Bull. Nov. Comp. Center, Comp. Science, 24 (2006), 105-117
(© 2006 NCC Publisher

SAT vs. SMV for automatic validation
of tabular property of superintuitionistic logics

P.A. Schreiner? N.V. Shilov! J.V. Grebeneva, S. O

Abstract. This paper considers theoretical background and experimental compar-
ison of two approaches to automatic recognition of tabular property of superintu-
itionistic logics. A principle opportunity for automatization is based on theoretical
results of L.L. Maksimova that were obtained in 1973-2003 and their algorithmic
interpretation that was developed recently by P.A. Schreiner. The experimental
approaches under study are: (1) Computation Tree Logic (CTL) symbolic model
checking, and (2) Boolean satisfiability (SAT) decision procedure. Efficiency of
SAT-based approach to tabularity is demonstrated by a number of experiments.

1. Introduction

We present some experience with automatic verification of the tabular (and
pretabular) property of superintuitionistic logics. The corresponding algo-
rithmic criterion has been developed by P.A. Schreiner [5] on base of earlier
theoretical results of A.V. Kuznetsov and L.L. Maksimova [3, 4] (that have
proved a principle decidability of the problem).

Initially the algorithmic criterion from [5] has been implemented on
PROLOG and has passed a number of basic tests successfully. This PRO-
LOG implementation is highly reliable, since it follows the mathematical
description of the criterion (due to the declarative nature of the implementa-
tion language). Unfortunately, this implementation is extremely inefficient:
for some tests (with 2-3 variables and 7-8 connectives) it runs several hours.

This negative experience with PROLOG implementation of the algorith-
mic criterion of tabularity has driven our research of “right” data represen-
tation and processing for efficient implementation of the criterion. Since
the criterion is formulated in terms of formula refutation at finite frames, it
was natural to try data structures that are in use in computer science for
verification of properties (presented by logical formulas) of finite models (of
computer hardware and software), i.e. in model checking.

The topic of our study is to develop and examine model checking and
SAT-based approaches for automatization of checking tabularity of superin-
tuitionistic logics. We have designed, proved correctness, implemented, and
compared two reductions of tabularity to

*Supported by INTAS grant 04-77-7080 and RFBR 06-01-00358-a.
fSupported by RFBR grant 06-01-00464-a and Integration Grant N 14 of SB RAS.

106 P.A. Schreiner, N.V. Shilov, J.V. Grebeneva, S. O

e symbolic model verifier SMV [1],
e Boolean satisfiability checking SAT [2].

(We call these reductions SMV-based and SAT-based approaches, respec-
tively.) The main conclusion that we can make on the basis of our compar-
ative testing of these two approaches is acceptable efficiency of SMV-based
automatization of tabularity checking and a very good efficiency of SAT-
based approach to automatic validation of tabularity property for superin-
tuitionistic logics.

We hope that our comparative study of SAT-based and SMV-based ap-
proaches can lead to a new series of test-suits for SATLIB, since tabularity
checking is a non-trivial property, it resides in SAT-based as well as an alter-
native method of validation (SMV-based, in particular). At the same time,
positive experience with application of SAT to tabularity encourages us to
extend SAT-based approach to pretabularity and other model-theoretic and
proof-theoretic properties of superintuitionistic logics that have been dis-
cussed in literature [6, 7] (interpolation property, for example).

2. Background theory

Definition 1. Let C and I be disjoint alphabets of classical and intuitionis-
tic propositional variables. Syntaz of classical propositional logic and syntaz
of intuitionistic propositional logic consist of formulae constructed from clas-
sical and intuitionistic propositional variables, respectively, with the help of
standard constructs (connectives) for negation (=), conjunction (‘A\’), dis-
Junction (V’), and implication (‘=) in accordance with the standard rules.

We assume that the standard Boolean semantics, the notion of satisfia-
bility and the conjunctive normal form for classical propositional logic are a
common knowledge. We refer to [1] for the definition of Computation Tree
Logic (CTL), its syntax and semantics in terms of the labeled transition
systems. In contrast, let us briefly define Kripke semantics for intuitionistic
propositional logic below.

Definition 2. Kripke frame is a partial order (W, <), where ‘universe’ W
is a non-empty set of ‘worlds’. Kripke model is a triple (W, < =), where
(W, <) is a frame, and |= is a truth-relation between worlds and intuitionistic
variables that enjoys the following monotonicity condition: for every q € I
and allu <w € W, if u |= q then w = q.

