
Bull. Nov. Comp.Center, Comp. Science, 37 (2014), 93–105
c⃝ 2014 NCC Publisher

Experiments on self-applicability in the C-light
verification system. Part 2

A.V. Promsky

Abstract. Successful development of the theoretical foundations of C program
verification in the project C-light allowed us to address an interesting practical task.
We would like to develop a self-applicable verification system for C programs. The
first step towards this goal was a series of experiments to verify some fragments
of the input analyzer/translator. Now we are ready to address the verification
condition generator. As a basis of our approach, we chose the metageneration
approach proposed by Moriconi and Schwartz. Metageneration allows us to build
automatically a recursively defined generator from a Hoare logic and also ensures its
consistency and completeness. This paper discusses the metageneration approach
as well as the experiments to verify its implementation in C-light.

Keywords: verification, specification, C-light, ACSL, MetaVCG.

1. Introduction

The answer to the question whether a verification system is reliable can
consist of two main parts:

1. Since the verification methods are based on some mathematical con-
cepts (sets, relations, calculi, etc.), their properties can be formally
proved. For example, the proof of axiomatic semantics soundness is
quite a traditional practice [1]. However, these proofs are usually
performed by hand. The assistance of automatic theorem provers
can contribute significantly to their trustworthiness. The examples
of such “mechanical” proofs are much more uncommon, though some
researchers have obtained remarkable results [9, 10].

2. Program implementations of those theoretical methods should also be
checked. And again, in addition to usual testing, formal verification
is desirable. In particular, if a verification system is implemented in a
target language, then its self-verification could be an ultimate check.
Speaking about the C language, we are not aware of such a self-applied
system.

In the Laboratory of Theoretical Programming (IIS) we are developing
the C-light verification system [6]. The C-light language covers the major
part of the previous standard (C99). In order to avoid the problems of a

94 A.V. Promsky

Hoare logic for the full C, we translate the input programs in a restricted
core called C-kernel. The verification condition generator (VCG) for C-kernel
produces lemmas (verification conditions, VCs), while the interactive prover
Simplify tries to discharge them. Taking into account the importance of
correctness, we formally proved some properties of the steps of our approach
[8].

On our way to a self-verifiable system we have already taken two steps.
First, the specifications written in ACSL [2] were developed for a part of
the Standard C library [11]. Every meaningful C program relies on library
routines, so these annotations are an important prerequisite. Second, some
parts of the parsing/translating module of our system were verified [12]. In
fact, it is implemented in C++ using API of the compiler Clang. Thus the
complete verification is unachievable; however the translator is rich in code
expressible in C-light, which made it a good subject of study.

And now we are concentrated on the VCG stage of our system. At first
sight, we could use the same unsophisticated approach as we applied for the
translator. Nevertheless, there is an alternative way which also has some
benefits.

In 1981, Moriconi and Schwartz [7] proposed a method which forms a
meta verification condition generator (MetaVCG). It takes a Hoare logic
as an input and automatically derives a recursively defined VCG. The ax-
iomatic rules must be given in a normal form with several constraints. Many
axiomatic rules do not satisfy them, so the authors provided an equivalence-
preserving transformation from a more liberal general form into a normal
one. The soundness and completeness were proved for their method, thus
providing that a produced VCG is correct w.r.t. the original axiomatic def-
inition.

In the presence of this meta-stage, the classical three-block scheme (input
analyzer/VCG/prover) of a verification system changes slightly (Fig. 1).

In addition to theoretical correctness, this method has other advantages
for our project. In the future, we plan to enrich C-light with the remaining
C constructs or to use it as a basis for the related languages (Objective C,
C++). Also the specific axiomatic logics for restricted classes of programs
are of great interest. We could mention here a Hoare system for linear algebra
developed in our laboratory long ago. The rules of that system can replace
some nested loops (inherent in matrix handling) by logical constructs which
are much more convenient for proving than usual loop invariants. As a more
concrete example, let us consider a code

swap(x, y, buf) ≡ memcpy(buf, x, m);

memcpy(x, y, m);

memcpy(y, buf, m);

Experiments on self-applicability in the C-light verification system 95

Figure 1. A “meta-stage” in the verification process

which can be found in some library routines. Its treatment by general rules
will involve a triple instantiation of specifications for memcpy leading to a
cumbersome quantified VC. In the meantime, we can enrich the Hoare system
by the following axiom:

{x = x0 ∧ y = y0} swap(x, y, buf) {x = y0 ∧ y = x0}

Though it works only for those programs which contain a fragment swap(..),
its application can simplify the proof considerably. The MetaVCG approach
can relieve us of necessity to rewrite the VCG each time manually.

