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A method for learning of first-order
cellular neural networks”

Sergey G. Pudov

In this paper, the first-order Cellular Neural Networks (CNN) with homoge-
neous weight structure are investigated and an approach to learn them is suggested.
It is shown that all CNN weight templates are classified according to properties of
possible stable states. As the result, the proposed learning method is based on the
ideas of Perceptron learning rule. It allows to find parameters of a CNN connec-
tion template which provides the formation of patterns with preset properties. The
method was applied to the 1D and the 2D CNN learning with symmetric templates
and was verified by simulation.

1. Introduction

CNN were introduced in [1] and investigated as a fine-grained parallel model
of computation for simulation of nonlinear phenomena both by means of con-
ventional and special purpose CNN processor [2]. CNN can be viewed as a
hybrid of Cellular Automaton (CA) and Artificial Neural Network (ANN).
Like CA it consists of a huge number of simple processing elements (cells),
usually placed in the nodes of an orthogonal or hexagonal grid, each cell
being connected to a set of nearest neighbors. Like in the ANN’s the con-
nections are weighted, and each cell computes its output as a nonlinear
function of its internal state, which is updated depending on the sum of
weighted outputs of its neighbors. The evolution of a CNN is represented
by a cell equation given either in the form of partial differential equation
of reaction-diffusion type, or in its finite-difference form, when all cells cal-
culate their next states in parallel, i.e., iteratively and synchronously. The
computation starts when all cells are set in an initial state, and stops at
a stable state, when no cells change their output states any more. Such a
state represents a pattern in the form of the set of output cell states.
Investigation of stable states in CNN is motivated by the possibility
to simulate and to study the processes of dissipative structures arising in
active media in physics, chemistry, biology. In [3], the instances of CNN are
given which form the patterns like those which occur in nature in the form
of the markings on animals, marine life, insects, etc. The basic direction of
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current CNN investigation is obtaining patterns formed by a given CNN and
studying their properties relative to its template parameters. Particularly, in
[4] the pattern formation by one- and two-dimensional CNNs is investigated,
and their properties are studied for various connection templates for initial
cell states randomly taken closely to zero. In some cases, the features of
formed patterns were completely described, for example, for one-dimensional
CNN with simplest connection template consisting of three neighbors, and
for mosaic patterns in two-dimensional case with connection template called
“square cross”. In the latter case, the properties of CNN stable states are
determined in the form of possible cell neighborhood states. For connection
templates of larger size this problem has not been solved in the same way.

Here an attempt is made to find a method to solve the following task:
given a pattern which is to be a CNN stable state — the template parameters
of the CNN should be found. This task may not have analytical solution,
so, like in all neural systems a learning method is the most appropriate.
Because of the similarity of the CNN learning task to that of Cellular Neural
Associative Memory (CNAM), the approach suggested in [5] and based on
perceptron learning rule is used. This method was chosen according to the
results of comparative analysis of the existing methods of CNAM learning
and synthesis because it results in CNAM with the best capabilities to store
information [6].

In this paper, autonomous CNN are considered, where next cell state de-
pends on weighted sum of it neighbor’s output state only. In Section 2 the
formal model presentation and problem definition are given. In Section 3,
features of possible stable states in the 1D and the 2D CNN are presented.
Next, in Section 4, the main idea of learning approach and formal presen-
tation of learning method are discussed. In Section 5, some experimental
results for the 1D and the 2D CNN are given.

