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Model checking puzzles in pu-Calculus*

N.V. Shilov, K. Yi

Tne paper discusses some issues related to model checking utility and reliability: (1) utility of model checking and
games for solving puzzles, and (2) importance of games and puzzles for validation of model checkers.

1. Introduction

The role of formal methods in the development of computer hard- and software increases since systems
become more complex and require more efforts for their specification, design, implementation and
verification. At the same time, formal methods become more complicated, since they have to capture
real properties of real systems for sound reasoning. The best way to get opinion about the scope and
range of research of formal methods and their industrial-strength applications is to visit special sites

e http://archive.comlab.ox.ac.uk/formal-methods.html in Oxford,
e http://shemesh.larc.nasa.gov/fm/ in NASA

or from proceedings of the latest World Congress on formal methods FM’99 [16].

A survey of formal methods is out of the scope of this paper. Nevertheless, let us remark that
specification languages which are in use in formal methods range from propositional to high-order level
while a proving technique is either semantical (model-checking) or syntactic (deduction) reasoning. In
particular, program logics are modal logics used in hard- and software verification and specification.
A special place in a diversity of propositional program logics belongs to the propositional p-Calculus
(1C) of D. Kozen [21] due to its expressiveness. In brief uC can be defined as a polymodal variant
of the basic modal logic K with fixpoints. A model checking problem for the p-Calculus is a very
important research topic [12, 3, 13, 15, 4, 32, 33, 9, 10, 31, 14]. Close relations between model checking
pC and special bisimulation games are under investigation in papers [32, 33, 31]. In particular, infinite
model checking games have been defined in [32]. Then, [33] has defined finite fixed point games and
characterized indistinguishability of states by means of formulae with bounded amounts of modalities
and fixpoints in terms of winning strategies with bounded amounts of moves. The last cited paper [31]
has exploited model-checking games for practical efficient local model checking. We would like also
to point out that it is very important to express and check existence of a winning strategy in finite
games. For example, paper [2] suggests an ability to check winning strategies for american checkers
on n x n desk as a real measure for a power of a model checker. In contrast to papers [32, 33, 31, 2],
we would like to discuss two other issues related to the role of games for the u-Calculus, namely:

e model checking and abstraction for programming puzzles (sections 2, 3),

e validation of model checkers via game test-suits (sections 4, 5).

Importance of puzzles and games for early teaching formal methods is another closely related
topic. We would like to remark that (in spite of importance of the formal approach to development
of reliable hard- and software) the research domain of formal methods is not well-acquainted to non-
professionals. We are especially concerned with disappointing ill-motivated attitude and suppose that
a deficit in popular lectures, tutorials and papers on this topic is the main reason for this ignorance
(please refer to [27, 28] for detailed discussion). Earlier and better teaching formal methods via popular
(but sound) presentation of mathematical foundations of formal methods can be based on games and
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game-based puzzles. The educational role of games and game-based puzzles is acknowledged in the
literature on logics of knowledge in computer science. For example, in [17] a knowledge-based analysis
of the muddy children puzzle, synchronous attack and Byzantine agreement motivates and illustrates
the basic theoretical ideas and concepts. Maybe the main lesson which educators and researchers
should learn from [17] is: for being attractive mathematical foundations of formal methods should be
illustrated by challenging game-based examples. A similar approach to program logics presentation is
exploited in [29] and scketched in [28].

