
Bull. Nov. Comp.Center, Comp. Science, 29 (2009), 107–117
c© 2009 NCC Publisher

The language of calculus of computable predicates
as a minimal kernel for functional languages

V. I. Shelekhov

Abstract. Logical semantics is a new kind of formal semantics used to describe
semantics of pure call-by-value functional languages. For the statement S, the
logical semantics LS(S) is a predicate that is true for the variable values for which
the execution of S is finished. Let a specification of the statement S be presented by
the Hoare’s triple {P(x)}S {Q(x, y)}. A total correctness of the statement S may be
expressed by the formula: P(x) ⇒ [LS(S)(x, y) ⇒ Q(x, y)] & ∃y.LS(S)(x, y). Now, if
one has constructed the logical semantics for a functional language, correctness of
any functional program supplied with a specification can be proved. In this article,
the language of Calculus of Computable Predicates (CCP) is defined as a minimal
kernel for constructing the logical semantics of any pure functional language F. The
CCP language includes the superposition statement, parallel statement, conditional
statement, predicate and array constructor statements. The logical and operational
semantics of CCP have been developed. The consistency between these semantics
is proved.

Keywords: functional language, Hoare’s triple, operational semantics, logical
semantics, total correctness of a program.

1. Introduction

Each program includes logic implicitly. Logic is hardly extracted from a
program especially for imperative languages. Logical semantics is a new
kind of formal semantics that explicitly defines logic of a program.

Let S be a statement in any programming language. The logical formula
LS denotes a predicate that reflects logic of the statement S. LS should be
logically equivalent to S. The function LS : S → LS defined for each statement
S of the language is called logical semantics for the language. Logical and
operational semantics should be consistent : the formula LS(S) is true for a
fixed variable values if and only if the execution of the statement is finished
for that values.

Let a program be the statement S, x be input variables (or arguments),
and y be output variables (or results). Our consideration is restricted by
the programs with the following sequence of actions: input of arguments,
execution of the statement S , and output of results. During the statement S
execution, no interactions with the external environment are possible. Such
a program implements a function from x to y. Of course, a typical program
usually performs inputs and outputs within the execution stage but usually

108 V. I. Shelekhov

it is possible to restructure the program so that all inputs be before and
outputs be after execution. Obviously, it is impossible to restructure in this
way a program that implements parallel interacting processes. So, we need
to exclude reactive systems from our consideration. Adequate models for
reactive systems are the process algebras of R. Milner [2], C.A.R. Hoare [3],
etc.

The specification of a program, represented by S with the above restric-
tions, can be defined by the formula P(x)& Q(x, y), where P(x) is called a
precondition and Q(x, y) is called a postcondition. The precondition should
be true before execution of S, and the postcondition – after execution. Thus,
a program with a specification may be represented by the well-known Hoare’s
triple [4]:

{P(x)}S {Q(x, y)}. (1)

Let F be the language with the logical semantics LS. Let Hoare’s triple
{P(x)}S {Q(x, y)} defines a program with a specification where the statement
S is written in the language F. Total correctness of the statement S may be
expressed by the formula:

P(x) ⇒ [LS(S)(x, y) ⇒ Q(x, y)]&∃y.LS(S)(x, y). (2)

The sub-formula LS(S)(x, y) ⇒ Q(x, y) states that the results y of program
execution satisfy the postcondition. This sub-formula expresses the main
law of consistency between a program and a specification: the program
should satisfy its specification. The sub-formula ∃y.LS(S)(x, y) states that
the program execution is fulfilled for the arguments x.

Now, if the logical semantics for some language has been constructed,
one can prove correctness of any program supplied with a specification using
formula (2). It is possible to construct logical semantics for a pure call-by-
value functional language. The development of logical semantics for any
existing functional languages is a difficult task. So it is better to start
from a simple subset of the language. Our aim is to define a universal
subset for all functional languages. The predicate calculus1 may be used
as a universal basis for functional languages. In this article, the language
of Calculus of Computable Predicates (CCP) is introduced as a minimal
kernel for constructing the logical semantics of any pure functional language
F. A construct of the language F may be defined as a hierarchical denotation
through the constructs of the CCP language. So, there exists an extending
language chain: CCP ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F where each Fj is defined through
the constructs of the previous language in the chain.

