
Bull. Nov. Comp.Center, Comp. Science, 31 (2010), 139–154
c© 2010 NCC Publisher

Guided tour inside F@BOOL@:
a case-study for a SAT-based verifying compiler∗

Nikolay Shilov, Eugene Bodin, Svetlana Shilova

Abstract. A verifying compiler is a system program that translates programs writ-
ten by an user from a high-level language into equivalent executable programs, and
besides, proves (verifies) mathematical statements specified by the human about the
properties of the programs being translated. The purpose of the F@BOOL@ project
is to develop a transparent for users, compact and portable verifying compiler
F@BOOL@ for annotated computer programs, that uses effective and sound auto-
matic SAT-solvers (i.e. programs that check satisfiability of propositional Boolean
formulas in the conjunctive normal form) as means of automatic validation of cor-
rectness conditions (instead of semi-automatic proof techniques). The key idea is
Boolean representation of all data instead of Boolean abstraction or first-order rep-
resentation. (It makes difference between F@BOOL@ and SLAM.) Our project is
aimed at verification of functional properties, and it assumes generation of first-
order verification conditions (from invariants) and validation/refutation of each
verification condition using SAT-solvers after their conservative translation into a
Boolean form. During the period from 2006 to 2009, a popular (at that time)
SAT-solver zChaff was used in the F@BOOL@ project. The first three verification
experiments that have been exercised with its help are listed below: swapping val-
ues of two variables, checking whether three input values are lengths of sides of an
equilateral or isosceles triangle, and detecting a unique fake in a set of 15 coins.
The paper presents general outlines of the project and details of the last (the most
extensive) experiment.

1. Introduction

A verifying compiler is a system computer program that translates programs
written by a human (“user”) from a high-level language into equivalent
executable programs, and besides, proves (verifies) mathematical statements
specified by the human about the properties of the programs being translated
[10]. The purpose of the F@BOOL@ project is to develop a transparent
for users, compact, portable and extensible verifying compiler F@BOOL@
for annotated computer programs, that uses effective and sound automatic
SAT-solvers (i.e. programs that check satisfiability of propositional Boolean
formulas in the conjunctive normal form) as means of automatic validation
of correctness conditions (instead of semi-automatic proof techniques). The
main target group of users of the F@BOOL@ compiler is the students of

∗Partially supported by RFBR under Grant 09-01-00361-a.

140 N. Shilov, Eu. Bodin, S. Shilova

mathematics, computer science, and information technology departments
studying the basic combinatorics, sorting and search algorithms, basics of
the formal methods (i.e. program specification and verification), etc. Since
the computing programs transform their input data into the output ones,
specifications of the computing programs are of the following two kinds.
These kinds are the partial correctness conditions and the total correctness
conditions. We are mostly interested in the partial correctness conditions.
They are schematically written as {φ}π{ψ}, where π is a program, φ is
a precondition on the input data, and ψ is a postcondition on the output
data. The partial correctness conditions are also known as Hoare triples
[9]. A triple {φ}π{ψ} is said to be true (denoted by |= {φ}π{ψ}) or the
program π is said to be partially correct with respect to the precondition φ
and the postcondition ψ, iff on any input data that satisfy the property φ
the program π either does not stop (it loops forever, hangs up, etc.), or stops
with output data that satisfy the property ψ [9]. An informal method (not
an algorithm!) of determining the validity of partial correctness conditions
has been developed in [8] and it became popular as the Floyd method for
determining the validity of Hoare triples. Its correctness is well-known: if it
is possible to apply it to a triple {φ}π{ψ}, then |= {φ}π{ψ} [9].

The purpose of this paper is to present the current state of the project,
in particular, by means of the most complicated verification example that
has been exercised. This example is formal verification of a program that
solves the following 15-coin puzzle [13]:

• A set of 15 coins consists of 14 valid coins and a fake one.
All valid coins have the same weight while the fake one has a
different weight. The first coin is valid and is marked but all
other coins (including the false one) are unmarked. Is it possible
to identify the false coin using a balance at most 3 times?

Let us remark that verification of any program that solves the puzzle
is not a “verification challenge”, since it can be verified by a complete test
suite that comprises 28 variants of the number and relative weight of the
fake. But the purpose of this case study is to test the F@BOOL@ approach,
not to solve the puzzle or a verification challenge.

In accordance with this purpose, the rest of the paper is organized as
follows. Section 2 sketches the general outlines of the F@BOOL@ project
and the current state of the art (as of September 1, 2010). Then Section 3
sketches the syntax and small-step operational semantics of a programming
language mini-NIL(R, A), that is an extension of the kernel programming
language of the project mini-NIL1 by variable ranges (R) and static arrays
(A). This section also sketches a transformational semantics of mini-NIL(R,

1NIL is acronym for “Non-deterministic Imperative Language”.