2. Formal problem definition

Notions in this paper are based on those suggested in [7]. We suppose that
CNN consists of N cells which are enumerated in some way, for example,
from 1 to N, i.e., each cell has a unique identifier or, in other words, a name.
This numeration seems to be the most universal because it is applicable
to two- and tree-dimensional CNN not only with orthogonal greed. As it
was mentioned above, each cell in a CNN has weighted connections to its
neighbors. Connection structure in a CNN is characterized by a connection
template T', which for each cell ¢ consists of the set of its neighbor names,
e, T(¢) ={J1,...,Jq}, where ¢ is the cardinality of the cell neighborhood.
It can be noted that we study CNN with spatially homogeneous connection
structure, where the relative positions of cell neighbors are one and the same
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for all cells. A real number aj denotes the weight value of the connection
between a cell named ¢ and its neighbor j; € T'(¢), the set of all neighbors
weights forms a weight template A = {aq,...,a,}. Here we consider only
space invariant templates that are symmetric. It is known [1] that in this
case the CNN is stable, i.e., it always comes to a stable state. For each cell
the set of its neighbors states forms a neighborhood state X; = {z1,..., 24},
where zj is the state of the neighbor ji of the cell ¢. In this paper, without
loss of generality we suppose that the first neighbor of the cell ¢ corresponds
to the cell itself, i.e., 1 denotes the state of the central cell 2. The output
state y; of the cell 7 is a nonlinear function from the state z;, i.e., y; = f(z;).
In this work, we use the following piece-wise function:

fle)= 2+ 1]~ fo - 1)) (1)

Thus, the cell output state is always bounded: |y;| < 1. A cell i with
—1 < z; < 1 is called a linear cell and is represented by a gray square or
a gray pixel in the figures. Otherwise it is called a saturated cell and is
represented by a black square if 3, = 1 or a white one if y; = —1. Further
Y: = f(X;) denotes the neighborhood output state of the cell i. With the
above notations a weighted sum of neighbors output states can be written
as follows:
ARY: =) a;y;. (2)
jeT
Depending of this sum the cell changes its state x; in time according to the
equation, given by
da;
dt

in a continuous CNN, or according to the following synchronous updating
rule:

(1) = —ai(t) + A@ Yi(1), (3)

zi(t +1) = ai(t) + 7(=2:(t) + A@ Yi(1)) (4)

in a discrete time CNN, where 7 is a time discretization parameter. Compu-
tation stops at a stable state, when no cell output state changes in time any
more, i.e., CNN forms a pattern which is the set of all cell’s output states
{yi;,i=1,...,N}. In both models (discrete and continuous), a given state
is stable if and only if for all cells the following set of linear equalities and
inequalities holds [4]:

Y1 (Z ajyj) >0 if |aq] > 1,

J€T (5)
Zajyj = if |z¢] < 1.
jeT
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Now we can define the problem of CNN learning formally: given a pat-
tern Y = {yy,...,yn} — a weight template A should be found such that
conditions (5) be satisfied. It should be noted that (5) determines a set of
stable states with one and the same property: stability conditions depend
on the state of the cell neighborhood but do not depend on its place.

3. Properties of stable states

In this section, properties of stable states, generated by one- and two-dimen-
sional CNN are presented. Many of these results are from [3, 4] and are used
in Section 5 for the choice of patterns which are input for CNN learning,
and for verification of obtained weight templates.

3.1. One-dimensional CNN

At first, let us look at the known results for the 1D CNN with a weight
template A = [s, p, s]. For this case in [4] the properties of stable states are
studied for any combination of s and p, using the following parameter:

p—1

H= mv (6)
which determines the relation between p and the maximal influence of all
neighbors (|syz + sys| < 2|s|, as |y1] < 1). Depending on the value of this
parameter, three following cases are distinguished: 1) g < —1: the zero
state (#; =0,V i=1...N) is the only equilibrium, and is therefore stable;
2) ;> 1: any bipolar sequence (Jy;| =1,V ¢ = 1...N) corresponds to an
equilibrium of the CNN; 3) |u| < 1: there is always one and only one integer
B > 0, for which any value that u can take (except a set of measure zero)

can be bounded: -

7
B+2 B+1 ()
We assume that: 1) s > 0, since s = 0 is a degenerate case, and for s < 0 the
results are easily transposed by reversing the sign of the state of every cell of
even index; 2) the boundary conditions are either periodic or saturated cells
(with |yo| = |yn4+1| = 1). Then, for this CNN with |u| < 1 and N > B cells,
where B is given by (7), all possible stable states can be described in the
following way [4, Theorem 1]: i) any linear cell belongs to a string of B linear
cells surrounded by two saturated cells of opposite signs; ii) any saturated
cell is bordered by at least one saturated cell of the same sign; iii) two
consecutive saturated cells of opposite signs are separated by a boundary
string of B linear cells.