The rest of this article is organized as follows. Section 2 presents the
related works. The restrictions on the functional languages are formulated.

1Here and further we assume the predicate calculus of high orders.

The language of calculus of computable predicates 109

Section 3 defines the CCP language, its logical and operational semantics.
It includes the superposition, parallel and conditional statements, the pred-
icate and array constructor statements. Expressions and constants are not
allowed. Section 4 concludes the article with the remarks on defining the
semantics for an extending language chain.

2. Related work

Formal semantics of a programming language can be considered as an elegant
and powerful instrument to prove the properties of a program but not for
an existent imperative language. Its denotational semantics [7] is highly
complicated, and axiomatic semantics [4, 8] may be constructed only for a
simple subset of the language. This point of view, claimed by John Backus
in his Turing’s lecture [1] 30 yeas ago, still remains valid today.

Logical semantics can be evidently defined for logic programming lan-
guages. This is a usual mathematical semantics used in logical deduction
of a logical program. So there is no need to define logical semantics here.
The construction of logical semantics may be useful only for non-logical
features of logic programming. For example, the semantics of depth-first
logic programming with version negation as failure was described in fourth-
valued logic [5]. Logical semantics can easily be defined for the language of
predicative programming by Eric Hehner [11].

The development of logical semantics for an exploitable imperative lan-
guage is an extremely difficult problem. There are some restrictions on a
functional language in order the construction of the logical semantics be
possible. First, the functional language should be a pure call-by-value lan-
guage. Lazy evaluations [13] are not allowed. Second, each function in a
program should be total. So the language should be strictly typed like the
PVS specification language [14]. Otherwise only three-valued logic (true,
false, undefined) may be used to define logical semantics for that language.

The language of predicate calculus is considered as a programming lan-
guage in R.Kowalski’s article [9] acknowledged as the basic for logic program-
ming. The CCP language is defined as a computable part of the predicate
calculus but for functional languages. The concept of semantic program-
ming [10] is also based on interpretation of the predicate calculus as a pro-
gramming language; a program is executed there in the style of constraint
programming [12].

3. The language of calculus of computable predicates.
Operational and logical semantics

We are trying to define the CCP language as the most simple and universal
language capable to represent any algorithm. Our aim is to construct the

110 V. I. Shelekhov

logical semantics for this language and investigate its properties.

3.1. Types

The type collection in the CCP language includes primitive types, a subset
of some type, and structure types. Primitive types are BOOL, INT, REAL,
and CHAR. A type S which is a subset of the type T is defined by:

S = SUBSET(T, x, P, d). (3)

Here x is a variable of type T, P is a predicate name, and d is a possi-
bly empty list of variables. The type S is defined as S = {x ∈ T |P(x, d)}.
The predicate P(x, d) should belong to the CCP language. The variables
of the list d are called parameters of the type S. For example, the type
DIAP(n) = SUBSET(INT, x, INT1 n, n) defines the interval of natural num-
bers from 1 to n, where INT1 n(x, n) ∼= x ≥ 1& x ≤ n .

Let X, Y, and Z be type names, D and E be lists of type names. The
structure types are the following:

product type Z = X× Y = {(x, y) | x ∈ X, y ∈ Y}, (4)
union type Z = X + Y = {(1, x) | x ∈ X} ∪ {(2, y)|y ∈ Y}, (5)
set type Z = SET(X) = {z | z ⊆ X}, (6)
predicate type Z = PRED(D:E) = {ϕ(d: e) | d ∈ D, e ∈ E, ϕ ∈ CCP}. (7)

In the definition of a predicate type, ϕ(d: e) denotes a predicate ϕ(d, e),
where d and e are lists of variables. If the types D are finite and all the
predicates ϕ(d: e) are total and single-valued, that is ∀d ∈ D ∃!e. ϕ(d, e),
then ϕ(d: e) may be interpreted as an array with indexes d and array element
e.

The sequence and tree types may be defined recursively. Pointers are
not allowed.