Guided tour inside F@BOOL@ 141

A) that transforms mini-NIL(R, A) into the kernel language mini-NIL. The
following Section 4 presents the 15-coin verification example: a method to
detect the fake, a mini-NIL(R, A) annotated program implementation of
the method, the result of transformation of the mini-NIL(R, A) program
into an annotated mini-NIL program, and the final verification condition to
be converted into SAT-format (while technical details are available in the
Appendices). The paper is concluded by Section 5, where some directions
for further research are presented.

2. F@BOOL@ at glance

Mini-NIL is a non-deterministic programming language similar to Basic,
described in the project F@BOOL@ documentation [4, 5]. It consists of
programs with preambles. The preamble defines the range of integer values
and initializes variables. The programs are built of assignment and condi-
tion operators with non-deterministic control passing (transitions), labels,
variables and constants (that are interpreted as elements of the additive or-
dered group of integer residuals modulo some maximal integer 2n > 1). At
present the syntax of mini-NIL has a strict format, since the purpose of this
language is not convenience and flexibility of programming, but “a proof of
concept” of the F@BOOL@ project. The difference between the annotated
and non-annotated programs in the mini-NIL language is that the pream-
ble and some labels (including the initial and all final labels) have logical
annotations associated with them. Informally speaking, the annotations are
logical formulas constructed of equalities and inequalities over arithmetic
expressions by means of usual logic operations of negation, conjunction, dis-
junction, implication, equivalence, and the universal and existence quanti-
fiers. Informally speaking, annotations contributes to the program execution
as “run-time contracts”:

1. the precondition is checked on the input data (these data are speci-
fied in the preamble) and, in the case when this annotation appears
incorrect, an exception “error in input data” is thrown;

2. the postcondition is checked on each set of the output results and, in
the case when this summary appears incorrect, an exception “error in
calculation results” is thrown;

3. before executing an operator marked by a label with an annotation,
the annotation is checked on the current values of variables and, in the
case when this annotation appears incorrect, an exception “run-time
error” is thrown.

The static semantics of the annotated mini-NIL programs consists in
construction of verification/correctness conditions. It is a concretization of

142 N. Shilov, Eu. Bodin, S. Shilova

the Floyd method for partial correctness. Below, the static semantics of
annotations is presented as an annotated pseudo-code.
Precondition. [A program π is a syntactically correct annotated mini-NIL
program in which each operator has a unique label and, for each condition
operator, its then-list and else-list are disjoint.]

1. Represent P as a flowchart with control points, so that

(a) the start of the flowchart is a control point annotated by a pre-
condition as an invariant;

(b) any annotated label is a control point annotated by the corre-
sponding invariant;

(c) the end of the flowchart is a control point annotated by a post-
condition as an invariant.

2. If there exists a loop through the flowchart that does not contain any
control point, then the construction of the static semantics of annota-
tions is immediately interrupted with an indefinite result; otherwise,
it proceeds according to the next step.

3. For each control point l, construct (generate) the following correctness
condition

ξl → (
∧

kis a control point,

ξkis its invariant, and

πk
l is a loop-free path

from l to k

WP (πk
l , ξk)),

where ξl is the annotation (invariant) of the control point l, and WP
is Dijkstra’s weakest precondition transformer for loop-free programs
[7].

4. The set of all generated correctness conditions is said to be the result
of the construction of the static semantics for the annotated program
π.

Postcondition. [For each initial state σ of a program π, if the precondition
is valid in σ and all correctness conditions of π are tautologies, then the
postcondition is valid in each final state that results from the initial σ.]

Soundness of the static semantics of an annotated mini-NIL program has
been proved in technical report [5]. Therefore, by verification of mini-NIL
programs we mean generation and validation of the correctness conditions
of annotated programs. Let us remark that the above method for genera-
tion of correctness conditions is exponential in time and space because of

Guided tour inside F@BOOL@ 143

branching in programs and multiple variable instances in formulas. There-
fore, in the framework of the F@BOOL@ project, a polynomial algorithm
for correctness conditions generation has been developed and justified [12].
This algorithm uses auxiliary variables for invariants when generating the
correctness conditions, and it can be applied both for non-structured non-
deterministic programs and for structured deterministic programs. This
algorithm linearly depends on the number of control constructs in a pro-
gram and the number of statements, but has quadratic dependency on the
total size of the program, precondition, postcondition and the invariants of
the control points. This algorithm has been used in the 15-coin verification
example manually (in section 4), but implementation of the algorithm is a
future research topic.