Thus, any stable pattern is a succession of black and white strings of at
least two cells long, separated by boundaries of B gray cells with B given

— cos < p < —cos
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t

Figure 1. Example of time evolution of the 1D CNN consisting
of 200 cells. Initial cells states are taken closely to zero

by (7). In Figure 1, the typical time evolution obtained by simulation of the
1D CNN with B = 5 is presented. In the obtained pattern, all boundaries
between black and white cells must have the same length 5.

3.2. Two-dimensional CNN

For the 2D CNN with a simplest connection template of the form

0 s 0
sps] (8)

0 s O

A=

which is called “square cross”, all possible stable states have been obtained
in [4] for mosaic patterns only, i.e., for those patterns, where the output
state of each cell is from {—1,0,1}. Like in the 1D case the parameter k is
introduced which is an integer number satisfying the inequalities

p—1+(k+1)s>0, p—1+ks<O. (9)

In [4], all possible mosaic neighborhood states are obtained with 8 different
values of k from —5 to 4, representing all classes of mosaic patterns of a
CNN. In this paper, we are not restricted by mosaic equilibrium states, we
investigate CNN with output cell states from [—1,1]. Hence, to show the
relation between the template parameters and formed patterns, we present a
diagram obtained by simulation, where one can see the typical stable states
in the 2D CNNs with “square cross” connection template depending on the
values of parameters p and s (Figure 2). The values p and s vary from —8 to
5 and from —2.5 to 2.5, respectively. At any restricted area on the diagram
a pattern corresponds to that formed by the CNN with the weight template
parameters p and s equal to the coordinates of the diagram.

3.3. Three groups of weight templates

From (5) it follows that there are an infinite set of weight templates which
provide the stability of a given pattern C'. It can be shown in the following
way. Let A be the template which satisfies the conditions (5) for the pattern
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h=3 f=2 k—1 k=0 k=—1 Ch=—2

Figure 2. Diagram of possible stable states in the 2D CNN with “square
cross” connection template. It consists of 400 by 500 cells, the values p and
s vary from —8 to 5 and from —2.5 to 2.5 respectively. Initial cell states
have been taken as random values closely to zero

(' with a central cell ¢;. If we multiply A by a constant b > 0, then these
conditions may not hold for all cells. Particularly, for a linear cell 7 its state

1 Zb(A® C;) =bc; when b#£ 1. (10)

In order to satisfy (10) it is enough to add the value (1 — b) to the selfcon-
nection weight in bA (the obtained template is further denoted as A(b)):

(A(B)® C5) = bey + (1 — b)ey = ey (11)

It is easy to show that the template A(b), b > 0 satisfies (5) for all saturated
cells. Moreover, the selfconnection weight value in it is calculated by the
following formula: p(b) = pb+ (1 —b) = 1+ b(p—1). As b > 0, then if
the value p in A is greater than 1, then p(b) can have any value above the
1 and vice versa, if p < 1, then p(b) < 1. Consequently, we have only three
different groups of weight templates: 1) with p < 1; 2) with p > 1; and
3) with p = 1.