Definition 3. Let (W,<,) be a model. The relation = can be extended
to all worlds and intuitionistic formulae as follows:

s ulEPAY & ulEpandu =Y,

Automatic validation of tabular property of superintuitionistic logics 107

e ubE VY & ulE@orulE1,
e Ul S for cveryw > u, ifw = @ then w = v,
e ulEp & wlE @ for every w > u.

Definition 4. Let (W, <) be a frame and ¢ be an intuitionistic formula.
The formula ¢ is said to be valid in the frame (W, <), if w |= ¢ for every
model (W, <,|=) and every world w € W ; otherwise let us say that the frame
(W, <) refutes the formula ¢.

Definition 5.

Intuitionistic propositional logic Int consists of all intuitionistic formulae
that are valid in all frames. Superintuitionistic logic is a set of intuitionistic
formulae containing Int that is closed under

e Modus Ponens (MP): W and

o Substitution (Sub): —"—

ubstitution (Sub) 20 (D)

(where pq(1) results from ¢ after substitution of ¢ in ¢ instead of q). For
every intuitionistic formula 6, let Int+6 be a superintuitionistic logic that
results from extending Int by a ‘new’ axiom that is 6.

Definition 6. Let IC be a class of Kripke frames, and L be a superintu-
itionistic logic. The class KK characterizes the logic L, if every formula that
belongs to L is valid in all frames in K and every formula that does not
belong to L is refutable by some frame in IC.

We are particularly interested in the following three classes of frames
(Figure 1).

Definition 7. Let m > 0 be a positive integer.

e m-line lin,, consists of m linearly ordered elements.
o m-fan fan,, consists of m incompatible elements and the smallest one.

e m-top top,, consists of m incompatible elements, the smallest element,
and the greatest one.

Definition 8. Let L be a superintuitionistic logic. Let us say that L has the
tabular property, if it can be characterized by a finite set of finite frames.
Let us say L has the pretabular property if it is mazximal among non-tabular
logics.

108 P.A. Schreiner, N.V. Shilov, J.V. Grebeneva, S. O

Line: (0) — (1) ... —» ... (m—=1) — (m)

Top:
(m+1)
Fan 0N
(1) (m) (1) (m)
N o S N S

Figure 1. Frames of interest

It has been proved by L.L. Maksimova [4] that there exist exactly three
pretabular superintuitionistic logics; these logics are denoted by LC, LPs,
LQs. LC is characterized by frames lin,, n > 1, LP, — by frames
fan,, n > 1, and LQ3 — by frames top,, n > 1. The following statement
has been proved in [5] and leads to a method of checking pretabularity.

Statement 1.

Let ¢ be an intuitionistic formula and let L be superintuitionistic logic
Int+1. Let N be the number of different intuitionistic variables in i, r
be the total number of instances of ‘=’ and “—"in ¢ (or 1, if ¢ is ‘—’- and
““’free), and m = min(2",r). Then

1. L=LC, iff ¢ is valid in lin 41y, but fany and topy both refute 1.
2. L=LP,, iff o is valid in fan,,, but ling refutes 1.
3. L=LQs, iff ¥ is valid in top,,, but fans and ling both refute 1.

It has been proved by A.V. Kuznetsov [3] that every superintuitionistic
logic L that has not the tabular property is contained in some superintu-
itionistic logic that enjoys the pretabular property. It implies (see [5]) that
a superintuitionistic logic has the tabular property iff it is not contained in
any of the three logics LC', LPs, or L3 that have the pretabular property.
In combination with statement 1, this argument implies correctness of the
next statement [5]) that is a decision criterion for tabularity.

Statement 2.

Let ¢ be an intuitionistic formula and let L be superintuitionistic logic
Int+y. Let N be the number of different intuitionistic variables in i, r
be the total number of instances of ‘—’ and “—"in ¢ (or 1, if ¢ is “—’- and
““’free), and m = min(2V,r). Then L has the tabular property iff three
frames linn11y, fany,, and top, altogether refute 1.

Automatic validation of tabular property of superintuitionistic logics 109

It is also known that tabularity is NP-complete, while pretabularity is
coN'P-hard [6, 7).

3. Implementing decision criterion

The above statements 1 and 2 have been implemented first as an experi-
mental PROLOG-program for checking pretabularity and tabularity. Un-
fortunately, efficiency is not a strong point of the experimental PROLOG-
program. In particular, processing of the following formula

(pV=(=p) A((=(p)A((g—=p) = (r—=@)A((r—q) —7)) =)

(that characterizes LQ)3) requires several hours. This experience leads us
to the idea to try SMV-based and SAT-based approaches for checking the
tabular property.

