results does not look
impressive (see Table 2). The reason is in the increasing amount of data
(increasing Ly dimension) that should be transferred between subdomains
in each SendRecv operation.

Optimized parallel algorithm for solving the Poisson equation. . . 65

This means that the 2D version of the DDCS algorithm can be useful for
a big number of processors for problems with elongated subdomains. While
for the average-size problems it is still better to use the FFTT algorithm.

3. The optimized parallel algorithm for solving
the 3D Poisson equation

Since our main interest is to solve the 3D Poisson equation, we have ana-
lyzed what optimizations could be applied to the algorithms described in [6].
We have measured the time headed for communications procedures for both
DDCS and FFTT algorithms (i.e. MPI AlltoAll and MPI SendRecv opera-
tions) and compared their performance.

First of all, it turned out that in the case of using a big number of
MPI processes (more than 256) independent pair-wise communications in
the DDCS algorithm at the propagation stage in the bottom-up tree pass
(see [6] for the tree structure description) have an unstable performance.
If MPI processes participating in SendRecv communication are located at
the same CPU node, then SendRecv procedure is fast. But if both MPI
processes are far from each other, then communication time may be 10–50
times worse (e.g. 0.6 seconds against 0.02 seconds). In the ideal case, where
each processor is connected with an other processor, it should not happen.
But in the case of real supercomputers, the communications are performed
in a more complicated way, so a lot of things depend on how hardware and
software are organized. Thus, instead of independent SendRecv communi-
cations for each MPI process we reformulate the algorithm in such a way
as to minimize the number of bottom-up SendRecv communications and
instead we use top-down Broadcast communication. This gives a significant
performance gain in reducing communication time (up to ten times).

The second interesting result of the analysis is how MPI Alltoall com-
munication procedure behaves when using a two-directional slab decompo-
sition [9, 10]. We have found, that the performance of the two-directional
decomposition (where 2 transpositions in 2 directions should be applied)
does not work significantly better than a one-directional decomposition. The
performance in most of the cases is even worse because of the fact that the
first transposition is made inside a group of MPI processes that are located
closely to each other (at the same nodes, or at connected nodes). But for
the second transposition, the MPI group processes are very far from each
other. So, the performance for the latter group may be 5–15 times worse.

These considerations lead to the following algorithm for solving the 3D
Poisson equation that combines DDCS with FFTT. The computational do-
main Ω with Lx×Ly×Lz grid dimensions is divided into N = Nx×Nz slab
subdomains in X and Z directions. For each subdomain Ωn,m we assign
one processor gn,m. Then we define larger subdomains Ωn = ∪mΩn,m and

66 N.V. Snytnikov

Ωm = ∪nΩn,m, and then create a group of processors Gn =
∑

m gn,m and
Gm =

∑
n gn,m corresponding to the subdomains Ωn and Ωm.

Combined DDCS/FFTT Algorithm:

1. On each processor apply FSTY to the grid density function.

2. On each group Gn make a data transposition from Y to Z direction.

3. Apply the DDCS algorithm for each of the group Gm. We need to
solve Ly independent 2D screened Poisson equations.

4. On each group Gn make a data transposition from Z to Y direction.

5. Apply the inverse FSTY.

6. Finally, each processor gn,m contains the grid functions of the gravita-
tional potential for Ωn,m.

The test experiments with the grid 20483 and 1024 processors have shown
that an appropriate choice of processor groups (like Nx = 32 and Ny = 32,
where processors of the group Gn are located closer to each other in a hard-
ware network) may significantly reduce the communication time (approxi-
mately by 10 times, from 7 seconds to 0.5 seconds) if compared with the
FFTT-only version.

4. Conclusion

In this paper, we present the results of comparing the two algorithms for
the Poisson equation solution. It turned out that for average-sized problems.
the 2D version of FFTT algorithm is preferable, while the DDCS algorithm
is useful for a big number of processors (thousands and even more) and
elongated subdomains.

To solve the 3D Poisson equation we propose several optimizations and
the new algorithm based on a combination of DDCS and FFTT.

References

[1] Vshivkov V.A., Snytnikov V.N., Snytnikov N.V. Simulation of three-
dimensional dynamics of matter in gravitational field with the use of multipro-
cessor computer // Computational Technologies. –– 2006. –– Vol. 11, No. 2. ––
P. 15–27 (In Russian).

[2] Vshivkov V.A., Lazareva G.G., Snytnikov A.V., et al. Hydrodynamical code
for numerical simulation of the gas components of colliding galaxies // Astro-
physical J. Supplement Series. –– 2011.–– Vol. 194. –– P. 1–12.

[3] Springel V., Yoshida N., White S.D.M. GADGET: a code for collisionless and
gasdynamical cosmological simulation // New Astronomy. –– 2001. –– Vol. 6. ––
P. 79–117.

Optimized parallel algorithm for solving the Poisson equation. . . 67

[4] Snytnikov V.N., Vshivkov V.A., Kuksheva E.A., et al. Three-dimensional nu-
merical simulation of a nonstationary gravitating N-body system with gas //
Astronomy Letters. –– 2004.–– Vol. 30. –– P. 124–137.

[5] Snytnikov N.V. A parallel algorithm for solving 2D Poisson’s equation in
the context of nonstationary problems // Vychislitel’nye Metody i Program-
mirovanie. –– 2015.–– Vol. 16. –– P. 39–51 (In Russian).

[6] Snytnikov N.V. Domain decomposition based on a direct method for solv-
ing the three-dimensional Poisson’s equation in nonstationary astrophysical
problems // Vychislitel’nye Metody i Programmirovanie. –– 2015. –– Vol. 16. ––
P. 94–98 (In Russian).

[7] Huang J., Greengard L. A fast direct solver for elliptic partial differential
equations on adaptively refined meshes // SIAM J. Sci. Comput. –– 2000. ––
Vol. 21. –– P. 1551–1566.

[8] Terekhov A.V. Parallel dichotomy algorithm for solving tridiagonal system
of linear equations with multiple right-hand sides // Parallel Computing. ––
2010.–– Vol. 36. –– P. 423–438.

[9] Ayala O., Wang L.P. Parallel implementation and scalability analysis of 3D
Fast Fourier Transform using 2D domain decomposition // Parallel Comput-
ing. –– 2013. –– Vol. 39. –– P. 58–77.

[10] Duya T.V.T., Ozaki T. A decomposition method with minimum communi-
cation amount for parallelization of multi-dimensional FFTs // Computer
Physics Communications. –– 2014.–– Vol. 185. –– P. 153–164.

[11] Frigo M., Johnson S.G. FFTW Software. –– http://www.fftw.org.

68