This result is useful for investigation of stable states in homogeneous
CNN because it reduces the amount of independent weight parameters.
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4. CNN learning

4.1. CNN learning approach

The proposed approach to CNN learning is based on the cellular modifi-
cation of Perceptron Learning Rule (PLR) [8], which has been applied to
Cellular Neural Associative Memory (CNAM) with bipolar stable states.
This method was chosen for CNN learning because it is local, it guarantees
the individual stability of prototypes, and, besides, the number L of stored
patterns can be greater than the number g of cell connections. Moreover, all
the existing methods of CNAM learning have been investigated and com-
pared [6]. One of the main results is that the learning methods based on the
perceptron learning rule result in CNAM with the best capabilities to store
information. In order to modify CNAM learning method to that of CNN,
the following should be done:

o At first, we define the set of prototypes for learning a weight template
in homogeneous structure.

o After that, the PLR is modified for gray-scale prototypes.

At first, it is assumed that we have only one pattern C' which is to be
a stable state in CNN, and this pattern can be formed by a CNN with the
connection template T of known size. The problem is to find the set of
prototypes such that after learning process termination the obtained weight
template A should satisfy the stability conditions (5) which are to be met
for all cells. It is obvious, that we should use as prototypes, denoted as
Ciy i =1,...,N, the set of neighborhood states of all cells (with the size
of T') in the pattern C'. Without loss of generality we suppose that the first L
neighborhood states are pairwise different, and each one from the other N—L
states is equal to one of them. So, it is enough to use (1, ..., instead of
all N prototypes. In Figure 3, the example of pairwise different prototype
set in the 1D CNN is presented for the connection template consisting of
three cells.

) EEIRENIRNAAEIRE RNNRD b)

Figure 3. The example of pairwise different prototypes (b)
in the 1D CNN (a) for connection template consisting of three
cells

Now we can present the algorithm of CNN learning. Let C' be the pat-
tern, which is to be stable in CNN. The problem to find the weight template
A satisfying the conditions (5) may be solved as follows:
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Step 1. Choose the simplest initial connection template 7.

Step 2. Extract a set of prototypes C1, ..., with the size of T from the
pattern C'.

Step 3. Apply the algorithm from Section 4.2 for learning the weight tem-
plate A.

Step 4. If learning process does not terminate, then increase the size of
connection template, and go to Step 2.

4.2. PLR for gray-scale prototypes

At last we present PLR for learning a weight template A using gray-scale
patterns. If a central cell ¢; in a prototype C; is saturated then to obtain
(5) we should provide ¢1(A @ C;) > 1, which can be done with PLR by
analogy to bipolar patterns. The case when the central cell is linear is more
complicated. It is obvious that after finite number of learning iterations
we cannot obtain the exact equality A ® C; = ¢, for example, due to
digital arithmetic inaccuracy. So, we should provide it approximately, i.e.,
|A ® C; — ¢1] < ¢ for a small value ¢ > 0. For this we can use PLR with
coefficients [8], where instead of ¢} CY, the vector m,c{C! is added to A’; the
coeflicients my, s = 1,2, ..., being chosen in the following way: 0 < m,; < 1,
Msp1 < ms, ms — 0 with s — oo (in order to make the modification of
weight template more and more exact).

Now we can present the formal description of PLR for gray-scale proto-
types. Let (1, ..., be the prototypes obtained in Step 2 from Section 4.1.
As in the standard PLR, an infinite sequence obtained by their recycling is
organized, and a through numbering is introduced, ¢} denotes the central cell
for a prototype C'; initial value of A° is chosen arbitrarily. After that, the
weight template is updated according to the following iterative procedure,
where £ > 0 is the required accuracy, s is a number of the macroiteration,
ms is a learning coefficient:

case |cf| =1

Attl = At if (A CY >1

AT = At pm cht otherwise;

case |cf| < 1: (12)
At = At if A Ct - | <e,

AL = At m,Ct iTARC < d,

ATt = Ao m,Ct AR CH >

where A! @ ¢{C? is the sum of two vectors, but the first weight in A? is

not changed, i.e., ;‘H = a + cle ], Y j=2,...,q; © is defined by analogy

to . Calculation stops if the weight template does not change during one
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macroiteration (it is the learning period during which L prototypes are input
to the CNN).