3.2. Operational and logical semantics

Operational semantics of the CCP language is described in the form of a
metaprogram defined in a metalanguage. The metaprogram memory is a
collection of memory sections. Each memory section consists of variables
(arguments, results, and locals) for the definition of some predicate. Let s
be a memory section, a be a variable name, and v be a value. The construct
s[a] denotes the value of the variable a in the section s. The assignment
statement s[a] := v assigns the value v to the variable a in the section s. In
the metalanguage, there is the multi-assignment statement s[x] := w, where
x is the list of variable names and w is the list of values. The statement
s = newSect(A) creates a new section s in the memory for the predicate A.

The language of calculus of computable predicates 111

For any CCP construct H(x, y), RUN(H, x, y) denotes the following state-
ment: for fixed values of x and y, there exists an execution H(x, y) which is
fulfilled and the results of execution are the values of variables y. According
to this definition, the non single-valued execution of H(x, y) is possible. The
consistency property Cons(H) of logical and operational semantics is defined
as follows:

Cons(H) ∼= ∀x ∀y (LS(H(x, y)) ⇔ ∃y′ (RUN(H, x, y′) & eq(y, y′))). (8)

The assertion eq(y, y′) is the equality y = y′ for variables of all types except
the predicate type. For the result ϕ of the predicate type, eq(ϕ, ϕ′) denotes
identity of predicates: ∀d∀e. ϕ(d, e) ≡ ϕ′(d, e).

3.3. Predicate call. Definition of a predicate

A predicate call is a statement of the form A(z: u), where A is the predicate
name or the name of a variable of the predicate type, z and u are the variable
lists. The list z may be empty. The variables in the list u cannot belong to
z. We use the terms call arguments and call results to denote the variables
of the lists z and u, respectively. The logical semantics of the call A(z: u) is
simply defined as:

LS(A(z: u)) ∼= A(z, u). (9)

The operational semantics of the call A(z: u) is defined by the procedure call
runCall(s, A(z: u)) in the metalanguage.

A program in the CCP language is a collection of predicate definitions.
A predicate definition is a construct of the form:

A(x: y) ≡ K(x: y), (10)

where A is the name of the predicate defined by this construct, x and y are
the variable lists, K(x: y) denotes a superposition, parallel or conditional
statement. The variables in the x and y lists are different. They are called
predicate arguments and predicate results, respectively.

Let the predicate call A(z: u) be executed in the memory section q which
includes the variables of the lists z and u. Let the predicate A be defined
by (10). The execution of the call A(z: u) performed by runCall(s,A(z: u)) is
defined by the following sequence of statements:

s = newSect(A); (11)
s[x] := q[z];
runStat(s, K(x: y));
q[u] := s[y]

112 V. I. Shelekhov

where the execution of the statement K(x: y) is expressed by the procedure
call runCall(s,K(x: y)) in the metalanguage. At the end of the execution of
(11) the logical formula x = z & u = y is true.
Lemma 1. For the predicate definition (10) and any procedure call A(z: u),
Cons(K) ⇒ Cons(A(z: u)).

3.4. Superposition statement

A superposition statement is the construct:

B(x: z); C(z: y) (12)

Here x, y, and z are variable lists, B(x: z) and C(z: y) are predicate calls.
The variables in the lists z and y are different; they cannot belong to the list
x which may be empty. If B or C is the name of a variable of the predicate
type, then it belongs to the list x. The logical semantics is defined as follows:

LS(B(x: z); C(z: y)) ∼= ∃z. (B(x, z) & C(z, y)). (13)

Let the statement B(x: z); C(z: y) be executed in the memory section s which
includes the variables of the lists x, y, and z. The execution of the state-
ment performed by runStat(s, B(x: z); C(z: y)) is defined by the following
statements in the metalanguage:

runCall(s, B(x: z)); (14)
runCall(s, C(z: y))

Lemma 2. For the superposition statement (12),
Cons(B)& Cons(C) ⇒ Cons(H), where H is B(x: z); C(z: y).