3.1. SMV-based approach

Definition 9. Let F = (W, <) be a finite frame. For every world w € W
let next(u) ={w € W : uw < w and there is no v € W such that u < v < t}
be the set of all immediate successors of u in (W,<). Then let the binary
relation — be {(u,u), (u,w) : u,w € W, and w € next(u)}.

Observe that for every frame < is the transitive closure of —.

In accordance with the above definition, every finite intuitionistic Kripke
frame can be considered as a transition system. Hence every finite intu-
itionistic Kripke model (W, <, |=) can be considered as a labeled transition
system (W, —,). It implies that semantics of Computation Tree Logic is
defined in all finite intuitionistic Kripke models too.

Definition 10. A formula ¢ of Intuitionistic Propositional Logic and a for-
mula ¢ of Computation Tree Logic are (semantically) equivalent iff for every
intuitionistic Kripke model (W, <,|=) and for every world w the following

holds: w = ¢ & w = .
Definition 11.

IPL frame checking problem Input: a formula of Intuitionistic Propo-
sitional Logic &, a finite Intuitionistic Kripke frame (W, <). Output:
“Valid” if € is valid on (W, <), and “Refutable” otherwise.

CTL model checking problem Input: a formula of Computation Tree
Logic &, a finite labeled transition system (W, —, =), a state u € W
Output: “Valid” if u |E &, and “Invalid” otherwise.

110 P.A. Schreiner, N.V. Shilov, J.V. Grebeneva, S. O

In particular (according to statement 2), for validation of the tabularity
property of a superintuitionistic logic L = Int+1) (where v is an intuition-
istic formula) one can frame check ¢ on three frames lin(y1), fan,, and
topy,, (where N is the number of different intuitionistic variables in 1, r
is the total number of ‘—’ and ‘=’ in v, and m = min(2",7)): L enjoys
the tabular property iff all these three frames linyi1), fanm,, and top,
altogether refute .

The notion of semantic equivalence leads to the following idea how to

frame check an intuitionistic formula ¢ in a finite frame (W, <):

e first find a formula ¢y € CTL that is semantically equivalent to ¢;

e for every possible monotone = on (W, <) and every minimal world w
of (W, <), check w |= (%) by an available model checker;

e if w = (—) for any monotone = and world w, then (W, <) refutes ¢,
otherwise ¢ is valid on (W, <).

Algorithm 1. Let ctl be the following recursive algorithm that translates
formulas of Intuitionistic Propositional Logic to formulas of Computation
Tree Logic:

e for every intuitionistic variable p, let ctl(p) = p;

o ctli(p A1) = ctl(o) A ctl(v) and ctl(op V) = ctl(d) V ctl(v);
o ctl(—¢) = AG(—(ctl(9))) and ctl(d —) = AG((ctl(¢p) — ctl(z))).

Statement 3. Algorithm 1 translates every intuitionistic formula to a for-
mula of CTL that is semantically equivalent in every finite intuitionistic
Kripke model.

The above statement 3 provides an opportunity for exploiting a model
checker for CTL for frame checking IPL. Note that a popular model checker
SMV [1] has some virtues for this application. It has proved its efficiency in
practice and its input language is also relatively simple so that the overhead
of repeated execution and model generation is low.

Complexity is the only obstacle for using a model checker for frame check-
ing. In general, for a given frame (W, <) the number of possible satisfiability
relations is in O(2NV*W1)| where N is the number of variables in a formula
to be checked. In the case of tabularity checking |W| is O(2") (according
to method 2, we have to check frames fan,, and top,,, where m = O(2V)).
Hence the number of labeled transition systems over these fans and tops is
O(2V*2") " At the same time, CTL model checking complexity of a formula
¢ in a finite labeled transition system (W, <, k=) is O((|[W]+ | < |) x |9|)
[1]. Therefore the complexity of tabular property via model checking is

Automatic validation of tabular property of superintuitionistic logics 111

0 0 0 1 1 10 0 o
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
(0) (0)

Figure 2. Examples of a sorted and an isomorphic non-sorted model

02N x 2NV*2%) i 6. it is double exponential due to plenty of models over
fans and tops.

However, in our case we deal with lines, fans, and tops only. Observe
that many models over fans are “symmetric”, i.e. isomorphic to each other.
Similarly, many models over tops are symmetric.