Note, that the learning coeflicient is one and the same during each
macroiteration s, and > ms = oo (for example, m, = 1/s), because oth-
erwise (if >°, ms = G < 00) all possible weight templates A* obtained by
this algorithm would lie near to the initial A?, i.e., ||[A* — A%)| < G for some
value of G > 0:

A% — A9 < (i m,) (i ) < Gy (i ) <G 3)

s=1

where || - || is the norm of a vector.

4.3. Special features of the weight template learning

1. The main feature of using PLR is as follows: the weight p of the central
cell (it is also called the selfconnection weight) does not change during the
learning process. It means that, for example, in the 1D CNN with a con-
nection template consisting of three cells we fix the sign of a parameter u
for the obtained weight template, or in the 2D CNN with a “square cross”
connection template we fix a vertical line on the diagram in Figure 2. It
follows that because we do not know in advance what value of p is needed
for the formation of the given pattern C', we should perform several learning
processes for one set of prototypes but with different values of the selfcon-
nection weight. Because all weight templates are divided into three groups
(Section 3.3), we should perform three learning processes for one set of pro-
totypes but different values of selfconnection weight (less, greater, and equal
to 1).

2. If the amount of prototypes is very large then the learning process can
take too much time. Sometimes it is possible to reduce the number of
prototypes sufficiently (consequently, accelerate the learning) by analyzing
the prototypes with a gray central cell: they should satisfy the following
system of equalities
Za]‘C]‘ = if jeg| < 1. (14)
jeT
Let C; = (¢1, ..., ¢q) be the prototype used for weight template learning, and
ley] < 1is its central cell. It is assumed that the amount of such prototypes,
which can be considered as elements of a vector space with the dimension
q, is equal to M > ¢. It is obvious that there exist not more than ¢ linearly

independent ones among them (let them be numerated from 1 to ¢; < ¢),
and all others are their linear combinations, i.e.,
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a1
Cr=>_Cj\; where k> gq. (15)

i=1

Then, instead of M prototypes with a gray central cell it is enough to
use only ¢; ones, because

q1 q1
ARCL=A® (ZC]/\]) :ZCj/\j:Ck. (16)
7=1

i=1

3. First experiments of CNN learning showed that the obtained weight tem-
plate A* is non-symmetric in more than a half of the experiments. This is
not consistent with the model under investigation, because a CNN with
non-symmetric weight template may not come to a stable state. So, it was
decided to perform the symmetrization of the weight template during the
learning process, particularly after each macroiteration. It is obvious that
it does not influence the termination of the learning process. For example,
in the 1D CNN with a connection template consisting of three cells, after
each macroiteration the weights s; and s, in weight template A = [sq, p, s2]
are replaced by s = (s1 + s2)/2.

It can be noted that sometimes CNN with a non-symmetric weight tem-
plate may also come to a stable state. In [9], the sufficient conditions for
non-autonomous CNNs with non-symmetric weight templates are found, un-
der which they come to the single stable state independently of the initial
conditions. In our case of autonomous CNN, this stable state can only be
zero, because otherwise there exist at least two stable states which differ in
the sign of cell states only. So, this case is out of our interest, therefore the
obtained weight template must be symmetric.

5. Simulation results

5.1. The goal of the experiments

All experiments are made using the system WinALT [10], specially devel-
oped for fine-grained structures simulation. The goal of simulation is to
apply the learning procedure for obtaining weight template A*, using as an
input a stable state obtained by a known CNN with connection template A,
and to compare the result with it. All experiments are performed by one
and the same scheme.

Step 1. Using the CNN with a present weight template A a stable state
C' is obtained for the initial cell states randomly taken closely to
zero.
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Step 2. The size of the connection template T" equal to that used in Step 1
for obtaining the stable state is chosen. From the pattern C all
pairwise different prototypes C1, ..., are extracted.