3.5. Parallel statement

A parallel statement is the construct:

B(x: y) ||C(x: z) (15)

where x, y, and z are variable lists, B(x: y) and C(x: z) are predicate calls.
The variables in the lists y, and z are different; they cannot belong to the list
x which may be empty. If B or C is the name of a variable of the predicate
type, then it belongs to the list x. The logical semantics is defined as follows:

LS(B(x: y) ||C(x: z)) ∼= B(x, y) & C(x, z).

Let the statement B(x: y) ||C(x: z) be executed in the memory section s
which includes the variables of the lists x, y, and z. Execution of the state-
ment performed by runStat(s, B(x: y) ||C(x: z)) is defined by the following
statement:

The language of calculus of computable predicates 113

runCall(s, B(x: y)) || (16)
runCall(s, C(x: z)) (17)

The parallel composition || defines independent execution of two parts with-
out interaction between them. So an effect of the parallel composition is the
conjunction of the effects of the parts.
Lemma 3. For the parallel statement (15), Cons(B)& Cons(C) ⇒ Cons(H),
where H is B(x: y) ||C(x: z).

3.6. Conditional statement

A conditional statement is the construct:

if (b) B(x: y) else C(x: y) (18)

where x and y are variable lists, B(x: y) and C(x: y) are predicate calls, the
variable b is of BOOL type; b does not belong to the lists x and y. The
variables in the list y are different; they cannot belong to the list x. which
may be empty. If B or C is the name of a variable of the predicate type,
then it belongs to the list x. The logical semantics is defined as follows:

LS(if (b) B(x: y) else C(x: y)) ∼= (b ⇒ B(x, y)) & (¬b ⇒ C(x, y)) (19)

Let the statement if (b) B(x: y) else C(x: y) be executed in the memory sec-
tion s which includes the variable b and the variables of the lists x and y. The
execution of the statement performed by runStat(s, if (b) B(x: y) else C(x: y))
is defined by the following statement in the metalanguage:

if (s[b]) runCall(s, B(x: y)) else runCall(s, C(x: y)) (20)

Lemma 4. For the conditional statement (18),
Cons(B)& Cons(C) ⇒ Cons(H), where H is if (b) B(x: y) else C(x: y).

3.7. Predicate constructor

A predicate constructor statement is the basic predicate:

Pred(x,B: A), (21)

where x is a possibly empty variable list, B is a predicate name, A is the
name of a variable of the predicate type PRED(Y: Z); Y and Z are lists of
types. For the predicate B(x, y: z), y and z are variable lists of types Y and
Z, respectively; the list y may be empty. The basic predicates Pred and
Array are not allowed instead of B in (21). The logical semantics is defined
as follows:

114 V. I. Shelekhov

LS(Pred(x, B: A)) ∼= ∀y∀z. (A(y, z) ≡ B(x, y, z)). (22)

Let the predicate call Pred(x, B: A) be executed in the memory section s
which includes the variable A and the variables of the list x. The execution
of the statement performed by runCall(s, Pred(x,B: A)) is defined by the
following statement:

s[A] := newDef(s[x], B) (23)

The result of the function newDef is a new predicate name Ax which is
unique in the process of program execution. The definition, constructed by
newDef, of a new predicate with the name Ax is the following:

Ax(y: z) ≡ equ(x∼: t); B(t, y: z), (24)

where x∼ = s[x], the basic predicate equ(x∼: t) performs the assignment
s[t] := x∼.
Lemma 5. Cons(Pred).
Lemma 6. For the predicate constructor (21), Cons(B) ⇒ Cons(A).