The key ideas of F@BOOL@ are Boolean representation of all data (in-
stead of Boolean abstraction or first-order representation) and the use of
SAT-solvers for validation of the correctness conditions (instead of deduc-
tive reasoners). These ideas make difference between F@BOOL@ from one
side and BLAST [6] and SLAM [3] verification tools from the other side.
Both tools are static analyzers for a subset of the C language. They it-
eratively build and refine finite models of a program state-space by means
of a so-called Boolean predicate abstraction, model-check program safety
and liveness in these models by means of SAT-solvers and refute illegal
program runs by means of first-order theorem-provers. In contrast, our
project is aimed at verification of functional properties, and it assumes gen-
eration of first-order verification conditions (from invariants), and the vali-
dation/refutation of each verification condition using SAT-solvers after their
“conservative” translation into the Boolean form by means of the following
method.
Precondition. [θ is a first-order correctness condition over the additive
ordered group of integer residuals modulo 2n > 1.]

1. ξ := booln(θ), where booln is an equivalent translation of first-order
formulas over the additive ordered group of integer residuals modulo
2n > 1 into Boolean formulas;

2. χ := cnf3(¬ξ), where cnf3 is an algorithm of translation of Boolean
formulas into an equally satisfiable 3-cnf formula [1].

Postcondition. [A boolean formula χ is satisfiable iff the correctness con-
dition θ is not a tautology.]

Let us note that step 2 of this algorithm has quadratic complexity on the
size of the formula ξ, but the size of the resulting 3-cnf formula χ linearly de-
pends on the size of ξ. However, step 1 has exponential complexity because
of the replacement of universal quantifiers with conjunctions, and existential
quantifiers with disjunctions. Therefore, at the current stage of implemen-
tation of the F@BOOL@ project, quantifiers in annotations are prohibited.

144 N. Shilov, Eu. Bodin, S. Shilova

Provided this limitation, the complexity of step 1 becomes linear. During
the period from 2006 to 2009, a popular at that time SAT-solver zChaff2

was used in the F@BOOL@ project. The first verification experiments have
been successfully made with its help. Our experience is bounded by the
following toy Mini-NIL programs that

• swaps the values of two variables;

• checks whether three input values are the lengths of sides of an equi-
lateral or isosceles triangle;

• solves the 15-coin puzzle.

3. Layers of NIL

The syntax, operational and transformational semantics of mini-NIL have
been defined in [11] and are sketched below.

The syntax of mini-NIL(R, A) consists of programs. Every program
consists of a preamble and a body. A program preamble is a list of variable
and array declarations. A program body is a list of assignments to variables,
updates of array elements and condition operators.

Program Preamble. A maximal integer declaration has the form
‘MaxInt :: M ’, where M is an unsigned integer constant greater than 1.
A variable declaration has the form ‘V AR x : [0..r]’, where x is an identi-
fier (in low case letters), and r is an unsigned integer constant in the range
[0..M] (that is called a variable range). An array declaration has the form
‘ARRAY a[r1, ...rn] : [0..r]’, where a is an identifier (in low case letters),
and n is an unsigned positive integer constant, r1, ...rn, r are unsigned in-
teger constants in the range [0..M]; r1, ...rn are called index ranges and r
is called an element range. An identifier declaration is a variable or array
declaration. A (program) preamble is a finite sequence of declarations that
starts with a single maximal integer declaration and then consists of variable
and array declarations such that every identifier has at most one declaration
within this sequence.

Arithmetic expressions and array elements. Arithmetic expres-
sions and array elements are defined by mutual induction as follows3.

Arithmetic expressions:

• every unsigned integer in the range [0..M] is a (simple) expression;
• every variable is a (simple) expression;
• every array element is a (compound) expression;

2http://www.princeton.edu/∼chaff/zchaff.html
3We will use ‘expression’ and ‘element’ as a shorthand for an arithmetic expression and

array element, respectively.

Guided tour inside F@BOOL@ 145

• every sum and difference of expressions is a (compound) expres-
sion;

Array element has the form ‘a[τ1, ...τn]’, where a is an array, n is a positive
integer, and τ1, ...τn are arithmetic expressions (for element’s indices).