As for the immediate benefit, it allowed us to distance from C++ API of
Clang. The implementation of MetaVCG described in the paper is given in
C-light, so we can perform a more complete verification in comparison with
the translator.

2. Meta verification condition generation

The method of metageneration proposed by Moriconi and Schwartz [7] con-
sists of two steps. A general axiomatic definition is first transformed into a
normal form which, in turn, develops into a recursively defined VCG.

2.1. Preliminary definitions

Following Moriconi and Schwartz, we will use metavariables P, Q, R, Γ, ...
to denote partially interpreted first-order formulas. These formulas can con-
tain uninterpreted predicate symbols P , Q, R, ... and formulas from the
underlying theory. For example, P could denote P , P ∧ x = 5, or x = 5. We

96 A.V. Promsky

assume that the symbols P , Q, R,... may be instantiated by formulas in the
underlying theory.

We also need a binary relation ⇐ on uninterpreted predicate symbols.
For a Hoare sentence of the form

{P(P1, ..., Pm)} S {Q(Q1, ..., Qn)},

where the predicate symbols P1, ..., Pm and Q1, ..., Qn are logically free in P

and Q, respectively, we have

Pi ⇐ Qj , for i ∈ {1, ...,m} and j ∈ {1, ..., n}.

Intuitively, a relation P ⇐ Q indicates that the binding of the predicate
symbol P depends upon the binding of Q. The relation ⇐ is defined with
respect to a set of the Hoare triples. The notation +⇐ denotes the transitive
closure of ⇐.

Similarly, for a rule of the form

{P1} S1 {Q1}, ..., {Pn} Sn {Qn},Γ
{P} S {Q}

(1)

the relation ≪ defines the dependence of a proof concerning S on proofs of
S1, ..., Sn. In particular, we have S ≪ Si, for i ∈ {1, ..., n}. For a Hoare
axiom system, we define the transitive closure ≪+ in the obvious manner.

We use the function FreePreds to denote the set of logically free predi-
cate symbols. FreePreds applied to a first-order formula denotes its logically
free symbols. Then inductively,

FreePreds({P} S {Q}) = FreePreds(P) ∪ FreePreds(Q) ,

and for a proof rule R of the form (1)

FreePreds(R) =

n∪
i=1

FreePreds({Pi} Si {Qi})

∪ FreePreds(Γ) ∪ FreePreds({P} S {Q}).

We will use the function FragV ars to denote the set of “fragment vari-
ables” in the program fragment S of a Hoare triple {P} S {Q}. For example,
FragV ars applied to “if (B) S1 else S2” has the value {B, S1, S2}. If ap-
plied to an entire Hoare rule, FragV ars yields a set containing the fragment
variables from every Hoare sentence in the rule.

Finally, we define the notion of a bound occurrence of an uninterpreted
predicate symbol in a rule. For a rule R, a predicate symbol in FreePreds(R)
is bound in R iff it is in FragV ars(R). Otherwise, the occurrence is said to
be free in R.

Experiments on self-applicability in the C-light verification system 97

2.2. The normal form for rules

Let us consider the following
Definition. A normal form rule is any instance N of

{P1} S1 {Q1} , ..., {Pn} Sn {Qn}, Γ
{P} S {Q}

that satisfies the following constraints:

1. P1,..., Pn and Q are predicate symbols free in N .

2. FreePreds(Γ) ⊆ FreePreds(N) ∪ FragV ars(S).

3. The fragment variables of each Si must be bound in S. That is, it
must be the case that ∪1≤i≤nFragV ars(Si) ⊆ FragV ars(S).

