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Model 
he
king puzzles in �-Cal
ulus

�

N.V. Shilov, K.Yi

Tne paper dis
usses some issues related to model 
he
king utility and reliability: (1) utility of model 
he
king and

games for solving puzzles, and (2) importan
e of games and puzzles for validation of model 
he
kers.

1. Introdu
tion

The role of formal methods in the development of 
omputer hard- and software in
reases sin
e systems

be
ome more 
omplex and require more e�orts for their spe
i�
ation, design, implementation and

veri�
ation. At the same time, formal methods be
ome more 
ompli
ated, sin
e they have to 
apture

real properties of real systems for sound reasoning. The best way to get opinion about the s
ope and

range of resear
h of formal methods and their industrial-strength appli
ations is to visit spe
ial sites

� http://ar
hive.
omlab.ox.a
.uk/formal-methods.html in Oxford,

� http://shemesh.lar
.nasa.gov/fm/ in NASA

or from pro
eedings of the latest World Congress on formal methods FM'99 [16℄.

A survey of formal methods is out of the s
ope of this paper. Nevertheless, let us remark that

spe
i�
ation languages whi
h are in use in formal methods range from propositional to high-order level

while a proving te
hnique is either semanti
al (model-
he
king) or synta
ti
 (dedu
tion) reasoning. In

parti
ular, program logi
s are modal logi
s used in hard- and software veri�
ation and spe
i�
ation.

A spe
ial pla
e in a diversity of propositional program logi
s belongs to the propositional �-Cal
ulus

(�C) of D. Kozen [21℄ due to its expressiveness. In brief �C 
an be de�ned as a polymodal variant

of the basi
 modal logi
 K with �xpoints. A model 
he
king problem for the �-Cal
ulus is a very

important resear
h topi
 [12, 3, 13, 15, 4, 32, 33, 9, 10, 31, 14℄. Close relations between model 
he
king

�C and spe
ial bisimulation games are under investigation in papers [32, 33, 31℄. In parti
ular, in�nite

model 
he
king games have been de�ned in [32℄. Then, [33℄ has de�ned �nite �xed point games and


hara
terized indistinguishability of states by means of formulae with bounded amounts of modalities

and �xpoints in terms of winning strategies with bounded amounts of moves. The last 
ited paper [31℄

has exploited model-
he
king games for pra
ti
al eÆ
ient lo
al model 
he
king. We would like also

to point out that it is very important to express and 
he
k existen
e of a winning strategy in �nite

games. For example, paper [2℄ suggests an ability to 
he
k winning strategies for ameri
an 
he
kers

on n� n desk as a real measure for a power of a model 
he
ker. In 
ontrast to papers [32, 33, 31, 2℄,

we would like to dis
uss two other issues related to the role of games for the �-Cal
ulus, namely:

� model 
he
king and abstra
tion for programming puzzles (se
tions 2, 3),

� validation of model 
he
kers via game test-suits (se
tions 4, 5).

Importan
e of puzzles and games for early tea
hing formal methods is another 
losely related

topi
. We would like to remark that (in spite of importan
e of the formal approa
h to development

of reliable hard- and software) the resear
h domain of formal methods is not well-a
quainted to non-

professionals. We are espe
ially 
on
erned with disappointing ill-motivated attitude and suppose that

a de�
it in popular le
tures, tutorials and papers on this topi
 is the main reason for this ignoran
e

(please refer to [27, 28℄ for detailed dis
ussion). Earlier and better tea
hing formal methods via popular

(but sound) presentation of mathemati
al foundations of formal methods 
an be based on games and

�
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game-based puzzles. The edu
ational role of games and game-based puzzles is a
knowledged in the

literature on logi
s of knowledge in 
omputer s
ien
e. For example, in [17℄ a knowledge-based analysis

of the muddy 
hildren puzzle, syn
hronous atta
k and Byzantine agreement motivates and illustrates

the basi
 theoreti
al ideas and 
on
epts. Maybe the main lesson whi
h edu
ators and resear
hers

should learn from [17℄ is: for being attra
tive mathemati
al foundations of formal methods should be

illustrated by 
hallenging game-based examples. A similar approa
h to program logi
s presentation is

exploited in [29℄ and s
ket
hed in [28℄.