Program body. A label is an unsigned integer 0, 1, 2, ... An assign-
ment operator has the form ‘l : x := τ goto L’, where l is a label, x is
a variable, τ is an arithmetic expression, and L is a finite sequence4 of la-
bels. An update operator has the form ‘l : a[τ1, ...τn] := τ goto L’, where
l is a label, a[τ1, ...τn] is an array element, τ is an arithmetic expression,
and L is a finite sequence of labels. A condition operator has the form
‘l : if ξ then L+ else L−’, where l is a label, ξ is a quantifier-free formula
constructed from equalities/inequalities of arithmetic expressions, L+ and
L− are finite sequences4 of labels. A (program) body is a finite set of oper-
ators5 such that any label marks one operator at most. A label ‘0’ (zero) is
called an initial (or start) label. A final (or terminal) label of a body is any
label that has an instance in the body but does not mark any operator6.

Program. A preamble and a body are said to be consistent, if all
variables and arrays used in the body are declared in the preamble, and all
expressions in the body are type-correct with respect to the preamble. A
program consists of a preamble followed by a body. If π is a program, then
let us denote its preamble by P (π) and its body by B(π).

Thus, the syntax of a programming language Mini-NIL(R, A) is defined.
It can be thought of as an extension of its kernel language mini-NIL [4]
by static arrays and ranges for the values of variables, array indices and
elements.

The operational semantics of mini-NIL(R, A) is called Small Step Seman-
tics and expands the operational semantics of its kernel language. Informally
speaking, execution of a mini-NIL(R, A) program starts from any operator
marked by the label ‘0’ and finishes with a pass of control to any label that
does not mark any operator in the program. An exceptional situation occurs
in execution when an indefinite value is assigned to a variable or when an
indefinite array element is updated7 or when control can not be passed to
any definite label.

Small Step Semantics. A step (or small step) of a program π is a
firing of any operator in π. A start configuration of π is any configuration
with the label 0. A final configuration of π is any configuration with a label

4The empty sequence is admissible.
5I.e. the assignment, update, and condition operators
6It means that a terminal label occurs in ‘goto’, ‘then’, or ‘else’ section(s) of some

operator(s) but does not mark any operator in the body.
7But in contrast, update of a definite array element by an indefinite value does not rise

an exception.

146 N. Shilov, Eu. Bodin, S. Shilova

that does not mark any operator in π. A trace of π is any finite sequence
of configurations such that every consequential pair of configurations within
the sequence is a step of π. A computational trace of π is a trace that
starts from a start configuration and finishes in a final configuration. The
small step semantics of π is the following binary relation SSS(π) on the
state-space:

{(σ′ , σ′′) ∈ Σ× Σ : there is a computational trace of π
that starts from the state σ′ and finishes in the state σ′′}.

Let us observe that this definition is compatible with the definition of the
operational semantics of the kernel language mini-NIL [4].

Paper [2] has suggested a ‘split’ of a computer language into a kernel
layer, a number of intermediate layers and a complete layer. The kernel layer
sublanguage should have a virtual machine semantics and provide tools for
implementation of the intermediate layers; the intermediate layer sublan-
guages in turn should provide tools for the complete layer. Implementation
of an intermediate layer sublanguage in the kernel layer sublanguage should
be a semantics-preserving code transformation.

In the F@BOOL@ verification project, we would like to develop a verifi-
cation-oriented programming language with mini-NIL as a kernel sublan-
guage and mini-NIL(R, A) as one of the intermediate layer sublanguages.
It implies that we have to define some algorithm λ that transforms ev-
ery mini-NIL(R, A) program π into a mini-NIL program λ(π) such that
the small step semantics SSS(π) is ‘equal’ to the operational semantics
{(σ′ , σ′′) ∈ Σ × Σ : σ′′ ∈ λ(π)(σ′) }. The transformation λ comprises
three steps [11]: first, program simplification, then array elimination, and
finally, uniform ranging (i.e. shifting to the uniform range [0..M]).

Informally speaking, program simplification is a very intuitive procedure:
replace any instance τ of a compound index or array element in a compound
expression by a new variable y which should be ‘initialized’ by the value of
τ in advance (i.e. y := τ).

Intuition behind array elimination in a simple program is also very sim-
ple: just emulate any static array by two sets of new variables with indices for
definite values and indefinite ones; for example, replace ARRAY a[2] : [0..5]
by three fresh variables (V AR x0 : [0..5]), (V AR x1 : [0..5]), (V AR x2 :
[0..5]) for representing the values of a[0], a[1] and a[2] when they are def-
inite, and three fresh variables (V AR y0 : [0..1]), (V AR y1 : [0..1]),
(V AR y2 : [0..1]) for indicating whether the values of a[0], a[1] and a[2]
are indefinite.

The idea behind range uniformation is very trivial: if the range r of
a variable x is not equal to MaxInt, then, before any assignment to this
variable x := τ , test whether the value of τ is in the range [0..r].

Guided tour inside F@BOOL@ 147

4. Case study: 15-coin puzzle

The 15-coin puzzle is a hard problem8. Nevertheless, let us present below
how to solve it in a human-friendly notation.