4. Dependency ordering. The Hoare-triple premises of N must satisfy two
dependency constraints.

a. Pi
+⇐ Pj ⊃ i < j

b. T
+⇐ U ∧ ¬(∃R)U

+⇐ R ⊃ U ≡ Q ∨ U bound in N .

5. Monotonicity. Let P[P ← false, P ∈ s] denote P with the proper
substitution of false for each predicate P in the set s. Then, the
following constraint on P must be satisfied:

P[P1, ..., Pn, Q← true] ∨ ∀s ⊆ {P1, ..., Pn, Q} ¬P[P ← false, P ∈ s].

This constraint must hold for Γ and for each Qi.

Two constraints are imposed on a system of the normal form rules: (i)
Any terminal string σ in the programming language can be an instance of
at most one language fragment S defined by a normal form axiom or an
inference rule. (ii) The relation ≪+ must be irreflexive.

Constraint 4 ensures that VCG will be able to compute instantiations for
all free uninterpreted predicate symbols in the rules. In particular, constraint
4a requires an ordering of free predicate symbols that is made apparent by
the following schema:

{P1} S1 {Q1(P2, ..., Pn)} , ..., {Pi} Si {Qi(Pi+1, ..., Pn)} , ..., {Pn} Sn {Qn}, Γ
{P(P1, ..., Q)} S {Q}

.

This has the effect of eliminating dependency cycles, such as a premise of
the form {P} ... {P} or a pair of premises of the form {P} ... {R} and
{R} ... {P}. Given this ordering, constraint 4b ensures that the tail of every
dependency chain is either expressible as a function of the postcondition Q
or is bound in a program fragment.

98 A.V. Promsky

Constraint 5 is necessary for completeness of a VCG, i.e. it guarantees
that VCG is able to compute the weakest precondition wp(S,Q) for given
S and Q. It is done by imposing a monotonicity constraint on rules, which
eliminates the rules where certain “changes of sign” exist between the pre-
conditions of the premises and the precondition in the conclusion.

2.3. The general form for rules and its translation into the
normal one

The normal form constraints serve two purposes. First, a recursively defined
VCG can be built up automatically for the normal rules. Indeed, since
the preconditions of premises are individual predicate symbols, they can be
substituted by the weakest preconditions for the corresponding programs
and postconditions. For a rule of the form (1), the recursive function wp is
defined as follows:

wp(S,Q) = P[P1 ← wp(S1,Q1), ..., Pn ← wp(Sn,Qn)]∧
(∀v)Γ[P1 ← wp(S1,Q1), ..., Pn ← wp(Sn,Qn)],

where [P1 ← t1, ..., Pn ← tn] denotes n subsequent substitutions performed
from left to right, and v is a set of free logical variables of Γ.

Second, the constraints together with the definition of wp allow us to
prove that VCG (as a proof system) is sound and complete w.r.t. the initial
Hoare system in the normal form [7].

On the other hand, the normal form constraints narrow the class of ad-
missible Hoare systems. Note that axiomatic semantics for C-kernel [6] does
not satisfy these requirements. Moreover, the normal form rules look quite
unusual, which is why Moriconi and Schwartz proposed a more liberal gen-
eral form for rules as well as an algorithm of its translation into the normal
one. Here we discuss them only briefly. The general form preserves the con-
straints (1–3) and (4b) (together with a modified monotonicity property).
Thus an awkward order on the premises disappears. Further, the precondi-
tions in premises may take more forms: not only singular predicate symbols
but also formulas of the underlying theory, as well as the conjunctions of
these two variants. The idea of the translation algorithm is as follows: we
gather all preconditions that are different from the singular predicate sym-
bols. Instead of them we will use “fresh” predicate symbols. The connection
between these new symbols and old formulas is established by some implica-
tions where old formulas may be gathered in conjunctions (simultaneously
removing duplicates). Finally, the new rule premises must be reordered to
satisfy the constraint (4a).