2. Program logics via games

Let {true, false} be boolean constants, Prp and Act be disjoint finite alphabets of propositional and
action variables, respectively. The syntax of the classical propositional logic consists of formulae and
is constructed from propositional variables and boolean connectives — (negation), A (conjunction) and
V (disjunction) in accordance with standard rules. Elementary Propositional Dynamic Logic (EPDL)
[19] has additional features for constructing formulae — modalities which are associated with action
variables: if a is an action variable and ¢ is a formula, then ([a]$) and ({(a)¢$) are formulae?. The
semantics of EPDL is defined in models which are called Transition Systems or Kripke Structures. A
model M is a pair (Dys, Ipr), where the domain D)y is a nonempty set, while the interpretation Iy is a
pair of special mappings (P, Ryr). Elements of the domain Dy are called states. The interpretation
maps propositional variables into sets of states and action variables into binary relations on states:

Pyr: Prp — P(Dyar) , R Act — P(Dyr X Dyy)

where P is a power-set operation. We write I5/(p) and Ips(a) instead of Pys(p) and Rjs(a), whenever
it is implicit that p and a are propositional and action variables. Models can be considered as labeled
graphs with nodes and edges marked by sets of propositional and action variables, respectively. For
every model M = (D, Inr) a walidity relation =3 between states and formulae can be defined
inductively with respect to the structure of formulae. Semantics of boolean constants, propositional
variables and propositional connectives is defined in the standard way:

1. s Em ({a)g) iff (s,s") € Ins(a) and s’ f=pr ¢ for some state s/,
2. s =m ([a]@) iff (s,8") € In(a) implies s’ =pr ¢ for every state s'.

So, an experienced mathematician can see that EPDL is just a polymodal variant of the classical basic
modal logic K [6].

Finite games can illustrate all EPDL-related notions. A finite game of two plays A and B is a
tuple (P, M4, Mp, F), where

e P is a nonempty finite set of positions,

e My,Mp C P x P are (possible) moves of A and B,
e ' C P is a set of final positions.

A session of the game is a sequence of positions sg, ...Sp, ..., where all even pairs are moves of
one player (ex., all (sg;, S2i+1) € M), while all odd pairs are moves of another player (ex., all
(82511, S2i42) € Mp). A pair of consecutive moves of two players that comprises three consecutive
positions is called a round. A player loses a session iff after a move of the player the session enters a
final position for the first time. A player wins a session iff another player loses the session. A strategy
of a player is a subset of the player’s possible moves. A winning strategy for a player is a strategy of
the player which always leads to the player’s win: the player wins every session which he/she begins
and in which he/she implements this strategy instead of all possible moves. Every finite game G of
the above kind can be represented as a finite Kripke structure Mg in a natural way:

2which are read as “boz/diamond a ¢” or “after a always/sometimes ¢”, respectively



Model checking puzzles in pu-Calculus 69

e states are positions P,
e action variables move 4 and movepg are interpreted as M4 and Mp,
e a propositional variable fail is interpreted as F'.

Proposition 1. Let G be a finite game of two players, a formula WINy be false and for every i > 1
WIN;iy1 be a formula —fail A (movea)(=fail A [moveg](fail vV WIN;)).

e For every 1 > 0 the formula W IN; is valid in those states of Mg where a player A has a winning
strategy with i-rounds at most.

o For every i > 0 the first step of every i-rounds at most winning strategy for a player A consists
in a move to a position where = fail A [moveg](fail V WIN;_1) is valid.

Let an infinite disjunction \/,~o WIN; with semantics |J,-,{s : s Em WIN;} in a model M be a
special extension of EPDL. B

e An infinite disjunction \/;~, WIN; is valid in those states of Mg where a player A has a winning
strategy. B

e An infinite disjunction \/;~, WIN; is an illegal formula of EPDL and is not equivalent to any
formula of EPDL. -

The above proposition 1 naturally leads to the following suggestion. Let us define the propositional
pu-Calculus as an extension of EPDL by two new features: if p is a propositional variable and ¢ is a
formula, then (up.¢) and (vp.¢) are formulae®. We would like also to impose the following context-
sensitive restriction: No bounded instance of a propositional variable can be negative. Informally
speaking, up.¢ is an “abbreviation” for an infinite disjunction

false V ¢p(false) V ¢,(pp(false)) V op(dp(dp(false))) V ... = \/qﬁ;,(false)
i>0
while vp.¢ is an “abbreviation” for another infinite conjunction

true N ¢p(true) N ¢p(dp(true)) A ¢p(dp(Pp(true))) A ... = /\(ﬁi(true),

>0

where ¢, (1) is a result of substitution of a formula ¢ for p in ¢, ¢g(z/)) is 1, and gb;,“(q/)) is qﬁp((ﬁ;(zp))
for ¢ > 0. In spite of informal character of the above semantics, the formal semantics in finite models
is basically the same. For every finite model M = (D, Ins) the validity relation =3 between states
and formulae of EPDL can be extended on formulae of the u-Calculus as follows:

3. s Eu (up-¢) iff s F=ar ¢y (false) for some i > 0;
4. s =u (vp.g) iff s = gb;,(true) for every i > 0.

In particular, if ¢ is a formula
= fail A (movea) (= fail A [moveg|(fail V win))

where win is a propositional variable, then the formula WINy is just false = ¢ . (false), while
WINi_H (’L Z 0) is

gbz)";}l(false) = —fail A (movey) (—|fa7ll A [moveg](fail V ¢fﬂm(false))).

In terms of the p-Calculus, proposition 1 can be reformulated:

3which are read as “mu/nu p ¢” or “the least/greatest fizpoint p of ¢, respectively
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Proposition 2. Let G be a finite game of two players, a formula WIN be u win.
(—nfail A (movea) (= fail A [moveg](fail v wm)))

e For every i > 0 the formula WINfUm(false) is valid in those states of Mg where a player A has
a winning strategy with i-rounds at most.

o For every i > 0 the first step of every i-rounds at most winning strategy for a player A consists
in a move to a position where = fail A [moveg](fail vV WIN!-!(false)) is valid.

e A formula WIN is valid in those states of Mg where a player A has a winning strategy.
e A formula WIN is not equivalent to any formula of EPDL.

3. Towards metaprogram via model checking

Let us consider the following programming problem:
e Write a program with 3 inputs

- a number N of coins under question,
- a number M of marked valid coins,
- a limit of balancing K

which outputs either impossible or another executable interactive program ALPHA (in the
same language) with respect to existence of a strategy to identify a unique false coin among
N coins with the help of M marked valid coins and balancing coins K times at most. Each
session with ALPHA should begin with the user’s choice of the number of a false coin and
weather it is lighter or heavier. Then a session consists of a series of rounds and an amount
of rounds in the session should not exceed K. At each round the program outputs two
disjoint subsets of the numbers of coins to be placed on pans of a balance. The user in
turn replies according to his/her initial choice. The session finishes with the final output
of the program ALPHA — the number of the false coin.

Since the problem is to write a program which produces another program, we would like to refer to
the first one as metaprogram and to the problem as the metaprogram problem. To tackle the problem,
let us give a game interpretation:

e Let M and N be non-negative integer parameters and let (N 4+ M) coins be enumerated
by consequent numbers from 1 to (N + M). Coins with numbers in [1..M] are valid while
there is a unique false among coins with numbers in [(M +1)..(M + N)]. The GAME(N,M)
of two players user and prog consists of a series of rounds. On each round a move of prog
is a pair of disjoint subsets (with equal cardinalities) of [1..(M + N)]. A possible move of
user is either <, = or >, but a move must be consistent with all constraints induced in the
previous rounds. Prog wins the GAME(N,M) as soon as a unique number in [1..(M + N)]
satisfies all constraints induced during the game.

In these settings the metaprogram problem can be reformulated as follows:

e Write a program which for all N > 1, K > 0 and M > 0 generates (iff possible) K-rounds
at most winning strategy for prog in the GAME(N,M).