2. Program logi
s via games

Let ftrue; falseg be boolean 
onstants, Prp and A
t be disjoint �nite alphabets of propositional and

a
tion variables, respe
tively. The syntax of the 
lassi
al propositional logi
 
onsists of formulae and

is 
onstru
ted from propositional variables and boolean 
onne
tives : (negation), ^ (
onjun
tion) and

_ (disjun
tion) in a

ordan
e with standard rules. Elementary Propositional Dynami
 Logi
 (EPDL)

[19℄ has additional features for 
onstru
ting formulae | modalities whi
h are asso
iated with a
tion

variables: if a is an a
tion variable and � is a formula, then ([a℄�) and (hai�) are formulae

2

. The

semanti
s of EPDL is de�ned in models whi
h are 
alled Transition Systems or Kripke Stru
tures. A

modelM is a pair (D

M

; I

M

), where the domain D

M

is a nonempty set, while the interpretation I

M

is a

pair of spe
ial mappings (P

M

; R

M

). Elements of the domain D

M

are 
alled states. The interpretation

maps propositional variables into sets of states and a
tion variables into binary relations on states:

P

M

: Prp! P(D

M

) ; R

M

: A
t! P(D

M

�D

M

)

where P is a power-set operation. We write I

M

(p) and I

M

(a) instead of P

M

(p) and R

M

(a), whenever

it is impli
it that p and a are propositional and a
tion variables. Models 
an be 
onsidered as labeled

graphs with nodes and edges marked by sets of propositional and a
tion variables, respe
tively. For

every model M = (D

M

; I

M

) a validity relation j=

M

between states and formulae 
an be de�ned

indu
tively with respe
t to the stru
ture of formulae. Semanti
s of boolean 
onstants, propositional

variables and propositional 
onne
tives is de�ned in the standard way:

1. s j=

M

(hai�) i� (s; s

0

) 2 I

M

(a) and s

0

j=

M

� for some state s

0

,

2. s j=

M

([a℄�) i� (s; s

0

) 2 I

M

(a) implies s

0

j=

M

� for every state s

0

.

So, an experien
ed mathemati
ian 
an see that EPDL is just a polymodal variant of the 
lassi
al basi


modal logi
 K [6℄.

Finite games 
an illustrate all EPDL-related notions. A �nite game of two plays A and B is a

tuple (P; M

A

; M

B

; F ), where

� P is a nonempty �nite set of positions,

� M

A

;M

B

� P � P are (possible) moves of A and B,

� F � P is a set of �nal positions.

A session of the game is a sequen
e of positions s

0

; :::s

n

; :::, where all even pairs are moves of

one player (ex., all (s

2i

; s

2i+1

) 2 M

A

), while all odd pairs are moves of another player (ex., all

(s

2i+1

; s

2i+2

) 2 M

B

). A pair of 
onse
utive moves of two players that 
omprises three 
onse
utive

positions is 
alled a round. A player loses a session i� after a move of the player the session enters a

�nal position for the �rst time. A player wins a session i� another player loses the session. A strategy

of a player is a subset of the player's possible moves. A winning strategy for a player is a strategy of

the player whi
h always leads to the player's win: the player wins every session whi
h he/she begins

and in whi
h he/she implements this strategy instead of all possible moves. Every �nite game G of

the above kind 
an be represented as a �nite Kripke stru
ture M

G

in a natural way:

2

whi
h are read as \box/diamond a �" or \after a always/sometimes �", respe
tively
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� states are positions P ,

� a
tion variables move

A

and move

B

are interpreted as M

A

and M

B

,

� a propositional variable fail is interpreted as F .

Proposition 1. Let G be a �nite game of two players, a formula WIN

0

be false and for every i � 1

WIN

i+1

be a formula :fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _WIN

i

)

�

.

�For every i � 0 the formula WIN

i

is valid in those states of M

G

where a player A has a winning

strategy with i-rounds at most.