To illustrate, let us consider the proof rules for if and while statements
in the general (left column) and equivalent normal form:

Experiments on self-applicability in the C-light verification system 99

{P ∧B} S1 {Q}, {P ∧ ¬B} S2 {Q}
{P} if (B) S1 else S2 {Q}

{P1} S1 {Q}, {P2} S2 {Q}
{B ⊃ P1 ∧ ¬B ⊃ P2} if (B) S1 else S2 {Q}

{P ∧B} S {P}, P ∧ ¬B ⊃ Q

{P} while (B) S {Q}
{P1} S {P}, P ∧ ¬B ⊃ Q, P ∧B ⊃ P1

{P} while (B) S {Q} .

An intermediate conclusion here is that axiomatic semantics for C-kernel
fits the requirements of the general form. So, it can be translated in an
equivalent normal system which, in turn, can be transformed into a recursive
VCG. Thus the MetaVCG approach can be applied in our case.

3. Implementation and experiments

In this section, we discuss the composing parts of our adaptation of the
MetaVCG approach. They include the development of the pattern lan-
guage which is used to express the Hoare rules and axioms. The main
(meta)generation algorithm has been written in C-light, thus making its
partial verification possible. An example of the code is also presented here.

First of all, let us note the difference between the original idea of MetaVCG
and our implementation. Our metagenerator is a two-parameter function and
there is currying during its work. So, if H is a Hoare system and AP is an
annotated program to be verified, then

MetaVCG(H,AP) = VCGH(AP),

where VCGH is an ordinary generator built for H. This is not a good solution
from the point of view of efficiency since in every verification experiment
(the argument AP) we rebuild the generator even if the Hoare system is the
same (say, Hoare system for C-kernel). On the other hand, it allows us to
verify a single program instead of two, one of which ’appears’ prior to any
specification. As long as we are concentrated on theoretical studies, this
strategy serves our purposes quite well. In future, we may use the generator
in a usual way as a stand-alone application or a plug-in.

We also do not restrict our MetaVCG to the weakest precondition strategy
used by Moriconi and Schwartz. The strongest postcondition approach can
be applied changing the direction of the program tree analysis.

3.1. The pattern language

A VCG built from a Hoare system in the normal form tries to instantiate
those free predicate symbols and fragment variables with specific annotations
and program constructs. Since a user provides MetaVCG with axioms and
rules in a less restricted general form, we propose a pattern language to
express them.

Let us note that the classic way to represent Hoare logics (like in Section
2.1) is good enough in theory but it is not so flexible in practice. That is

100 A.V. Promsky

why we do not require strictly that the symbols P , Q, R express predicates
while Si are program fragments. Any symbols can be used, and member-
ship in a specific class is indicated by syntactic wrapping. For example,
the construction any_code(S) can match any sequence (including empty) of
programming language statements, whereas exists_code(S) corresponds to
a singular construction. The construction simple_expression denotes any
expression which does not contain function calls and type casts.

To illustrate this, let us consider the assignment axiom

{(any_predicate(Q))(MD <- upd(MD, loc(val(e, MeM..STD)),

cast(val(val(e’, MeM..STD)),

type(e’, MeM, TP),

type(e, MeM, TP))))

}

e = simple_expression(e’);

{any_predicate(Q)}

and the proof rule for the while statement

{P1} S {INV},

(INV /\ cast(val(val(e, MeM..STD)), type(e, MeM, TP), int) = 0)

=> Q,

(INV /\ cast(val(val(e, MeM..STD)), type(e, MeM, TP), int) != 0)

=> P1

|-

{any_predicate(INV)}

while(simple_expression(e)) any_code(S)

{any_predicate(Q)}

To save the space, we show them as if they were already transformed
from the general form. That is why two logical statements about predicates
Q and P1 appear in the while-rule premises. Only then the rule satisfies
the constraints of the normal form. The names MD, MeM, and STD reflect
our detailed memory model [6] but they do not alter principally the logical
structure of the familiar Hoare sentences.

3.2. Implementation of MetaVCG

The arguments of metagenerator – Hoare axioms and rules together with
an annotated program – are parsed and transformed into the corresponding
internal representations. We have already mentioned that on the lower level
the C++ API of the compiler Clang was enabled. Thus actually they are
passed from the Clang representation into structures compatible with C-
light.