Definition 12. Labeled transition systems (W1, <y, 1) and (Wa, <g, F=2)
are said to be symmetric (or isomorphic) iff there exists a mapping

£ w3 Wa such that
Vu,o € Wit uw<yv& flu) <o f(v)
Yue Wi,pelInt: ukE1p< f(u) E2p.

Observe that for frame checking via model checking we can restrict our-
selves by non-symmetric labeled transition systems over fans and tops.

Definition 13. Let ¢ be some IPL or CTL formula; let us adopt and fix
a (linear) order on intuitionistic variables qo, ... qn in ¢. Let (W, <)
be a labeled transition system over fan,, or top,,; then for every state w
in (1), ... (m) let Ay be a Boolean vector in {T,F}" such that for every
i€[0.n], (Ap)i =T if w = ¢, and (Ay); = F otherwise. (W, <, =) is said
to be sorted if a sequence of Boolean vectors A(yy, ... A(y) is sorted in the
alphabet order.

It is straightforward that every labeled transition system over a fan or
a top is isomorphic to some sorted one. (It is sufficient just to sort Ay o
A(p) in the alphabet manner.) An example of a sorted labeled transition
system (with a single anonymous variable) and an isomorphic non-sorted
label transition system is presented in Fig. 2.

Let us summarize the above discussion in the SMV-based approach to
tabularity checking.

Algorithm 2.

1. Input the formula & of IPL; count the number N of propositional vari-
ables and number r of instances of ‘=’ and ‘=’ in &; define
m = min(r, 2V);

112 P.A. Schreiner, N.V. Shilov, J.V. Grebeneva, S. O

2. translate £ to a semantically equivalent formula ctl(§) of CTL;

3. for every possible monotone = on linyyi, check w = ctl(§) in (0)
by SMV; if SMV always answers “Valid”, then the superintuitionistic
logic Int + & is not tabular and we are done, otherwise — continue
from next step;

4. for every possible monotone and sorted = on fan,,, check w = ctl(&)
in (0) by SMV; if SMV always answers “Valid”, then the superintu-
itionistic logic Int + £ is not tabular and we are done, otherwise —
continue from the next step;

5. for every possible monotone and sorted = on topy,, check w = cti(§)
in (0) by SMV; if SMV always answers “Valid”, then the superintu-
itionistic logic Int + £ is not tabular and we are done, otherwise —
continue from the next step;

6. in this case the superintuitionistic logic Int + £ is tabular and we are
done.

Let us estimate the number of iterations of SMV launches. It is straight-
forward that the number of monotone = on liny1 is (N +2)V. Hence the
number of SMV launches at step 3 is O((N + 2)"). We have to make some
computations for a correct estimation of the number of SMV launches at
steps 4 and 5.

For every m,v > 1 let M (m,v) be

H{(a1,...am) : a1, ...am € [1..v] and a1 < ... < ap}.

Lemma 1. M(m,v) = (mtv—1 >

m

Statement 4. Let N be the number of propositional variables. The number

N
of sorted intuitionistic Kripke models on fangn and topyn is in O (24;/2)

Hence the number of SMV launches at steps 4 and 5 of SMV-based

42N

SNT3) . SMV implements the model checking algorithm with

approach is O <
complexity O((|W|+ | < |) x |¢|) [1]. Therefore the overall complexity of
this approach is O(2V/2427),
3.2. SAT-based approach

Algorithm 3.
Let F = (W, <) be a finite frame. For every world u € W let next(u) =
{w € W : v < w and there is no v € W such that v < v < w} be the

Automatic validation of tabular property of superintuitionistic logics 113

set of all immediate successors of u in (W, <). Let 6 be an intuitionistic
formula. For every subformula £ of 6§ and every u € W, let pg¢ be a fresh
classical variable. Let F(6) be the following classical propositional formula
(Auew, co€¢), Where g¢ is defined according to the syntax of ¢:

e if ¢ is some intuitionistic variable then ¢ is pg — /\we”emt(u) Pe';
e if £ is a ‘combined’ formula then
(Plony < P APy
P < Pip V Py
U U w
pho = i AC N\ P
wenext(u)

Phoy o =P AC N Py

wenext(u)

wenext(u)

Statement 5.