3.8. Array constructor

An array constructor statement is the basic predicate:

Array(x, B: A), (25)

where x is a possibly empty variable list, B is a predicate name different from
Pred and Array, A is the name of a variable of the predicate type PRED(Y:Z);
Y and Z are lists of types. For the predicate B(x, y: z), y and z are variable
lists of types Y and Z, respectively. The types of the list Y are finite. The
logical semantics is defined as follows:

LS(Array(x,B: A)) ∼= ∀y∀z. (A(y, z) ≡ B(x, y, z))). (26)

Note that the logical semantics of Array and Pred is the same.
Let the predicate call Array(x, B: A) be executed in the memory section s

which includes the variable A and the variables of the list x. The execution
of the statement performed by runCall(s,Array(x,B: A)) is defined by the
following statements:

s[A] = newArray(Y, Z); (27)
forAll y ∈ Y do runCall(s,B(x, y: s[A][y])) end

The function newArray(Y, Z) creates a new array A∼ in the memory. There
is the following relation between the predicate A(y: z) and the array A∼:

The language of calculus of computable predicates 115

A(y: z) ≡ A∼[y] = z. (28)

The statement forAll iterates all indexes y from the type list Y. The state-
ment between do and end is executed independently, possibly in parallel, for
each index list y ∈ Y. If the effect of the statement S(y: z) is defined by the
formula F(y), then the effect of the statement forAll y ∈ Y do S(y: z) end
is defined by the formula ∀y ∈ Y.F(y).
Lemma 7. For the array constructor (25), Cons(A).
Lemma 8. Let the predicate B(x, y: z) be total and single-valued:
∀x ∀y ∈ Y ∃!z B(x, y: z). For the array constructor (25),
Cons(B) ⇒ Cons(Array).

3.9. Program

A program in the CCP language is a collection of predicate definitions.
For any procedure call used in the program, the procedure name should
be either defined by a predicate definition belonging to the program, or a
formal parameter, or a name of a basic predicate.

A basic predicate is used to denote a standard operator on the values of
types defined in the CCP language. For the primitive types, two kinds of ba-
sic predicates for the equality operator are defined: = (x: y) and = (x, y: b),
where b is of BOOL type, x and y are of a primitive type. A basic predicate
with an empty argument list denotes a constant of a primitive type. The
predicate and array constructors are also basic predicates.

A collection of the predicate definitions of a program may be recur-
sive. Let B and C be defined predicates. If there is a call of the predicate
C in the definition of the predicate B, we use the relation depend(B, C)
to denote the immediate dependence B on C. The predicate B is defined
through the predicate C, def(B, C), if there exists a chain of defined predicates
D1, . . . , Dn(n > 0), where B = D1,C = Dn, and the relation depend(Dj, Dj+1)
is true for j = 1, . . . , n− 1.

The predicate B is recursive if the relation def(B,B) is true. For a re-
cursively defined predicate B, a recursive ring of predicates is the predi-
cate set rec(B) = {C | def(B, C)& def(C, B)} . Obviously, if C ∈ rec(B) then
rec(B) = rec(C). For the statements B(x: z);C(z: y), B(x: y)||C(x: z), and
if (b) B(x: y) else C(x: y), recursion is allowed only through the defined
predicates B and C. Recursion through the condition b is prohibited. When
B (or C) is a variable of the predicate type, recursion through B (or C) is
prohibited.

Let a recursive ring be represented by the definitions:

Ai(xi: yi) ≡ Ki(xi: yi); i = 1, . . . , n; n > 0. (29)

Here, all variables in the lists xi and yi(i = 1, . . . , n; n > 0) are different.
A graphic of the predicate B(x: y) is Gr(B) = {(x, y) | LS(B(x: y))}. Let

116 V. I. Shelekhov

Gj = Gr(Aj), Vj = Gr(Kj), i = 1, . . . , n,
G = (G1, G2, . . . ,Gn), and
V = (V1, V2, . . . ,Vn).
The system (29) of predicate definitions is equivalent to the equation for
vector-graphics of predicates:

G = V(G). (30)

The set of of vector-graphics with the relation “⊆” on vector-graphics
and the empty vector-graphic (∅, ∅, . . . , ∅) is the complete lattice. It is easy
to prove that the graphics for superposition, parallel, and conditional state-
ments are continuous functions with respect to graphics for the predicates
B and C. Let G0 = ∅, Gm+1 = V(Gm), m ≥ 0. In accordance with the Kleene
fixed point theorem [6], the decision of equation (30) is the least fixed point
of the function V, G = lfp(V), that is equal to the supremum of the ascending
chain {Gm}m≥0.