As an example, let us consider the datatype pattern_node which repre-
sents axioms and conclusions of the Hoare rules.

Experiments on self-applicability in the C-light verification system 101

struct pattern_node

{

int is_omitted;

int has_category;

char* category;

int has_identifier;

char identifier[64];

int has_type;

char* type;

int has_value;

char* value;

int is_matched;

int table_length;

char match_identifiers[2][1000][64];

int children_count;

struct pattern_node* children[1000];

};

Since we deal with axiomatic semantics, it is obvious that the first and the
last node in the children list are a pre- and postcondition, correspondingly.
Each node has attributes (category, identifier, type) which contribute to the
matching process. In addition, there is a table of correspondence between
the program and pattern names which is filled up during the matching. The
program tree is based on the datatype program_node which, in general, is
similar to pattern_node.

Thus the metagenerator builds a program tree for an annotated program
and a collection of patterns for an applied Hoare system. According to the
proof direction, it chooses the leftmost/rightmost program construction and
tries to find an appropriate pattern. For a selected pattern it recursively
applies to the premises of the corresponding Hoare rule.

The implementation of MetaVCG is quite large, so let us restrict our-
selves to the main tree matching function in the rest of this section. At
the moment we use a “greedy” algorithm. Such algorithm can be applied
successfully thanks to the simplicity of the axiomatic semantics of C-kernel1
and the constraints of C-light (for example, the control transfer into com-
pound statements from the outside is forbidden). Perhaps, consideration of

1That was the reason to introduce the translation from C-light.

102 A.V. Promsky

the complete C or C++ will require a more general approach.

3.3. An example of a verified code

The idea of verification condition generation consists in finding an appro-
priate proof rule for the current program construction. Application of a
proof rule results in a formula of the underlying theory (VC) and/or a set
of new Hoare triples for which the process should be recursively applied.
As we have seen, during the meta-stage the axioms and rules (written in
the pattern language) are transformed into the objects of the type struct

pattern_node which are trees. The program constructions are also the trees
of the analogous type struct program_node.

The following function implements the tree matching in our MetaVCG.
Despite the size, its idea is quite straightforward. The inequality of the
node properties signals that the nodes are incomparable. This is the case
when, for example, a rule for an assignment is matched against, for ex-
ample, a loop, or vice versa. Otherwise we recursively begin to compare
children in the corresponding nodes. As noted above, the correspondence
between program identifiers and names in a pattern is recorded in the table
match_identifiers. For every comparison of the children pair, the parent
node table serves as a base. That is why we copy it before each recursive
function call. Moreover, during the children comparison, the inner table can
be replenished with new records. Thus, we need to rewrite the main table
every time.

int match_trees(struct pattern_node* pattern,

struct program_node* code)

{

pattern->is_matched = 1;

if (compare_properties(pattern, code) == 0)

{

pattern->is_matched = 0;

}

else

{

int found = 1, found_omitted = 0, i = 0, j = 0;

int code_count = code->children_count;

int pattern_count = pattern->children_count;

while (((i < code_count) ||

(j < pattern_count)) && (found || found_omitted))

{

found = 0;

if (j < pattern_count)

{

if (pattern->children[j]->is_omitted)

Experiments on self-applicability in the C-light verification system 103

{

found_omitted = 1;

}

else if (i < code_count)

{

int match;

copy_table(pattern->children[j], pattern);

match = match_trees(pattern->children[j],

code->children[i]);

if (match)

{

clear_table(pattern);

copy_table(pattern, pattern->children[j]);

found = 1;

if (found_omitted) found_omitted = 0;

}

}

else found_omitted = 0;

j++;

}

else if (i < code_count) i++;

}

if ((!found) && (!found_omitted))

pattern->is_matched = 0;

}

return pattern->is_matched;

}

The VCG produces eleven VCs which can be proved using the specifications
of auxiliary functions [5] and the Standard Library routines for strings [11].

4. Conclusion

The deductive verification is a way to establish formally the program cor-
rectness. Obviously, the verification method itself should be correct. Apart
from theoretical soundness, its implementation also requires validation. The
situation when a verification system is written in the target language gives
us an opportunity to apply it to itself. This task is of great interest in the
case of the C language.