Let us divide the coins into three sets: the first set comprises the marked
valid coin and 4 unmarked coins, the second and third sets comprise un-
marked coins (five coins in each). Then let us balance the first set against
the second one. We can have three outcomes after the first balancing: (<)
the first set is lighter, (>) the second set is lighter, and (=) they are equal.

First let us discuss the last outcome (=). In this case the fake is in the
third set, while all coins in the first and second sets are valid. In this case
let us balance any coin x in the third set with any valid coin against any
two other coins y and z in the third set. Again, we can get three outcomes:
(=, <) the first pair is lighter, (=, >) the second pair is lighter, and (=,=)
the pairs are equal. If pairs are equal (=, =) then the fake is one of two
non-tested coins in the third set, and it can be detected by balancing any of
them against a valid coin. In the subcase (=, <) the fake is either x, y or z;
it can be detected by balancing x and y against any pair of valid coins: if
x&y are lighter than valid coins, then x is the fake, if they are heavier than
the valid, then the fake is y, otherwise the fake is z. The subcase (=, >) is
similar to the previous one. It finishes the case (=).

Let us discuss the first outcome (<). In this case, the fake is one of 9
unmarked coins in two sets, while all 5 coins in the third set are valid. Let
us separate any unmarked coin x from the first set and any unmarked coins
y and z from the second set, and then balance the remaining 6 unmarked
coins in the first and second sets against 6 valid coins (those are the marked
coin and 5 coins from the third set). Again, three outcomes are possible:
(<, <) unmarked coins are lighter, (<,>) they are heavier, and (<,=) they
are equal to valid coins. In the subcase (<,=), the fake is x, y or z, but we
already know that the marked coin with x are lighter than y&z; hence the
fake can be detected by a single balancing similarly to the previous subcase
(=, <). In the subcase (<,<), we know that the fake is lighter and a coin
among three unmarked from the first set; a single light in three coins can be
detected by balancing any two of them once. The subcase (<, >) is similar
to the previous subcase (<,<), but the fake is heavier in this case. It finishes
the case (<).

The last case (>) is similar to (<).
An annotated pseudo-code that formalizes the above method is presented

in the Appendix A. The corresponding annotated mini-NIL(R, A) code is
presented in the Appendix B. An ‘equivalent’ annotated mini-NIL pro-
gram is presented in the Appendix C. This program has been constructed

8Please refer to the expository paper [13] for a “story” how a parameterized variant of
the puzzle can be solved with the help of finite games and fix-point calculus.

148 N. Shilov, Eu. Bodin, S. Shilova

manually according to transformational semantics [11], but with a simpler
array elimination (that is correct, since all elements of the array M[0..14]
are defined as it follows from the precondition). The correctness condition
θ (generated manually according to [12]) is presented in the Appendix D.
Then (according to F@BOOL@ outlines sketched in section 2) the follow-
ing boolean formula cnf3(¬(bool4(θ))) has been constructed automatically
(where booln is an equivalent translation of first-order formulas over the ad-
ditive ordered group of integer residuals modulo 24 = 16 > 14 into Boolean
formulas, and cnf3 is an algorithm of translation of Boolean formulas into
an equally satisfiable 3-cnf formula [1]) and refuted by SAT-solver zChaff9.

5. Concluding remarks: what’s next?

In this paper, we gave a brief overview of the F@BOOL@ project, presented
an intermediate layer of the project programming language mini-NIL with
variable ranges and static arrays, and the most complicated verification ex-
ample that has been exercised so far. The intermediate layer programming
language has been provided with operational and transformational seman-
tics. Below we present and motivate some future research directions.

1. Implement the transformational semantics of mini-NIL [11].

2. Implement the generator of verification condition that has been de-
scribed in [12].

3. Try F@BOOL@ for verification of more interesting examples than be-
fore.

4. Complete the manual proof-sketches from [11] with any proof-assis-
tance.

We think that the first three research topics are quite natural and we
can skip any motivation for them. In contrast, we would like to justify the
last research topic by the following quotation from the Call For Papers10 of
the 4rd Informal ACM SIGPLAN Workshop on Mechanizing Metatheory:

Researchers in programming languages have long felt the need
for tools to help formalize and check their work. With advances
in language technology demanding deep understanding of ever
larger and more complex languages, this need has become ur-
gent. There are a number of automated proof assistants be-
ing developed within the theorem proving community that seem
ready or nearly ready to be applied in this domain. Yet, despite
numerous individual efforts in this direction, the use of proof

9http://www.princeton.edu/∼chaff/zchaff.html
10http://www.seas.upenn.edu/∼sweirich/wmm/

Guided tour inside F@BOOL@ 149

assistants in programming language research is still not com-
monplace: the available tools are confusingly diverse, difficult to
learn, inadequately documented, and lacking in specific library
facilities required for work in programming languages.