A hint how to solve the metaprogram problem is quite easy: to consider amounts of coins instead
of coin numbers. This idea is natural: when somebody is solving puzzles, he/she operates in terms
of amounts of coins of different kinds not in terms of their numbers! Let us describe this hint in
formal terms as an abstract model game(N,M) for the GAME(N,M) (N > 1, M > 0). Positions in
this parameterized game are tuples (u, [, h, v, q), where
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e v is an amount of coins in [1..N] which are currently under question but which were not tested
against other coins;

[ is an amount of coins in [1..N] which are currently under question but which were tested against

other coins and turned to be lighter;

e h is an amount of coins in [1..N] which are currently under question but which were tested
against other coins and turned to be heavier;

e v is an amount of coins in [1..(N + M)] which are currently known to be valid;

q is a balancing query, i.e. a pair of quadruples ((u1, l1, h1, v1) , (u2, l2, ha, v9)) of numbers in

[1..(N + M)).

Three constraints are absolutely natural: (1)u+1+h <N, 2u+I+h+v=N+M, 3)u+I+h> 1.
Then we can require that (4)u # 0 iff [ + h = 0 (since a unique false is among non-tested coins iff all
previous balancings gave equal weights), and (5)v; = 0 or v, = 0 (since it is not reasonable to add
extra valid coins on both pans of a balance). Additional constraints should be imposed on queries
(since we can borrow coins for weighing from available non-tested, lighter, heavier and valid ones):
(6)’[14 +ug < w, (7)[1 +1y <1, (8)h1 + hy < h, (9)’01 +vg < v, (10)U1 +li+hi+v1 = ug+Ilo+hy+ .
A possible move of a player prog is a query for balancing two sets of coins, i.e. a pair of positions

(U,l, h,’U, ((07 0703 0)7 (07 07 07 0))) i (uala h,’U, ((Ul,l1, hlavl)a (uQ, l27 h27v2)))'

A possible move of a player user is a reply <, = or > to a query which causes a change in positions

user

(U,l, h,’U, ((ulalla hlavl)a (Ug,lg, h27v2))) — (Ula lla hlavla ((0703 070)7 (ana Oa 0)))

in accordance with the query and reply:

0 if the reply is <,
v = (u — (u1 +us)) if the reply is =,
0 if the reply is >,
(I1 4+ uq) if the reply is <,
I' = (I — (I1 +12)) if the reply is =,
(I3 4 ug) if the reply is >,
(hg + ug) if the reply is <,
n = (h — (h1 + ho)) if the reply is =,
(h1 + uq) if the reply is >,
v = (N+M)—(u"+1I"+1)).

The final position is a position (u, u, h, v, ((0,0,0,0),(0,0,0,0))), where u + 1+ h = 1. Thus the
game and corresponding abstract model are constructed. An overall amount of positions and moves

in game(N, M) is less than

%. And we are ready to present a high-level model-checking-based

design for the metaprogram:

1. (a)

(b)
(c)

to input numbers N and M of coins in question and of valid coins, a total amount of

balancing K;

to model check formulae WIN: . for all i € [0..K] in the abstract model game(N, M);

if WI me is valid in the initial position, then go to 2, else output impossibility of the
strategy and halt;

2. to output a program which model checks formulae —fail A [moveg](fail V WIN. . (false))
for i € [0..(K — 1)] in the abstract model game(N,M) and has K interactive rounds with
its user, namely: for every i € [l..K] downwards (i.e., from ¢ = K to i = 1) it outputs
to the user a move from the current position to an intermediate position, where a formula
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—fail A[moveg)(fail VWIN®_(false)) is valid in the abstract model; then it inputs the user’s

win

reply <, = or > and defines the next position.

Correctness of the final high-level design follows from Proposition 2.