For every finite frame F = (W, <) and every intuitionistic propositional
formula 0, there exists a propositional formula F(0) such that the following
is equivalent (where min(W) is the set of all minimal elements of (W, <)):

o F refutes the intuitionistic formula 0;

e the classical propositional formula F(0) A (V yepminew)(TPp)) 15 satisfi-
able.

The formula F(0) can be constructed in time quadratic in the number of
worlds in the frame and linear in the number of connectives in the intuition-
istic formula.

Let F = (W,<) be a finite frame and 6 be an intuitionistic formula.
Note that F(6) A (Vyeminw)(—Pg)) is ‘almost’ a CNF-formula: it remains
to transform all ‘building-blocks’ €} into CNF format. For every world
u € W and every subformula ¢ € 6, let CNF(gg) be the CNF-formula that
corresponds to g¢. Let CNF(F,0) be A\, cpyecg CNF(ef).

Observe also that lines, fans and tops have a single minimal world 0.
This observation together with statements 2 and 5 immediately implies the
following SAT-based algorithm for validation of the tabular property.

Algorithm 4.

Let ¢ be an intuitionistic formula and L be superintuitionistic logic Int+1.
Let N be the number of different intuitionistic variables in ¢, r be the total
number of instances of ‘-’ and ‘=" in ¢ (or 1, if ¢ is ‘—’- and ‘—’-free),

114 P.A. Schreiner, N.V. Shilov, J.V. Grebeneva, S. O

and m = min(2N ,7). Then L has the tabular property iff the following
propositional CNF-formulae are satisfiable:

o (-p)) ACNF(linni1),),
o (=p)) ACNF(fany,).
o (—-p)) ACNF (topm,).

Algorithm 4 has been implemented as a LISP-program coupled with
SAT-solver Z-Chaff [8] for checking tabularity. The LISP-program translates
input intuitionistic formula) into three classical propositional formulae as
prescribed by the algorithm. (We refer to these formulae as the line, fan
and top components, respectively.) The syntax of output classical formulae
is a so-called DIMACS cnf-format [9], the input format of Z-Chaff. Each of
three generated components is passed to Z-Chaff for further processing.

4. Experimental results and conclusion

Table 2 represents the “basic” test suite that consists of 18 formulae. These
formulae are given in the input syntax, where ‘&’ stays for conjunction,
‘%’ — for disjunction, ‘~’ — for negation, ‘— >’ — for implication, and
‘< — >’ — for equivalence. PROLOG, SMV-based, and SAT-based ap-
proaches have been tested against each other on these tests, all approaches
have given correct answers in all basic cases.

Table 2 represents the corresponding experimental data for SAT-based
and SMV-based approaches for basic tests. In this table every row has two
lines:

e the first is the overall run time of the boolean-translator and Z-Chaff,

e the second is the overall run time of CTL-translator and SMV.

Tests have been executed on computer Celeron 733 RAM 512, time is in
seconds. These data have proved efficiency and perspectives of SAT-based
approach in comparison with SMV-based approach to tabularity checking.
(Recall that PROLOG-program executes test #18 for several hours.)

The next Table 1 represents SAT-approach experimental data for three
randomly generated “large” formulae. These formulae contains 10 intuition-
istic variables and 200 connectives ‘=’ and ‘=’ (i.e. N = 10, r = 200, and
hence m = 200). After translation to cnf, the most complicated classical for-
mula has about 2,000 classical variables and approximately 74,000 clauses.
The table gives two figures for each of the three intuitionistic formula and
each frame in liny11, fan,, and top,:

e translation time to a corresponding component,

e the time for solving the component by Z-Chaff.

Automatic validation of tabular property of superintuitionistic logics

115

Table 1. Experimental data for “large” formulae

| lin fan top

1 | 32.796604 | 280.14243 | 348.19058
0.018997 | 1.59376 0.147978

2 | 35.170944 | 279.77386 | 310.212
0.018997 | 1.59776 0.292955

3 | 775.3111 | 260.6953 | 309.8433
0.007999 | 1.02184 0.112984

Experiments have been performed on the same computer Celeron 733 RAM
512.

Experimental data demonstrates that translation is the most time-expen-

sive part of SAT-base approach: in our experiments it requires up to minutes
while Z-Chaff works one and a half second at most. Hence more efficient
implementation of translation is the main opportunity for faster SAT-based
automatic recognition of tabularity of superintuitionistic logics.

References

1]
2]

Clarke E.M., Grumberg O., Peled D. Model Checking. — MIT Press, 1999.