Let the recursive predicate D(z: u) belong to the recursive ring (29) that
is D = Aj for some j. The logical semantics of the predicate D is defined as
follows:

LS(D(z: u)) ∼= (z, u) ∈ pr(j, lfp(V)), (31)

where pr(j, G) = Gj.
Lemma 9. Let the calls of the predicates E1, E2, . . . , Es be used in the
predicate definitions of the recursive chain (29), the names E1,E2, . . . ,Es be
different from A1, A2, . . . ,An. Then
∀k = 1, . . . , s.Cons(Ek) ⇒ ∀j = 1, . . . , n.Cons(Aj).
Theorem 1. For any predicate call Array(x, B: A) in a program, let the
predicate B(x, y: z) be total and single-valued: ∀x ∀y ∈ Y ∃!z B(x, y, z). Let
the property Cons(ϕ) be true for any basic predicate ϕ called in a program.
Let a program be executed by the predicate call D(u: v). Then Cons(D) is
true.

Full proofs for this theorem and above lemmas can be found in [15].

4. Conclusion

The development of logical semantics for any existing functional language
is a difficult problem. The CCP language is defined in this article as a
minimal kernel for constructing the logical and operational semantics of
any pure call-by-value functional language F. Each construct of the F lan-
guage can be defined as a hierarchical denotation trough the constructs of
the CCP language. It is possible to construct an extending language chain:
CCP ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F, where each Fj is defined through the constructs of
the previous language in the chain. Let a new construct C be defined through
some composition Q in the previous language Fj−1. Logical semantics LS(C)

The language of calculus of computable predicates 117

can be obtained by equivalent transformation of the formula LS(Q). To ob-
tain operational semantics for the new construct C, one can write a program
in the metalanguage for the composition Q and make equivalent transforma-
tion of the program. According to definition (8), the consistency property
of logical and operational semantics for the construct C remains true after
any equivalent transformation.

References

[1] Backus J. Can programming be liberated from the von Neumann style? A
Functional Style and Its Algebra of Programs // Communs. of the ACM. —
1978. — Vol. 21, N 8. — P. 613–641.

[2] Milner R. A Calculus of Communicating Systems // Lect. Notes Comput. Sci.
— 1980. — Vol. 92.

[3] Hoare C.A.R. Communicating Sequential Processes. — 1985.

[4] Hoare C. A. R. An axiomatic basis for computer programming // Communs.
of the ACM. — 1969. — Vol. 12, N 10. — P.576–585.

[5] Andrews J. H. A logical semantics for depth-first Prolog with ground negation
// Theor. Comput. Sci. — 1997. — Vol. 184. — P. 105–143.

[6] Kleene S. C. Introduction to Metamathematics. — New York, 1952.

[7] Scott D.S., Strachey C. Towards a mathematical semantics for computer lan-
guages // Computers and Automata. — 1971. — P. 19–46.

[8] Floyd R.W. Assigning meanings to programs // Proceedings Symposium in
Applied Mathematics, Mathematical Aspects of Computer Science / Ed. by
J.T. Schwartz. — AMS, 1967. — P. 19–32.

[9] Kowalski R. Predicate Logic as Programming Language // IFIP Congress,
Stockholm, North Holland Publishing Co. — 1974. — P. 569–574.

[10] Goncharov S.S., Ershov Yu.L., Sviridenko D.I. Semantic programming // Proc.
of 10 IFIP 86. — 1986. — P. 1093–1100.

[11] E.C.R.Hehner. A Practical Theory of Programming, second edition. — 2004.—
http://www.cs.toronto.edu/∼hehner/aPToP/

[12] Mantsivoda A. Flang: A Functional-Logic Language // Lect. Notes Comput.
Sci. — 1992.— Vol. 567. — P.257–270.

[13] Launchbury J. A Natural Semantics for Lazy Evaluation. // POPL 93. —
1993. — P. 144–154.

[14] PVS Language Reference. Version 2.4 // SRI International. — 2001. —-
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf.

[15] Shelekhov V. Calculus of Computable Predicates. — Novosibirsk, 2007. —
24p. — (Prepr. / IIS SB RAS; N 143). (In Russian).

118