�For every i > 0 the �rst step of every i-rounds at most winning strategy for a player A 
onsists

in a move to a position where :fail ^ [move

B

℄(fail _WIN

i�1

) is valid.

Let an in�nite disjun
tion

W

i�0

WIN

i

with semanti
s

S

i�1

fs : s j=

M

WIN

i

g in a model M be a

spe
ial extension of EPDL.

�An in�nite disjun
tion

W

i�0

WIN

i

is valid in those states of M

G

where a player A has a winning

strategy.

�An in�nite disjun
tion

W

i�0

WIN

i

is an illegal formula of EPDL and is not equivalent to any

formula of EPDL.

The above proposition 1 naturally leads to the following suggestion. Let us de�ne the propositional

�-Cal
ulus as an extension of EPDL by two new features: if p is a propositional variable and � is a

formula, then (�p:�) and (�p:�) are formulae

3

. We would like also to impose the following 
ontext-

sensitive restri
tion: No bounded instan
e of a propositional variable 
an be negative. Informally

speaking, �p:� is an \abbreviation" for an in�nite disjun
tion

false _ �

p

(false) _ �

p

(�

p

(false)) _ �

p

(�

p

(�

p

(false))) _ ::: =

_

i�0

�

i

p

(false)

while �p:� is an \abbreviation" for another in�nite 
onjun
tion

true ^ �

p

(true) ^ �

p

(�

p

(true)) ^ �

p

(�

p

(�

p

(true))) ^ ::: =

^

i�0

�

i

(true);

where �

p

( ) is a result of substitution of a formula  for p in �, �

0

p

( ) is  , and �

i+1

p

( ) is �

p

(�

i

p

( ))

for i � 0. In spite of informal 
hara
ter of the above semanti
s, the formal semanti
s in �nite models

is basi
ally the same. For every �nite model M = (D

M

; I

M

) the validity relation j=

M

between states

and formulae of EPDL 
an be extended on formulae of the �-Cal
ulus as follows:

3. s j=

M

(�p:�) i� s j=

M

�

i

p

(false) for some i � 0;

4. s j=

M

(�p:�) i� s j=

M

�

i

p

(true) for every i � 0.

In parti
ular, if � is a formula

:fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _ win)

�

where win is a propositional variable, then the formula WIN

0

is just false � �

0

win

(false), while

WIN

i+1

(i � 0) is

�

i+1

win

(false) � :fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _ �

i

win

(false))

�

:

In terms of the �-Cal
ulus, proposition 1 
an be reformulated:

3

whi
h are read as \mu/nu p �" or \the least/greatest �xpoint p of �", respe
tively
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Proposition 2. Let G be a �nite game of two players, a formula WIN be � win:

�

:fail ^ hmove

A

i

�

:fail ^ [move

B

℄(fail _ win)

�

�

.

�For every i � 0 the formula WIN

i

win

(false) is valid in those states of M

G

where a player A has

a winning strategy with i-rounds at most.

�For every i > 0 the �rst step of every i-rounds at most winning strategy for a player A 
onsists

in a move to a position where :fail ^ [move

B

℄(fail _WIN

i�1

win

(false)) is valid.

�A formula WIN is valid in those states of M

G

where a player A has a winning strategy.

�A formula WIN is not equivalent to any formula of EPDL.

3. Towards metaprogram via model 
he
king

Let us 
onsider the following programming problem:

� Write a program with 3 inputs

- a number N of 
oins under question,

- a number M of marked valid 
oins,

- a limit of balan
ing K

whi
h outputs either impossible or another exe
utable intera
tive program ALPHA (in the

same language) with respe
t to existen
e of a strategy to identify a unique false 
oin among

N 
oins with the help ofM marked valid 
oins and balan
ing 
oins K times at most. Ea
h

session with ALPHA should begin with the user's 
hoi
e of the number of a false 
oin and

weather it is lighter or heavier. Then a session 
onsists of a series of rounds and an amount

of rounds in the session should not ex
eed K. At ea
h round the program outputs two

disjoint subsets of the numbers of 
oins to be pla
ed on pans of a balan
e. The user in

turn replies a

ording to his/her initial 
hoi
e. The session �nishes with the �nal output

of the program ALPHA | the number of the false 
oin.