4. Testing model checkers via games

Importance of teaching program logics and model checking is due to importance of model checking
applications. The main area of model-checking applications is automatic verification of hard- and soft-
ware presented as finite state systems [11] while automatic model checking verification of high-level
software specifications [7, 1] or automatic test generation [18] are rapidly developing new application
domains. We suppose that in both cases high-level reliability of model checkers is of extreme impor-
tance due to automatic character of model checking. But in spite of importance of reliability issues
of verification tools, there are weak moves only in the formal verification community. Let us discuss
some of the reasons behind this situation. First, in automated deduction a reliability problem can
most likely be solved by coupling a prover with a proof checker so that the prover will be required
to make proofs that can be checked by the proof checker. This approach seems reasonable due to its
simplicity and since proofs are relatively short in comparison with the size of systems to be verified,
while proof checking has a linear complexity. Next, the most popular model checkers SMV [8] and
SPIN [20] are model checkers for temporal logics, i.e. they use fixpoints on a metalevel only and so
that all inner fixpoints are independent of outer ones. In this case model checking algorithms are quite
simple and transparent [11].

Unfortunately, both above reasons are invalid for model checkers of the y-Calculus in finite models.
An approach a la theorem proving is impossible due to exponential complexity of model checking
“proofs”. At the same time, natural transparency of model checking for temporal logics is lost due
to complicated interaction between alternating nesting fixpoints. So we foresee only three reasonable
approaches to reliable model checking for the u-Calculus in finite models:

e simultaneous polyvariant model checking,
e preliminary extensive testing of model checkers,

e formal verification of model checkers.

Due to reasons mentioned above, the polyvariant approach to reliable model checking is time, space
and cost expensive. The second approach seems to be problematic since test-generation is a non-trivial
problem itself. This problem is addressed in [5] and briefly discussed in the next paragraph. As for
formal verification of model checkers, let us point out two recent papers [30, 26]. The first paper
[30] has described a model checker generated automatically from a proof. This model checker is a
Caml-implementation of a model checking algorithm from [34], it is generated by an interactive logic
framework Coq from a formally presented proof of correctness of the algorithm. The second paper
[26] has described the formal specification and verification of the efficient algorithm for real-time
model checking implemented in the model checker RAVEN. It was specified and verified using the
KIV verification system. Thus we can summarize that formal verification of model checkers is a new
developing research domain, but not a practical approach to implementing reliable model checkers.

Why extensive testing of model checkers for the u-Calculus in finite models is a non-trivial prob-
lem? Because overall test suits for a model checker must be transparent (i.e., must have predictable
results) and exploit non-trivial combinations of fixpoints. But these two claims are mutually exclusive:
predictability of results implies the formulae simplicity, while non-trivial combinations of fixpoints are
non-trivial for forecasting. Maybe, the most appropriate solution to overall testing of model checkers
is to test them against a formally verified model checker on automatically generated test suits.

As far as manual overall testing of model checkers is concerned, the problem domain of finite games
seems to be the best choice for it, since it comprises understandability of formulae and verifiability of
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results. Correctness of the results in this case can be checked manually or by means of implementing
program robots for player simulation. Below we present two examples of parameterized finite games
which were in use for manual testing of model checkers for the p-Calculus and finite models in the
specification and verification project REAL [22, 23, 5, 24, 25]. In section 5 we discuss and illustrate
another series of examples of special parameterized finite games which are to be implemented in this
project for further validation of model checkers. We have used parameterized games for tracking how
model checkers react to changes in the model size. All examples in this section are clearly presented as
searching problems for a winning strategy in finite games for two players while all examples in section
5 are presented in a form of puzzles, but we hope that all readers can recognize and formalize the
underlying finite games. The first example is called “Millennium Game”.

e On the eve of the New Year 19NM (N, M € [0..9]) Alice and Bob were playing the
millennium game. Positions in the game were dates of 19NM-2000 years. The initial
position was a random date from this interval. Then Alice and Bob made moves in their
turn: Alice, Bob, Alice, Bob, etc. Available moves were one and the same for both Alice
and Bob: if a current position is a date, then the next calendar date and the same day of
the next month are possible next positions. A player won the game iff his/her counterpart
was the first who launched the year 2000. Problem: Define all initial positions with a
winning strategy for Alice.

Another example is a metaprogram problem discussed in section 3. We would like to remark here that
all the above examples deal with formulae WIN and WIN_ . (false), i > 0.