This “work-in-progress” paper describes our steps towards the “verified
verifier”. First of all, we adapted the metageneration approach and imple-
mented it with some modification using the C-light language. Then the code

104 A.V. Promsky

was supplemented with ACSL annotations. Let us note that they rely deeply
on specifications for the Standard C library (mainly string routines) devel-
oped in our previous works. Finally, a series of experiments was performed
in order to verify the MetaVCG.

Let us note that studies related to the development of a self-applicable
verification system are virtually unknown. In many cases researchers use
different languages to implement their systems (like the functional O’Caml
in WHY [4]). Others are concentrated on verification of different applications
(for example, Hyper-V is studied in detail in the VCC project [3]).

We plan to continue our work on specification and verification of the
components of our system. At the moment, only a restricted functionality is
expressible in a pure C. Perhaps we will return from C++ API of the Clang
compiler to the standard C in order to achieve an ultimate goal – the total
verification.

In the introductory section, we also mentioned another possible research
area. The formal semantics for C-light and C-kernel could be embedded in
a prover based on the higher order logics. After that, some theorems earlier
proved manually could be revised with such automatic assistance.

References

[1] Apt K.R., Olderog E.R. Verification of Sequential and Concurrent Programs.
– Berlin etc.: Springer, 1991.

[2] Baudin P., Filliâtre J.C., Marché C., Monate B., Moy Y., Prevosto V. ACSL:
ANSI/ISO C Specification Language
http://www.frama-c.cea.fr/download/acsl_1.4.pdf .

[3] Cohen E., Dahlweid M., Hillebrand M.A., Leinenbach D., Moskal M., Santen
T., Schulte W., Tobies S. VCC: A practical system for verifying concurrent C
// Proc. TPHOLs 2009. – Lect. Notes Comput. Sci. – 2009. – Vol. 5674. – P.
23–42.

[4] Filliâtre J.C., Marché C. Multi-prover verification of C programs // Proc.
ICFEM 2004. – Lect. Notes Comput. Sci. – 2004. – Vol. 3308. – P. 15–29.

[5] Kondratyev D., Promsky A. Towards the ’Verified Verifier’. Theory and prac-
tice // Proc. Fifth Workshop “Program Semantics, Specification and Verifica-
tion: Theory and Applications”. – Moscow, Russia, June 6, 2014. – P. 68–78.

[6] Maryasov I.V., Nepomnyaschy V.A., Promsky A.V., Kondratyev D.A. Auto-
matic C program verification based on mixed axiomatic semantics // Proc. of
Fourth Workshop “Program Semantics, Specification and Verification: Theory
and Applications”. – Yekaterinburg, Russia, June 24, 2013. – P. 50–59.

[7] Moriconi M., Schwartz R.L. Automatic Construction of Verification Condition
Generators From Hoare Logics // Lect. Notes Comput. Sci. – Berlin etc., 1981.
– Vol. 115. – P. 363–377.

Experiments on self-applicability in the C-light verification system 105

[8] Nepomniaschy V.A., Anureev I.S., Mikhailov I.N., Promsky A.V.Verification-
oriented language C-light // System Informatics. – Novosibirsk, SB RAS Pub-
lishing House, 2004. – Issue 9: Formal Methods and Informatics Models. – P.
51–134 (In Russian).

[9] Norrish M. C Formalised in HOL: Thes. Doct. Phylosophy (Computer sci.). –
Cambridge, 1998.

[10] Oheimb D. von. Hoare logic for Java in Isabelle/HOL // Concurrency and
Computation: Practice and Experience. – 2001. – Vol. 13(13). –
URL: http://isabelle.in.tum.de/Bali/papers/CPE01.html.

[11] Promsky A.V. C program verification: verification condition explanation and
standard library // Automatic Control and Computer Sciences. – 2012. – Vol.
46, No. 7. – P. 394–401.

[12] Promsky A.V. Experiments on self-applicability in the C-light verification sys-
tem // Bulletin NCC. Series: Computer Science. – Novosibirsk, 2013. – IIS
Special Iss. 35. – P. 85–99.

106