Sin
e the problem is to write a program whi
h produ
es another program, we would like to refer to

the �rst one as metaprogram and to the problem as the metaprogram problem. To ta
kle the problem,

let us give a game interpretation:

� Let M and N be non-negative integer parameters and let (N +M) 
oins be enumerated

by 
onsequent numbers from 1 to (N +M). Coins with numbers in [1::M ℄ are valid while

there is a unique false among 
oins with numbers in [(M+1)::(M+N)℄. The GAME(N,M)

of two players user and prog 
onsists of a series of rounds. On ea
h round a move of prog

is a pair of disjoint subsets (with equal 
ardinalities) of [1::(M +N)℄. A possible move of

user is either <, = or >, but a move must be 
onsistent with all 
onstraints indu
ed in the

previous rounds. Prog wins the GAME(N,M) as soon as a unique number in [1::(M +N)℄

satis�es all 
onstraints indu
ed during the game.

In these settings the metaprogram problem 
an be reformulated as follows:

�Write a program whi
h for all N � 1, K � 0 andM � 0 generates (i� possible)K-rounds

at most winning strategy for prog in the GAME(N,M).

A hint how to solve the metaprogram problem is quite easy: to 
onsider amounts of 
oins instead

of 
oin numbers. This idea is natural: when somebody is solving puzzles, he/she operates in terms

of amounts of 
oins of di�erent kinds not in terms of their numbers! Let us des
ribe this hint in

formal terms as an abstra
t model game(N,M) for the GAME(N,M) (N � 1, M � 0). Positions in

this parameterized game are tuples (u; l; h; v; q), where
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� u is an amount of 
oins in [1::N ℄ whi
h are 
urrently under question but whi
h were not tested

against other 
oins;

� l is an amount of 
oins in [1::N ℄ whi
h are 
urrently under question but whi
h were tested against

other 
oins and turned to be lighter;

� h is an amount of 
oins in [1::N ℄ whi
h are 
urrently under question but whi
h were tested

against other 
oins and turned to be heavier;

� v is an amount of 
oins in [1::(N +M)℄ whi
h are 
urrently known to be valid;

� q is a balan
ing query, i.e. a pair of quadruples ((u

1

; l

1

; h

1

; v

1

) , (u

2

; l

2

; h

2

; v

2

)) of numbers in

[1::(N +M)℄.

Three 
onstraints are absolutely natural: (1)u+ l+h � N , (2)u+ l+h+v = N +M , (3)u+ l+h � 1.

Then we 
an require that (4)u 6= 0 i� l + h = 0 (sin
e a unique false is among non-tested 
oins i� all

previous balan
ings gave equal weights), and (5)v

1

= 0 or v

2

= 0 (sin
e it is not reasonable to add

extra valid 
oins on both pans of a balan
e). Additional 
onstraints should be imposed on queries

(sin
e we 
an borrow 
oins for weighing from available non-tested, lighter, heavier and valid ones):

(6)u

1

+u

2

� u, (7)l

1

+ l

2

� l, (8)h

1

+h

2

� h, (9)v

1

+ v

2

� v, (10)u

1

+ l

1

+h

1

+ v

1

= u

2

+ l

2

+h

2

+ v

2

.

A possible move of a player prog is a query for balan
ing two sets of 
oins, i.e. a pair of positions

(u; l; h; v; ((0; 0; 0; 0); (0; 0; 0; 0)))

prog

�! (u; l; h; v; ((u

1

; l

1

; h

1

; v

1

); (u

2

; l

2

; h

2

; v

2

))):

A possible move of a player user is a reply <, = or > to a query whi
h 
auses a 
hange in positions

(u; l; h; v; ((u

1

; l

1

; h

1

; v

1

); (u

2

; l

2

; h

2

; v

2

)))

user

�! (u

0

; l

0

; h

0

; v

0

; ((0; 0; 0; 0); (0; 0; 0; 0)))

in a

ordan
e with the query and reply:

u

0

=

8

<

:

0 if the reply is < ,

(u� (u

1

+ u

2

)) if the reply is = ,

0 if the reply is > ,

l

0

=

8

<

:

(l

1

+ u

1

) if the reply is < ,

(l � (l

1

+ l

2

)) if the reply is = ,

(l

2

+ u

2

) if the reply is > ,

h

0

=

8

<

:

(h

2

+ u

2

) if the reply is < ,

(h� (h

1

+ h

2

)) if the reply is = ,

(h

1

+ u

1

) if the reply is > ,

v

0

= ((N +M)� (u

0

+ l

0

+ h

0

)):

The �nal position is a position (u; u; h; v; ((0; 0; 0; 0); (0; 0; 0; 0))), where u + l + h = 1. Thus the

game and 
orresponding abstra
t model are 
onstru
ted. An overall amount of positions and moves

in game(N;M) is less than

(N+1)

6

6

. And we are ready to present a high-level model-
he
king-based

design for the metaprogram:

1. (a) to input numbers N and M of 
oins in question and of valid 
oins, a total amount of

balan
ing K;

(b) to model 
he
k formulae WIN

i

win

for all i 2 [0::K℄ in the abstra
t model game(N;M);

(
) if WIN

K

win

is valid in the initial position, then go to 2, else output impossibility of the

strategy and halt;

2. to output a program whi
h model 
he
ks formulae :fail ^ [move

B

℄(fail _ WIN

i

win

(false))

for i 2 [0::(K � 1)℄ in the abstra
t model game(N;M) and has K intera
tive rounds with

its user, namely: for every i 2 [1::K℄ downwards (i.e., from i = K to i = 1) it outputs

to the user a move from the 
urrent position to an intermediate position, where a formula
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:fail^ [move

B

℄(fail_WIN

i�1

win

(false)) is valid in the abstra
t model; then it inputs the user's

reply <, = or > and de�nes the next position.

Corre
tness of the �nal high-level design follows from Proposition 2.

4. Testing model 
he
kers via games

Importan
e of tea
hing program logi
s and model 
he
king is due to importan
e of model 
he
king

appli
ations. The main area of model-
he
king appli
ations is automati
 veri�
ation of hard- and soft-

ware presented as �nite state systems [11℄ while automati
 model 
he
king veri�
ation of high-level

software spe
i�
ations [7, 1℄ or automati
 test generation [18℄ are rapidly developing new appli
ation

domains. We suppose that in both 
ases high-level reliability of model 
he
kers is of extreme impor-

tan
e due to automati
 
hara
ter of model 
he
king. But in spite of importan
e of reliability issues

of veri�
ation tools, there are weak moves only in the formal veri�
ation 
ommunity. Let us dis
uss

some of the reasons behind this situation. First, in automated dedu
tion a reliability problem 
an

most likely be solved by 
oupling a prover with a proof 
he
ker so that the prover will be required

to make proofs that 
an be 
he
ked by the proof 
he
ker. This approa
h seems reasonable due to its

simpli
ity and sin
e proofs are relatively short in 
omparison with the size of systems to be veri�ed,

while proof 
he
king has a linear 
omplexity. Next, the most popular model 
he
kers SMV [8℄ and

SPIN [20℄ are model 
he
kers for temporal logi
s, i.e. they use �xpoints on a metalevel only and so

that all inner �xpoints are independent of outer ones. In this 
ase model 
he
king algorithms are quite

simple and transparent [11℄.

Unfortunately, both above reasons are invalid for model 
he
kers of the �-Cal
ulus in �nite models.

An approa
h �a la theorem proving is impossible due to exponential 
omplexity of model 
he
king

\proofs". At the same time, natural transparen
y of model 
he
king for temporal logi
s is lost due

to 
ompli
ated intera
tion between alternating nesting �xpoints. So we foresee only three reasonable

approa
hes to reliable model 
he
king for the �-Cal
ulus in �nite models:

� simultaneous polyvariant model 
he
king,

� preliminary extensive testing of model 
he
kers,

� formal veri�
ation of model 
he
kers.