Step 3. The weight template A* is learned according to the proposed algo-
rithm with symmetrization, using the set of prototypes from the
previous step.

Step 4. After that, the obtained weight template is compared with the
initial one A and is applied to the pattern C', which should not
changed.

5.2. Simulation results for 1D CNN

Here we present the results of some experiments for one-dimensional circular
CNN (N = 50 cells) with the weight template A3 consisting of three cells.
At Step 1, a stable state is obtained with a boundary of B gray cells, B vary
from 1 to 5 with s both greater and less than zero. In Table 1, the basic
simulation parameters and results are shown: the parameter p of the initial
weight template A, the learning time ¢ in macroiterations, the obtained
values for coefficient s* from the obtained weight template A* = [s*,0, s*],
and the obtained parameter p*; the accuracy of learning ¢ is equal to 107%.
It should be noted, that the initial weight template A has the weight p < 1
whereas in obtained template it is equal to zero.

Table 1. Experimental results for 1D CNN with weight template As

B 1 s* t w* 1 s* t w*

1| —0.3(6) | 1.25 41 =04 —0.3(6) | —1.5 2| =0.(3)
2 || —=0.55 0.90917 | 1491 | —0.5499 || —0.55 —0.90913 | 3314 | —0.5499
3 || =0.75 0.66662 | 3059 | —0.7500 || —0.75 —0.66670 456 | —0.7499
4 || —0.82 0.60977 501 | —0.8199 || —0.82 —0.60974 948 | —0.8200
5 || —0.88 0.56814 339 | —0.8800 || —0.88 —0.56820 | 1293 | —0.8799

Main results of this experiment can be formulated as follows. For the
initial and obtained weight templates the parameters p and p* determine
stable states with the same properties, conditioned by the value of B. More-
over, if B > 1 then the obtained value p* coincides with the initial p. It can
be explained by the fact that for B > 1 the value of u determines not only
the width of gray cells but also their states.

5.3. Simulation results for 2D CNN

For the 2D CNNs the experiments are similar to that of the 1D CNNs.
We study the CNN; consisting of (N = 50 x 50 cells) with the “square-
cross” weight template As. At Step 1, a stable state is obtained for different
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values of the parameter k, which vary from 0 to 3 (in all experiments we
are interested in patterns with gray cells) with s both greater and less than
zero. In the table the basic simulation parameters and results are shown:
the parameter k and the parameters s and p of the initial weight template A,
learning time ¢ in macroiterations, the obtained values for the coefficient s*
(the value of selfconnection is chosen equal to zero); the accuracy of learning
¢ is equal to 1074,

From Table 2 one can see that for & > 1 the obtained weight template
coincide with the initial one in correspondence with part 1 of Section 4.4.
For example, if in initial weight tem-
plate A the selfconnection weight
p is equal to —2 and in the ob-

Table 2. Experimental results for
2D CNN with weight template As

- S ’ o : tained A* = A(b) the selfconnec-
tion weight is taken equal to zero
0 L1 0 L25 2 (p* = 0), then from (11) the value
0| 21 0| 1% 2 b should be equal to 1/3, because
0 6.1 0 2.00 2 !
1|07 | ofor 10000 0=pb)=1+0(p—1)=1-3b. It
1| 20 | =2 | 0.667 50 is easy to see that the obtained pa-
2| 12 | =2 | 04 108 rameter s* is equal to a third from
3109 ] =2 ] 029 81 the initial s, so A* = A(1/3).

6. Conclusion

In this paper, the approach to homogeneous CNN learning with gray-scale
states is suggested. It is based on the PLR with scale coefficients, which
allows to use gray-scale patterns. It is shown by simulation for the 1D and
the 2D CNN that using this approach we can find a weight template of
CNN which has a given stable state. The application of learning approach
to patterns obtained by numerical simulation of PDE is under investigation
now.
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