References

[1] Aho A.V., Hopcroft J.E., Ullmann J.D. The design and analysis of computer
algorithms. – Addison-Wesley, 1974.

[2] Anureev I.S., Bodin E.V., Gorodnyaya L.V., Marchuk A.G., Murzin F.A.,
Shilov N.V. On the problem of computer language classification // Joint
NCC&IIS Bull. Ser. Computer Science. – 2008. – Iss. 28. – P. 1–29.

[3] Ball T., Cook B., Levin V., and Rajamani S. K. SLAM and Static Driver
Verifier: Technology Transfer of Formal Methods inside Microsoft// Lect.
Notes Comput. Sci. – 2004. – Vol. 2999. – P. 1–20.

[4] Bodin E., Kalinina N., Shilov N. Verifying Compiler F@BOOL@ Part I: Out-
lines of F@BOOL@ project in the context of component-based programming.
Mini-NIL: a prototype of F@BOOL@ virtual machine language. – Novosi-
birsk, 2005. – (Prepr. / IIS SB RAS; N 131).

[5] Bodin E., Kalinina N., Shilov N. Verifying Compiler F@BOOL@ Part II: Log-
ical annotations in mini-NIL, their static and run-time semantics. – Novosi-
birsk, 2006. – (Prepr. / IIS SB RAS; N 138).

[6] Beyer D., Henzinger T.A., Jhala R., Majumdar R. The Software Model
Checker Blast: Applications to Software Engineering// Int. J. on Software
Tools for Technology Transfer. – 2007. – No. 9. – P. 505–525.

[7] Dijkstra W.E. The Dicsipline of programming. – Prentice Hall, 1976.

[8] Floyd R.W. Assigning meanings to programs // Proc. of a Symposium in Ap-
plied Mathematics. Mathematical Aspects of Computer Science. – American
Math. Society, Providence, R. I., 1967. – Vol. 19. – P. 19–32.

[9] Gries D. The Science of Programming. – NY: Springer Verlag, 1981.

[10] Hoare C. A. R. The verifying compiler: a grand challenge for computing
research // Perspectives of Systems Informatics (PSI’2003). – Lect. Notes
Comput. Sci. – 2003. – Vol. 2890. – P. 1–12.

[11] Shilov N.V., Bodin E.V., Shilova S.O. Fabulous arrays I: Operational and
transformational semantics of static arrays in verification project F@BOOL@
// Bull. Nov. Comp. Center. Ser. Comp. Science. – Novosibirsk, 2009. – IIS
Special Iss. 29. – P. 121–140.

[12] Shilov N.V., Anureev I.S., and Bodin E.V. Generation of verification con-
ditions for imperative programs // Programming and Computer Software. –
2008. – Vol. 34, N 6. – P. 307–321.

150 N. Shilov, Eu. Bodin, S. Shilova

[13] Shilov N.V., Yi K. How to find a coin: propositional program logics made
easy // Current Trends in Theoretical Computer Science, World Scientific. –
2004. – Vol. 2. – P. 181–214.

A. Annotated pseudo-code

[There are 15 coins M0, ... M14,
& 13 coins in M1, ... M14 have weight that is equal to M0,
& a single coin in M1, ... M14 has another weight.]

If (weight of) M0 + M1 ... + M4 equals (weight of) M5 + M6 + ... M9
then

1. if M0 + M10 equals M11 + M12

(a) then {if M0 equals M13 then (fake number) F:= 14 else F:= 13}
(b) else {if M0 + M1 equals M10 + M11 then F:= 12 else {if the first

weight was greater than the second in balances 1 and 1(b) then
F:= 11 else F:= 10}}

else

2. if M2 + M3 + M4 + M5 + M6 + M7 is not equal
to M0 + M10 + M11 ... + M14

then

(a) if the first weight was less than the second in balances 2
then

i. if M2 equals M3 then F:= 4 else {if the first weight was less
than the second in balance 2(a)i then F:= 2 else F:= 3}

else
ii. if M5 equals M6 then F:= 7 else {if the first weight was

greater than the second in balance 2(a)ii then F:= 5 else F:=
6}

else
(b) if the first weight was less than the second in the initial balance

then
i. if M0 + M10 equals M1 + M8 then F:= 9 else {if the first

weight was less than the second in balance 2(b)i then F:= 8
else F:= 1}

else
ii. if M0 + M10 equals M1 + M8 then F:= 9 else {if the first

weight was less than the second in balance 2(b)ii then F:= 1
else F:= 8}

[The coin with the number F has weight that differs from that of M0.]