Due to reasons mentioned above, the polyvariant approa
h to reliable model 
he
king is time, spa
e

and 
ost expensive. The se
ond approa
h seems to be problemati
 sin
e test-generation is a non-trivial

problem itself. This problem is addressed in [5℄ and brie
y dis
ussed in the next paragraph. As for

formal veri�
ation of model 
he
kers, let us point out two re
ent papers [30, 26℄. The �rst paper

[30℄ has des
ribed a model 
he
ker generated automati
ally from a proof. This model 
he
ker is a

Caml-implementation of a model 
he
king algorithm from [34℄, it is generated by an intera
tive logi


framework Coq from a formally presented proof of 
orre
tness of the algorithm. The se
ond paper

[26℄ has des
ribed the formal spe
i�
ation and veri�
ation of the eÆ
ient algorithm for real-time

model 
he
king implemented in the model 
he
ker RAVEN. It was spe
i�ed and veri�ed using the

KIV veri�
ation system. Thus we 
an summarize that formal veri�
ation of model 
he
kers is a new

developing resear
h domain, but not a pra
ti
al approa
h to implementing reliable model 
he
kers.

Why extensive testing of model 
he
kers for the �-Cal
ulus in �nite models is a non-trivial prob-

lem? Be
ause overall test suits for a model 
he
ker must be transparent (i.e., must have predi
table

results) and exploit non-trivial 
ombinations of �xpoints. But these two 
laims are mutually ex
lusive:

predi
tability of results implies the formulae simpli
ity, while non-trivial 
ombinations of �xpoints are

non-trivial for fore
asting. Maybe, the most appropriate solution to overall testing of model 
he
kers

is to test them against a formally veri�ed model 
he
ker on automati
ally generated test suits.

As far as manual overall testing of model 
he
kers is 
on
erned, the problem domain of �nite games

seems to be the best 
hoi
e for it, sin
e it 
omprises understandability of formulae and veri�ability of



Model 
he
king puzzles in �-Cal
ulus 73

results. Corre
tness of the results in this 
ase 
an be 
he
ked manually or by means of implementing

program robots for player simulation. Below we present two examples of parameterized �nite games

whi
h were in use for manual testing of model 
he
kers for the �-Cal
ulus and �nite models in the

spe
i�
ation and veri�
ation proje
t REAL [22, 23, 5, 24, 25℄. In se
tion 5 we dis
uss and illustrate

another series of examples of spe
ial parameterized �nite games whi
h are to be implemented in this

proje
t for further validation of model 
he
kers. We have used parameterized games for tra
king how

model 
he
kers rea
t to 
hanges in the model size. All examples in this se
tion are 
learly presented as

sear
hing problems for a winning strategy in �nite games for two players while all examples in se
tion

5 are presented in a form of puzzles, but we hope that all readers 
an re
ognize and formalize the

underlying �nite games. The �rst example is 
alled \Millennium Game".

� On the eve of the New Year 19NM (N, M 2 [0::9℄) Ali
e and Bob were playing the

millennium game. Positions in the game were dates of 19NM-2000 years. The initial

position was a random date from this interval. Then Ali
e and Bob made moves in their

turn: Ali
e, Bob, Ali
e, Bob, et
. Available moves were one and the same for both Ali
e

and Bob: if a 
urrent position is a date, then the next 
alendar date and the same day of

the next month are possible next positions. A player won the game i� his/her 
ounterpart

was the �rst who laun
hed the year 2000. Problem: De�ne all initial positions with a

winning strategy for Ali
e.

Another example is a metaprogram problem dis
ussed in se
tion 3. We would like to remark here that

all the above examples deal with formulae WIN and WIN

i

win

(false), i � 0.

5. More 
ompli
ated test suits

A 
lass of test suits presented below is more 
ompli
ated than previous ones sin
e it relies upon a

more 
ompli
ated 
on
ept of games with fairness 
onstraints. A fairness 
onstraint for a �nite game

(P;M

A

;M

B

; F ) is a property of positions, i.e., it holds in some positions and does not hold in others.