Hoos H.H., Stiitzle T. SATLIB: An Online Resource for Research on SAT
// SAT 2000. — IOS Press, 2000. — P. 283-292. — Available online at

www.satlib.org.

Kuznetsov A.V. Some properties of the lattice of varieties of pseudo-boolean
algebras // 11th Sovjet Algebraic Colloquium, Abstracts, Kishinev, 1971. —
P. 255-256.

Maksimova L.L. Pretabular superintuitionistic logics // Algebra and Logic. —
1972. — N 11. — P. 558-570.

Maksimova L.L., Schreiner P.A. The algorithms for recognition of tabularity
and pretabularity in extensions of the intuitionistic calculus (in Russian) //
Vestnik of Novosibirsk State University, 2006 (to appear).

Maksimova L.L., Voronkov A. Complexity of some problems in modal and su-
perintuitionistic logics // Bull. Symbol. Logic. — 2000. — N 6. — P. 118-119.

Gabbay D.M., Maksimova L.L. Interpolation and Definability. Model and Intu-
itionistic Logic. — Oxford Press, 2005.

Moskewicz M.W., Madigan C.F., Zhao Y. et al. Chaff: Engineering an Efficient
SAT Solver // 38th Design Automation Conf. (DAC ’01), 2001.

116 P.A. Schreiner, N.V. Shilov, J.V. Grebeneva, S. O

[9] DIMACS Challenge — Satisfiability: Suggested Format
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
Benchmarks/SAT/satformat.ps

Automatic validation of tabular property of superintuitionistic logics

117

Table 2. Basic test suite

| Formula lin fan top
L | ((~((~p&(lg=>p)—>4q))— >q) 0.064607 | 0.175381 | 0.152623
0.142459 | 0.026834 | 0.027246
2 | % (p— > (¢%(~ q)))) 0.084462 | 0.048921 | 0.072007
0.261766 | 0.438981 | 0.156537
3 | ((p—> @) %(q— > p)) 0.094389 | 0.039593 | 0.05517
0.414965 | 0.129391 | 0.288677
4 | (r%(r—> ((p— > q@)%(q— > p)))) 0.02207 | 0.037222 | 0.106619
3.299572 | 5.036643 | 7.817828
5 | ((p— > (¢%r)— > ((p— > q)%(p— >1))) 0.028764 | 0.028486 | 0.039976
3.303151 | 2.137837 | 4.469693
6 | (~p)%((~p)—>q)) 0.083483 | 0.028559 | 0.039756
0.419430 | 0.053062 | 1.045101
7 | (0% (p— > (% (~))& ((~ p)%(~ (~ p)))) | 0.011057 | 0.011583 | 0.015712
0.264428 | 0.053096 | 0.160968
8 | ((~p)%(~ (~p))) 0.006074 | 0.008622 | 0.012235
0.077418 | 0.052490 | 0.129389
9 [((p%(p— > (¢%(~))& 0.102516 | 0.082201 | 0.168199
&(((p— > @)% (q— > p))%(p < — > (~q)))) | 0.266742 | 0.183699 | 0.162006
10 | (p— > q)%(g— > p)%(p < — > (~q))) 0.070131 | 0.176502 | 0.16075
0.415192 | 0.183514 | 0.396760
11| (p%(~ p)) 0.008256 | 0.011906 | 0.072834
0.051440 | 0.050803 | 0.051778
12 | (p%(p— > q)) 0.03509 | 0.059681 | 0.080155
0.262085 | 0.051673 | 0.052829
13| (r%(r— > (p%(p— > q)))) 0.069186 | 0.018838 | 0.027349
2.295202 | 1.994148 | 0.259426
14 | ((p%(p— > q))%(q— > 1)) 0.043491 | 0.123054 | 0.091374
2.293015 | 0.131198 | 0.270157
15 | (¢%(g— > ((~ p)%(~ (~p))))) 0.03584 | 0.100505 | 0.062759
0.414598 | 1.224612 | 1.552051
16 | (r%(r— > (p%(p— > (¢%(~ q)))))) 0.016239 | 0.021479 | 0.030727
2.291307 | 5.043855 | 7.820232
171 ((~ (~p)&((g— > p)— > q)— > q) 0.018376 | 0.074069 | 0.02684
0.182351 | 1.203456 | 0.684214
1B (~p)%(~ (~p))& 0.029243 | 0.04943 | 0.125219
&(r%(r— > (p%(p— > (¢%(~ q))))))) | 2.190208 | 0.054770 | 62.888234

118