5. More complicated test suits

A class of test suits presented below is more complicated than previous ones since it relies upon a
more complicated concept of games with fairness constraints. A fairness constraint for a finite game
(P,M4, Mp, F) is a property of positions, i.e., it holds in some positions and does not hold in others.
A finite game with fairness constraints is a tuple (P, M4, Mp, F,C), where (P, M4, Mg, F) is a finite
game, while C is a finite set of fairness constraints. Fairness constraints prohibit sessions where some
constraint holds infinitely often: a session meets (satisfies) the constraints C' iff every constraint in
C holds only finite number of times in the session. In contrast, fairness conditions prohibit sessions
where some condition holds only finite number of times. An infinite session is said to be fair with
respect to a property iff the property holds for an infinite amount of positions in the session. A winning
strategy for sessions which meet (satisfy) fairness constraints is a strategy which guarantees win in
every finite session and guarantees that every infinite session is fair to some fairness constraint.

Proposition 3. Let (P,Ms, Mg, F,C) be a game with fairness constraints, and (P, M, Mg, F') be
another game with the same positions, the same moves, but with another final positions F' and without
any fairness constraint: F' comprises F and positions where every infinite session is fair with respect
to VC. For every strategy the following statements are equivalent:

ethe strategy is a winning strategy for sessions which meet fairness constraints in the game
(Pa MAaMBaFa 0)7

ethe strateqy is a winning strategy in the game (P, Ma, Mg, F").

Let us consider a formula vq.([a]g A pur.(pV]a]r)). A sub-formula ¢ = ur.(pV [a]r) of this formula is
valid in a model in those states where every infinite a-path eventually leads to p. Another sub-formula
vq.(lalg A ¢) of vq.([alg A pr.(p V [a]r)) is valid in a model in those states where every a-path always
leads to ¢. Thus the formula vq.([alg A pr.(p V [a]r)) = vq.([a]g A ¢) is valid in a state of a model
iff every infinite a-path infinitely often visits the states where p holds. In other words, a formula
vq. ([a]q Apr.(pV [a]r)) is valid in a state of a model iff every infinite a-path is fair with respect to p.
These arguments and the above proposition 3 imply the following
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Proposition 4. Let G be a finite game of two players with fairness constraints C'. Let FAIR(VC) be
a formula

l/q.(([moveA]q A [moveglq) A pr.((VC) V ([movea]r A [moveB]T))>,

FAIL be a formula fail V FAIR(VC) and FAIRWIN be another formula

W win. <—|FAIL A {move4) (~FAIL A [moveg)(FAIL V wm))) .

Then

o F'AIR is valid in those states of the model Mg where every infinite session is fair with respect
to VC;

e FAIRWIN is valid in those states of Mg where the player A has a winning strategy in sessions
which meet the constraints C.

Let us present an example of a puzzle which can be solved in terms of games with fairness con-

straints presented above.

e A city consists of squares and roads between them. A taxi driver would like to reach
some square (say, Central Station Square) where he/she hopes to get a generous passenger
which is ready to pay as much as the driver asks. Taxi can move from one square to
another via a road which connects them. Usually the driver selects roads according to
his/her will, but in some squares (these squares are known) occasional passengers order
him/her to move along a road according to passenger’s choice, which sometimes is a bad,
poor road (these roads are known too). But for driver’s luck, there is a finite number of
occasional passengers which would like to select these bad roads. Problem: Define from
what initial squares the driver can reach the desirable square while servicing all orders of
all occasional passengers through its rout?

Let us explain how to represent this puzzle as a finite game with fairness constraints. A hint is to
introduce “police stations” at all bad roads. Let positions be all squares and police stations, moves
be roads and the desirable square be the final position while a unique fairness constraint be “in a
police station”. Finally add some additional stops in order to organize moves in a proper order (i.e.,
...-driver-passenger-driver-...), and the game is ready!
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