A �nite game with fairness 
onstraints is a tuple (P;M

A

;M

B

; F; C), where (P;M

A

;M

B

; F ) is a �nite

game, while C is a �nite set of fairness 
onstraints. Fairness 
onstraints prohibit sessions where some


onstraint holds in�nitely often: a session meets (satis�es) the 
onstraints C i� every 
onstraint in

C holds only �nite number of times in the session. In 
ontrast, fairness 
onditions prohibit sessions

where some 
ondition holds only �nite number of times. An in�nite session is said to be fair with

respe
t to a property i� the property holds for an in�nite amount of positions in the session. A winning

strategy for sessions whi
h meet (satisfy) fairness 
onstraints is a strategy whi
h guarantees win in

every �nite session and guarantees that every in�nite session is fair to some fairness 
onstraint.

Proposition 3. Let (P;M

A

;M

B

; F; C) be a game with fairness 
onstraints, and (P;M

A

;M

B

; F

0

) be

another game with the same positions, the same moves, but with another �nal positions F

0

and without

any fairness 
onstraint: F

0


omprises F and positions where every in�nite session is fair with respe
t

to _C. For every strategy the following statements are equivalent:

�the strategy is a winning strategy for sessions whi
h meet fairness 
onstraints in the game

(P;M

A

;M

B

; F; C);

�the strategy is a winning strategy in the game (P;M

A

;M

B

; F

0

).

Let us 
onsider a formula �q:

�

[a℄q^�r:(p_ [a℄r)

�

. A sub-formula � � �r:(p_ [a℄r) of this formula is

valid in a model in those states where every in�nite a-path eventually leads to p. Another sub-formula

�q:([a℄q ^ �) of �q:

�

[a℄q ^ �r:(p _ [a℄r)

�

is valid in a model in those states where every a-path always

leads to �. Thus the formula �q:

�

[a℄q ^ �r:(p _ [a℄r)

�

� �q:([a℄q ^ �) is valid in a state of a model

i� every in�nite a-path in�nitely often visits the states where p holds. In other words, a formula

�q:

�

[a℄q ^ �r:(p _ [a℄r)

�

is valid in a state of a model i� every in�nite a-path is fair with respe
t to p.

These arguments and the above proposition 3 imply the following
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Proposition 4. Let G be a �nite game of two players with fairness 
onstraints C. Let FAIR(_C) be

a formula

�q:

�

([move

A

℄q ^ [move

B

℄q) ^ �r:

�

(_C) _ ([move

A

℄r ^ [move

B

℄r)

�

�

;

FAIL be a formula fail _ FAIR(_C) and FAIRWIN be another formula

� win:

�

:FAIL ^ hmove

A

i

�

:FAIL ^ [move

B

℄(FAIL _ win)

�

�

:

Then

�FAIR is valid in those states of the model M

G

where every in�nite session is fair with respe
t

to _C;

�FAIRWIN is valid in those states of M

G

where the player A has a winning strategy in sessions

whi
h meet the 
onstraints C.

Let us present an example of a puzzle whi
h 
an be solved in terms of games with fairness 
on-

straints presented above.

� A 
ity 
onsists of squares and roads between them. A taxi driver would like to rea
h

some square (say, Central Station Square) where he/she hopes to get a generous passenger

whi
h is ready to pay as mu
h as the driver asks. Taxi 
an move from one square to

another via a road whi
h 
onne
ts them. Usually the driver sele
ts roads a

ording to

his/her will, but in some squares (these squares are known) o

asional passengers order

him/her to move along a road a

ording to passenger's 
hoi
e, whi
h sometimes is a bad,

poor road (these roads are known too). But for driver's lu
k, there is a �nite number of

o

asional passengers whi
h would like to sele
t these bad roads. Problem: De�ne from

what initial squares the driver 
an rea
h the desirable square while servi
ing all orders of

all o

asional passengers through its rout?

Let us explain how to represent this puzzle as a �nite game with fairness 
onstraints. A hint is to

introdu
e \poli
e stations" at all bad roads. Let positions be all squares and poli
e stations, moves

be roads and the desirable square be the �nal position while a unique fairness 
onstraint be \in a

poli
e station". Finally add some additional stops in order to organize moves in a proper order (i.e.,

...-driver-passenger-driver-...), and the game is ready!
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