Guided tour inside F@BOOL@ 151

B. Annotated mini-NIL(R, A)

MaxInt :: 14 ; // Maximal Integer.

VAR F : [0..14] ; // Program variable.

ARRAY M[14] : [0..2] ; // Program array.

VAR I : [0..14] ; VAR J : [0..14] ; // Quantifier variables.

(M[0] = 1 & E I.((M[I] = 0 V M[I] = 2) & A J.(J <> I => M[J] = 1)))

// Precondition.

: // Program body begin.

0: if M[0] + M[1] + M[2] + M[3] + M[4] =

M[5] + M[6] + M[7] + M[8] + M[9] then {1} else {10}
1: if M[0] + M[10] = M[11] + M[12] then {2} else {5}
2: if M[0] = M[13] then {3} else {4}
3: F:= 14 goto {33}
4: F:= 13 goto {33}
5: if M[0] + M[1] = M[10] + M[11] then {6} else {7}
6: F:= 12 goto {33}
7: if M[0] + M[10] > M[11] + M[12] & M[0] + M[1] > M[10] + M[11]

then {8} else {9}
8: F:= 11 goto {33}
9: F:= 10 goto {33}
10: if M[2] + M[3] + M[4] + M[5] + M[6] + M[7] 6=

M[0] + M[10] + M[11] + M[12] + M[13] + M14 then {11} else {22}
11: if M[2] + M[3] + M[4] + M[5] + M[6] + M[7] <

M[0] + M[10] + M[11] + M[12] + M[13] + M14 then {12} else {17}
12: if M[2] = M[3] then {13} else {14}
13: F:= 4 goto {33}
14: if M[2] < M[3] then {15} else {16}
15: F:= 2 goto {33}
16: F:= 3 goto {33}
17: if M[5] = M[6] then {18} else {19}
18: F:= 7 goto {33}
19: if M[5] > M[6] then {20} else {21}
20: F:= 5 goto {33}
21: F:= 6 goto {33}
22: if M[0] + M[1] + M[2] + M[3] + M[4] <

M[5] + M[6] + M[7] + M[8] + M[9] then {23} else {28}
23: if M0 + M10 = M1 + M8 then {24} else {25}
24: F:= 9 goto {33}
25: if M0 + M10 < M1 + M8 then {26} else {27}
26: F:= 8 goto {33}
27: F:= 1 goto {33}
28: if M[0] + M[10] = M[1] + M[8] then {29} else {30}

152 N. Shilov, Eu. Bodin, S. Shilova

29: F:= 9 goto {33}
30: if M[0] + M[10] < M[1] + M[8] then {31} else {32}
31: F:= 1 goto {33}
32: F:= 8 goto {33}
: // Program body end.

M[F] 6= 1. // Postcondition.

C. Annotated mini-NIL code

14 ; // Maximal Integer.
0; 1; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0;

// ‘‘Random’’ initial values for F, M0, ... M14, I, J that meet
precondition.
(M0 = 1 & (
(M0 = 0 V M0 =2) & ((0 6= 0 => M0 = 1) & (1 6= 0 => M1 = 1) & ...

& (14 6= 0 => M14 = 1)) V
(M1 = 0 V M1 =2) & ((0 6= 1 => M0 = 1) & (1 6= 1 => M1 = 1) & ...

& (14 6= 1 => M14 = 1)) V
..
(M14 = 0 V M14 =2) & ((0 6= 14 => M0 = 1) &

(1 6= 14 => M1 = 1) & ... & (14 6= 14 => M14 = 1))))
// Precondition.

: // Program body begin.
0: if M0 + M1 + M2 + M3 + M4 = M5 + M6 + M7 + M8 + M9

then {1} else {10}
1: if M0 + M10 = M11 + M12 then {2} else {5}
2: if M0 = M13 then {3} else {4}
3: F:= 14 goto {33}
4: F:= 13 goto {33}
5: if M0 + M1 = M10 + M11 then {6} else {7}
6: F:= 12 goto {33}
7: if M0 + M10 > M11 + M12 & M0 + M1 > M10 + M11 then {8} else {9}
8: F:= 11 goto {33}
9: F:= 10 goto {33}
10: if M2 + M3 + M4 + M5 + M6 + M7 6=

M0 + M10 + M11 + M12 + M13 + M14 then {11} else {22}
11: if M2 + M3 + M4 + M5 + M6 + M7 <

M0 + M10 + M11 + M12 + M13 + M14 then {12} else {17}
12: if M2 = M3 then {13} else {14}
13: F:= 4 goto {33}
14: if M2 < M3 then {15} else {16}
15: F:= 2 goto {33}
16: F:= 3 goto {33}
17: if M5 = M6 then {18} else {19}
18: F:= 7 goto {33}
19: if M5 > M6 then {20} else {21}

Guided tour inside F@BOOL@ 153

20: F:= 5 goto {33}
21: F:= 6 goto {33}
22: if M0 + M1 + M2 + M3 + M4 < M5 + M6 + M7 + M8 + M9

then {23} else {28}
23: if M0 + M10 = M1 + M8 then {24} else {25}
24: F:= 9 goto {33}
25: if M0 + M10 < M1 + M8 then {26} else {27}
26: F:= 8 goto {33}
27: F:= 1 goto {33}
28: if M0 + M10 = M1 + M8 then {29} else {30}
29: F:= 9 goto {33}
30: if M0 + M10 < M1 + M8 then {31} else {32}
31: F:= 1 goto {33}
32: F:= 8 goto {33}
: // Program body end.
((F = 0 => M0 6= 1) & (F = 1 => M1 6= 1) & ...

(F = 14 => M14 6= 1)).
// Postcondition.

D. Correctness condition θ

Conjunction of the following formulas ini, 0--32 and fin.
ini: precondition from Appendix C => P0
0: ((M0 + M1 + M2 + M3 + M4 = M5 + M6 + M7 + M8 + M9) <=> Q0) =>

(P0 => (Q0 & P1) V (∼Q0 & P10))
1: ((M0 + M10 = M11 + M12) <=> Q1) =>

(P1 => (Q1 & P2) V (∼Q1 & P5))
2: ((M0 = M13) <=> Q2) => (P2 => (Q2 & P3) V (∼Q2 & P4))
3: P3 => (P33 & F=14)
4: P4 => (P33 & F=13)
5: ((M0 + M1 = M10 + M11) <=> Q5) =>

(P5 => (Q5 & P6) V (∼Q5 & P7))
6: P6 => (P33 & F=12)
7: ((M0 + M10 > M11 + M12 & M0 + M1 > M10 + M11) <=> Q7) =>

(P7 => (Q7 & P8) V (∼Q7 & P9))
8: P8 => (P33 & F=11)
9: P9 => (P33 & F=10)
10: ((M2 + M3 + M4 + M5 + M6 + M7 6=M0 + M10 + M11 + M12 + M13 + M14)

<=> Q10)=>(P10 => (Q10 & P11) V (∼Q10 & P22))
11: ((M2 + M3 + M4 + M5 + M6 + M7 < M0 + M10 + M11 + M12 + M13 + M14)

<=> Q11) => (P11 => (Q11 & P12) V (∼Q11 & P17))
12: ((M2 = M3) <=> Q12) => (P12 => (Q12 & P13) V (∼Q12 & P14))
13: P13 => (P33 & F=4)
14: ((M2 < M3) <=> Q14) => (P14 => (Q14 & P15) V (∼Q14 & P16))
15: P15 => (P33 & F=2)
16: P16 => (P33 & F=3)
17: ((M5 = M6) <=> Q17) => (P17 => (Q17 & P18) V (∼Q17 & P19))

154 N. Shilov, Eu. Bodin, S. Shilova

18: P18 => (P33 & F=7)
19: ((M5 > M6) <=> Q19) => (P19 => (Q19 & P20) V (∼Q19 & P21))
20: P20 => (P33 & F=5)
21: P21 => (P33 & F=6)
22: ((M0 + M1 + M2 + M3 + M4 < M5 + M6 + M7 + M8 + M9) <=> Q22) =>

(P22 => (Q22 & P23) V (∼Q22 & P28))
23: ((M0 + M10 = M1 + M8) <=> Q23) =>

(P23 => (Q23 & P24) V (∼Q23 & P25))
24: P24 => (P33 & F=9)
25: ((M0 + M10 < M1 + M8) <=> Q25) =>

(P25 => (Q25 & P26) V (∼Q25 & P27))
26: P26 => (P33 & F=8)
27: P27 => (P33 & F=1)
28: ((M0 + M10 = M1 + M8) <=> Q28) =>

(P28 => (Q28 & P29) V (∼Q28 & P30))
29: P29 => (P33 & F=9)
30: ((M0 + M10 < M1 + M8) <=> Q30) =>

(P30 => (Q30 & P31) V (∼Q30 & P32))
31: P31 => (P33 & F=1)
32: P32 => (P33 & F=8)
fin: P33 => postcondition from Appendix C

